• 西门子模块6ES7214-2AD23-0XB8型号大全
  • 西门子模块6ES7214-2AD23-0XB8型号大全
  • 西门子模块6ES7214-2AD23-0XB8型号大全

产品描述

产品规格模块式包装说明全新

西门子模块6ES7214-2AD23-0XB8型号大全


目前在国内电厂各类大型汽轮发电机组的运行监测方面,尚有许多机组的监视系统是落后和不完善的。针对这种情况,综述了国内外大型汽轮发电机组状态监测和故障诊断技术现状与发展。介绍了故障机理、故障信息处理技术、故障源分离与定位技术和智能诊断技术的研究历史与现状,以及故障诊断系统的研制历史和振动信号分析技术与发展。后指出,研究故障发生机理并应用到故障诊断系统中去可以及时发现早期的潜在故障,提高大型机组运行的性与性。

设备状态监测与故障诊断技术是一种了解和掌握设备使用过程状态的技术。它可以确定设备整体或局部是正常还是异常,能早期发现故障及其原因,并能预报故障发展趋势。设备状态监测与故障诊断过程包括状态监测、故障检测、故障识别或诊断、故障分析与预测、故障处理对策与建议等[1]。

在汽轮发电机组的各种故障中,振动故障是一类对生产和运行产生很大影响的故障。一方面,振动故障的诊断比较复杂,处理时间比较长;另一方面,振动故障一旦发散酿成事故,所造成的影响和后果是十分严重的[2]。

1大型汽轮发电机组状态监测和故障诊断

由于我国用电的需要和资金制约,降低老机组故障发生率,延长老机组的使用寿命是非常重要的[3]。目前在国内电厂各类大型汽轮发电机组的运行监测方面,只有部分装有美国本特利公司或德国飞利浦公司的振动监视系统,尚有许多机组的监视系统是落后和不完善的。由此可见,开展大型汽轮发电机组的故障诊断技术研究是非常必要的。

随着机组容量增大,所出现的振动故障也越来越复杂,目前采用的在线监测装置一般只具有振动系统的很少且很不完善。利用的检测、诊断仪器,采取科学有效的技术方法开展现场故障诊断工作是目前电厂各类机组故障诊断和预测分析的主要方法[4]。

目前在上,以美国为主的西方发达国家在大型汽轮发电机组在线监测与诊断技术的综合研究方面处于地位:一方面,美国的信号处理与数据分析技术发展较快,而这些处理机、分析仪和数据采集系统是机械设备状态监测的基础和,是发展后续技术(故障诊断)所不可分割的部分;另一方面,美国的几家公司,如Bently,IRD,BEI,从事对大型电站机组的运行和监控的研究,以及对机组性、性、维修性与经济管理技术方面的研究,已有了40多年的历史,建立了庞大的数据库管理系统,并开展了系统的研究,具有雄厚的数据与软件实力。此外,上还有许多的诊断仪器公司,如丹麦的B&K,德国的申克及日本的武田理研等,生产有多种用于设备诊断的分析仪器及软件系统。然而国外的在线监测系统、现场诊断仪器及诊断管理软件一般价格十分昂贵,且存在维护不便、因缺少汉化而使用不便等问题,因此还难以在我国基层电厂普及。

我国工业企业的设备诊断技术自1983年起步,初期主要应用于石化、冶金及电力等行业,进入20世纪90年代后,渗透到国民经济的各个主要行业。其中旋转机械的故障诊断是诊断技术应用广、涉及行业多的应用领域,如电力行业中的汽轮发电机组,石化行业的压缩机,航空工业的各种航空发动机等。大型汽轮发电机组的在线监测与故障诊断技术作为国家“七五”、“八五”重大科技攻关项目,并在“九五”期间仍继续受到支持,其重要意义是显而易见的。西安交通大学、哈尔滨工业大学、清华大学等一些高校及西安热工研究院等一些研究单位在大型汽轮发电机组故障机理及其诊断技术研究方面总体上处于国内水平。但是,由于近年来大型汽轮发电机组单机装机容量的不断增大(如国内目前己投产700 MW汽轮发电机组),而对大型机组许多常见故障的机理、故障特征及现场诊断方法的研究还有待进一步的深入。此外,在现场信号采集与故障诊断仪器及数据管理软件的研制方面,国内虽有一些大学及研究所推出了自己的产品,如北京振通技术研究所推出的902和903便携式数据采集器、重庆大学测试的QLSA-W型振动噪声测试分析仪、大连理工大学推出的PDM2000数据采集分析仪及管理软件等,但随着计算机技术尤其是微处理器及软件技术的飞速发展,上述装置及软件系统在性能指标、性、软件对不同公司数据采集装置的适应性等方面均存在一定的局限性。

2故障诊断技术研究的主要内容及其概况

30多年来,故障诊断技术不断吸收各门科学技术发展的新成果,诊断的理论与应用有了很大的发展和进步,它涉及系统论、控制论、信息论、检测与估计理论、计算机科学等多方面的内容,成为集数学、物理、力学、化学、电子技术、信息处理、人工智能等基础学科以及各相关学科于一体的新兴交叉学科。故障诊断技术研究的主要内容包括以下4个方面:故障机理;故障信息处理技术;故障源分离与定位技术;人工智能技术的应用研究。

2.1故障机理的研究[5~7]

故障机理的研究,是以性和故障物理为理论基础,研究故障的物理学或数学模型,进行物理模拟或计算机,其目的是了解故障的形成和发展过程,明确故障的动态学特征,从而进一步掌握典型的故障信号,提取故障征兆,建立故障样板模式。故障机理的研究是故障诊断的基础,是获得准确、的诊断结果的重要保证。

为了故障诊断工作的顺利开展,国内外很多科研人员和科研部门在故障机理方面作了大量的研究工作。例如,具有多年工厂实践经验的美国人John Sohre是研究涡轮机械故障机理的,他于1968年发表的论文“高速涡轮机械运行问题的起因和治理”,清晰简洁地描述了典型的机械故障征兆及其可能成因,并将典型的故障划分为9类37种。美国Bently Nevada公司的转子动力学研究所对转子和轴承系统典型故障作了大量的试验研究,并发表了许多很有的论文。日本的故障诊断白木万博自20世纪60年代以来发表了大量的故障诊断文章,积累了丰富的现场故障处理经验,并进行了理论分析。国内自20世纪80年代中期以来,清华大学、上海交通大学、哈尔滨工业大  学、西安交通大学、西安热工研究院等单位,在故障机理的研究方面做了大量的工作,发表了许多有的文章。

虽然在故障机理的研究方面已经了大量的成果,但大型汽轮机组的振动故障机理仍然没有全部明确,亟须进一步的深入研究。

2.2故障信息处理技术的研究[8~10]

故障信息处理技术是故障诊断的前提,它在提高诊断的准确性和性方面处于非常重要的地位。常规的故障信息处理技术包括故障信号和故障信号分析处理两个部分。测量的信号通常是振动、噪声、温度、压力、电流、电压等信号中的一种或几种。随着电子技术和计算机技术的发展,各种传感器越来越小型化、精密化,近年来,一些国外企业以与一般传感器同样的价格推出了智能传感器,使得故障信号检测在不影响系统运行的前提下易于实现,而且在满足要求的同时提高了其本身的性。近,日本出现了非接触式测量技术,大大地拓宽了故障信号的测量范围,虽然在测量精度上暂时还未能满足要求,但它预示了信号检测技术的一个发展方向。

故障信号分析处理是对检测到的各种状态信息进行加工、变换,以提取故障征兆。目前,应用广泛的故障信号分析处理方法是傅立叶(Fourier)分析和相应的FFT快速算法。借助于FFT算法实现的信号处理有频谱分析、相关分析、相干分析、传递函数分析、细化谱分析、时间序列分析、倒频谱分析、包络分析等。这些分析方法在故障诊断过程中起到了重要的作用,但傅立叶分析方法只适合于分析连续的、平稳的时域信号。为了有效地分析处理工程应用领域中大量的非平稳信号,人们把小波(wavelet)和分形(fractal)这两种新的工具引入到故障信号的分析处理中。它们的理论和应用研究十分活跃,预示着在故障诊断领域中将获得广泛的应用。

其实,在故障发生时,领域往往凭五官感觉到一些难以由数据描述的事实,他们根据系统的结构和故障发生的历史,就能很快地做出正确的判断。这种感性知识的和经验知识的表达、处理过程,事实上就是故障信息的智能处理技术。在模糊诊断系统中,这种基于经验知识的智能化信息处理技术表现在故障征兆对故障原因的支持程度或否定程度的建立上;而在系统中,则表现在各类诊断知识的和组织表达上。近年来,人们对诊断知识的、表达、组织和推理方法作了大量的研究,目前仍没有获得突破性进展。

由于大型机组的故障机理十分复杂,目前仍难以采用的数据完备地表达其运行状态,因此,研究故障信息的智能处理技术有着重要的意义。

2.3故障源分离与定位技术的研究[11~13]

故障源分离与定位也称为故障模式识别,是将经过信号处理得到的有限的或不完整的特征信号与故障原因对应起来,使故障源定位。故障源分离与定位技术是故障诊断的关键技术,将故障源定位是故障诊断的终目标。

20世纪60年代以来,随着故障诊断理论研究的不断深入,人们克服了越限诊断方法的局限,发展了多种故障源分离与定位技术,包括基于系统数学模型的方法、统计分析方法和模糊综合评判方法等。根据诊断知识的利用方式,可以将故障源分离与定位技术分为基于模型的方法与基于规则的方法两大类。基于模型的方法可以充分利用系统的内部知识,有利于系统整体的故障诊断;其缺点是系统的建模误差或外部干扰将对故障诊断的结果产生重大的影响。基于规则的方法,其适应性广、灵活,但故障的在线估计比较困难。

撇开实际应用场合而去评价某一种故障源分离与定位方法的好坏是没有意义的。在实际应用中,应根据具体诊断对象的特点和需要完成的诊断任务,恰当地选择或综合利用几种方法,才能较好的效果。

2.4智能诊断技术的研究[14~15]

智能诊断技术已从实验室研究阶段逐渐走向实际工程应用阶段。由于大型复杂系统在工业生产中的广泛应用,使得常规故障诊断技术越来越难以满足人们对大型复杂系统提出的性要求,因此,智能诊断技术是大型复杂系统故障诊断发展的方向。目前,尽管人们在智能诊断技术的研究方面做了大量的研究工作,但无论是在理论方面还是在实际应用方面都还存在许多问题有待于研究解决。

3故障诊断系统的研制历史

故障诊断系统是根据诊断对象故障的特点,利用现有的故障诊断技术研制而成的自动化诊断装置。故障诊断的各种理论与方法的研究终都落实到具体的诊断装置或诊断系统的研制上,只有  诊断系统的研制成功才能产生真正的经济效益。根据各类故障诊断系统出现的先后,可将它们分为以下四类:便携式检测仪表和分析仪器;在线监测仪表系统;计算机监测分析与诊断系统;智能诊断系统。其中,便携式检测仪表和分析仪器、在线监测仪表系统和计算机监测分析与诊断系统统称为常规故障诊断系统,这三类故障诊断装置或诊断系统从出现至今,经过不断的改进,己经发展成为成熟的商品,在故障诊断领域发挥了的作用。

便携式检测仪表和分析仪器是早出现的故障装置,其主要功能是对检测对象的一些重要运行参数进行测量,分析人员根据测量得到的数据判断检测对象的运行状态。如:振动测量仪、温度测量仪、轴承检测仪等,生产厂家有丹麦的B&K公司、瑞典的SPM公司等。

在线监测仪表系统是继便携式检测仪表和分析仪器之后出现的针对某一具体对象的故障监测系统,适用于需要实时监测运行状态的工业生产系统。比较成熟的产品有:美国Bently公司的7200系列,9000系列,3300系列;西德Philips公司的11 MS700系列以及申克公司的VIBROCON-TROL 2000系列;瑞士Vibro-MetCr公司的MMS系统等。

计算机监测分析与诊断系统的相继出现,是由于便携式检测仪表和分析仪器和一般的在线监测仪表系统无法满足大型系统故障诊断的要求。计算机监测分析与诊断系统不但可以在线实时监测大型系统的运行状态,还可以根据现场的检测数据,实现越限报警、实时故障分析与诊断等功能。典型的产品有:美国Bently公司的Trendmaster 2000系统;日本三菱公司的HMH系统;瑞士Vibro-Me-ter公司的Vibro-Turbo系统;加拿大CSI3100系统;中国清华大学的QH-l系统,华中理工大学的HZ-l系统,哈尔滨工业大学的MMMD-3系统等等。

智能诊断系统,是在常规故障诊断技术的基础上,结合人工智能技术的研究成果研制而成的自动化诊断系统。智能诊断系统的开发历史并不长,美国自20世纪80年代开始在这方面开展研制工作,开发了多种智能诊断系统。例如,1982年EGG.Idaha公司研制成功用于诊断和处理核反应堆的故障诊断系统。此后,Westinghouse公司研制成功电厂人工智能在线诊断大型网络系统,其中包括汽轮机Turbin AID、发电机GenAID和水化学ChemAID三个人工智能在线诊断系统,以及电站数据PDC和诊断运行,它在电站机组的运行中发挥了的作用,了很大的经济效益,被誉为在线智能诊断系统成功应用的代表。国内在故障的智能诊断技术方面的研究起步较晚,但发展较快,并了不少成果,如华中理工大学研制成功汽车发动机故障诊断系统KB-SED和汽轮机组监测与诊断系统;哈尔滨工业大学研制成功大型旋转机械故障诊断系统MMMDES;另外,清华大学、上海交通大学、西安交通大学、郑州工学院、东南大学等院校也先后开展了故障智能诊断系统的研制工作[10,13]。

故障机理的研究振动信号分析是机械故障诊断技术中采用的主要的方法之一。目前,在振动信号分析与处理方法中,以快速傅立叶变换(FFT)为基础的调和分析法应用为普遍,几乎所有的动态分析仪都是以FFT为进行信号处理的,FFT分析方法及其派生出的多种有效的振动信号处理方法(如快速卷积、相关、自谱、互谱、倒谱、细化谱及传递分析等)在机械故障诊断技术应用中起到了非常大的作用。然而,这类基于平稳过程的经典信号处理方法,分别仅从时域或频域给出信号的统计平均结果,无法同时兼顾信号在时域和频域中的全貌和局部化[16]。

为实现对非平稳信号的有效表示,解决其时频局部化分析问题,Gabor提出了加窗傅立叶变换(WFT)或短时傅立叶变换(STFT),但由于其时频分辨率固定,缺乏细化能力,逐步被20世纪80年代发展起来的一种新的数学方法———小波(wavelet)分析所取代。小波分析是一种包含尺度伸缩和时间平移的双参数的函数分析方法,由于小波函数具时频局部化特性,多尺度性和“数学显微”(“变焦”)特性,伸得小坡变换能够很好地解体非平稳信号的分析问题,它的出现对纯数学和应用科学都具有重要意义。研究表明:小波分析在振动噪声的去除、非平稳振动信号的表示与分析及振动信号多分辨率分析等方面具有较强的优势,是适合机械故障诊断的一种有效方法[17]。

随着人们对小波分析的理论和应用研究的深入,不少新的理论方法被提出。其中,信号自适应小波分解理论和基于基因遗传算法求解的广义自适应小波分解方法已经具有工程应用背景。但在小波参数的优化问题上,在将小波分析的理论应用到实际的故障诊断系统中,还有大量的实际工作要做。

4 结语

研究故障发生机理并应用到故障诊断系统中去可以及时发现早期的潜在故障,避免重大恶性事故的发生,从而提高大型机组运行的性与性。因此,研究故障机理及其诊断技术将带来的经济效益。


一、引言

在现代控制系统中,由于系统复杂性的日益提高,规模的不断扩大,系统常常要面对不可预计的变化。这类系统一旦发生故障就可能造成人员和财产的损失。设计的容错控制系统,或者将复杂系统的性能维持在高水平上,是急待解决的问题。切实现代复杂系统的性和性,具有十分重要的意义。这就需要能够正确地出系统产生的变化(故障),然后尽快地采取相应措施来重新配置系统。由于实际应用在这方面有强烈要求,所以研究和发展新的故障检测和诊断技术已经成为自动控制领域的一个热点研究方向。

动态系统的故障检测与诊断(FDD)既是一门相对立发展的技术,也是容错控制的重要支柱。目前上每年发表的有关FDD方面的论文和报告在1000篇以上。许多学者加入到这一研究领域,提出了许多研究方法。经过多年的发展,这一领域已经产生了许多研究成果。

实际系统可能发生的故障是多种多样的,因此研究故障检测和诊断问题需要对故障做出适当的分类,按照不同的方面,可以得到不同的分类结果。从故障发生的部位看,可以分成仪表故障(常称为传感器故障)、执行器故障和元部件故障;根据故障性质,可以分为突变故障和缓变故障;从建模角度出发,又可以分为乘性故障和加性故障。至于故障诊断的方法,按照通行的分类方法可以分为3大类:基于解析模型的方法、基于信号处理的方法和基于知识的方法。

基于解析模型的方法是早发展起来的,此方法需要建立被诊断对象的较为的数学模型。进一步,它又可以分为参数估计方法、状态估计方法和等价空间方法。这3种方法虽然是存在一定联系的,比如基于观测器的状态估计和等价空间方法是等价的。相比之下,参数估计方法比状态估计方法适合非线性系统,因为非线性系统的状态观测器的设计有很大的困难。目前,只有针对某些特殊的非线性系统有研究,而通常的等价空间方法仅适用于线性系统。

当难以建立诊断对象的解析数学模型时,基于信号处理的方法是非常有用的。这种方法直接利用信号模型技术,如相关函数、高阶统计量、频谱和自回归滑动平均过程,以及现在热门的小波分析技术用这种方法可以避开提取对象数学模型的这一难点,这既是它的优点又是它的缺点。

基于知识的方法和基于信号处理的方法类似,也不需要系统的定量数学模型,但它克服了后者的缺点,引入了诊断对象的许多信息,特别是可以充分地利用诊断知识等,所以是一种很有前途的方法,尤其是在非线性系统领域。下面将介绍基于知识的故障诊断方法,并把放在基于定性模型的方法上。

二、基于定性方法的故障检测和诊断方法

定性故障检测和诊断方法的基础是定性模型和定性推理。基于定性方法的故障检测与诊断,利用不完备的先验知识,采用定性的方法,对系统结构和功能进行描述,建立起定性模型,对系统进行推理,预测系统的定性行为,通过与实际的系统行为比较,检测系统是否发生故障,并诊断系统的故障原因。

(一)基于定性理论(QSIM)的诊断技术

它的理论基础是于1986年提出的基于定性微分方程的定性理论。Kuipers在1987年提出了基于QSIM的诊断技术起,采用基于故障模型的诊断策略,利用QSIM方法对故障模型进行,从而得到预测的系统行为。然后将观测到的故障行为与这些预测行为相比较。如果一致,则说明系统发生故障。这时,依据建立该模型时的先验知识,进一步诊断出故障的种类和原因。这充分发挥了QSIM基于深层知识建模和推理能力强大的特点。这一过程被称为设—建模——匹配循环,如图1所示。




这种方法适用于对所有故障都已知的系统进行故障诊断。对未知的故障无法进行准确的故障诊断,这是该方法本身造成的缺陷。
(二)基于定性过程理论(QPT)的诊断技术

它是于1984年提出的定性推理方法。Forbus于1987年提出了基于定性过程理论(QPT)的故障诊断技术——ATMI,利用定性理论对系统的观测进行解释。该方法的输入是一组测量序列。定量值被描述为量空间的表示形式。定性状态包括数量有限的组分,构成一种解释,对于一组系统测量值,存在一组定性状态集与之对应。通过削减集合中的状态,得到对系统行为的解释。

该方法通过对测量值进行解释,从而检查故障设是否能解释观测的系统行为。这种理论仅仅依赖很少的设,这些设往往很容易满足。这一优点使得此方法可以应用于较广阔的领域。但是,在待研究的系统事先已知的情况下,现有的定性推理机制往往显得很慢。解决的办法是事先建立状态解释表,通过查表,加快解释过程,但这个表可能非常大。

(三)基于带符号有向图(SDG)的诊断技术

它是一种由节点(nodes)和节点之间有方向的连线构成的网络图。它看似简单,却能够表达复杂的因果关系,并且具有包容大规模潜在信息的能力。

在化工过程中早采用SDG方法进行故障诊断研究的学者是S.A.Lapp和G.J.Powers,虽然在论文中没有明确提出SDG一词,但的确建立了SDG模型,并用SDG推导出了故障树。

M.Iri等人(1979,1980)提出了符号图SG的定义以及运用深度技术在静态不的SG样本中探索故障源的基本算法。

J.Shiozaki等人(1985)在M.Iri的基础上将SG明确为SDG,并且提出了5级SDG的概念和一种新的算法,节点状态为“+”、“+?”、“0”、“-?”和“-”5种提高了诊断的准确性的计算效率。在实际中已经有了这方面的应用。

J.Shiocaki等人(1987)经过研究,又提出运用故障显现时间的概念改进SDG故障诊断方法,提高了诊断的分辨力。

C.C.Yu等(1991)、X.(1996)和E.E.Tarifa(1997)将支路定量稳态增益和隶属函数结合起来,根据模糊逻辑计算出相容通路的相容度,为相容通路确定灰度级别。在这里,模糊集合论被引入SDG,用于解决区分多通路影响度的问题。

H.Vedam(1997)将SDG方法推广到多故障源的诊断(MFD),提出的算法在G2软件平台上进行实现,并且用一套FCCU的运态系统进行诊断试验,提高了计算速度和诊断分辨力。

目前,国内这方面也有研究,北京化工大学的吴重光教授等人立研究解决了推理机问题,并且通过自动HAZOP案例分析验证了所开发的 SDG-HAZOP软件平台的正确性,了这一领域国内研究的空白。

基于带符号有向图(SDG)的诊断技术认为故障诊断本质上是确定过程扰动的根本原因。采用带符号有向图描述系统,利用存储在SDG图上的信息搜寻扰动可能的故障源,从而有效识别系统扰动的原因。此方法的优势在于需要相对较少的信息来构造带符号有向图及用于诊断。SDG利用节点和连线来描述系统成员之间的因果关系,如图2所示。


其中,节点A和B表示过程变量,取值{-, 0, +};节点间的有向连线表示节点间的因果关系;连线上的符号sgn(A-B)代表节点间影响的方向,当sgn(A-B)取值为“+”,表明原因变量与结果变量变化方向相同;当sgn(A-B)取值为“-”,表明原因变量与结果变量变化方向相反。构造 SDG的方法主要有两种:一种是根据过程数据或者操作者的经验构造;另一种是通过对已知的数学模型进行抽象来构造。如图3所示。目前通常  采用种方法,因为大多数系统的数学模型很难准确地建立。利用SDG进行故障要构造一组从给定根节点出发的有向枝(称为树)。树表现为一组从根节点到每一个因果相关节点的路径,是对故障传递途径的预测,体现了事件因果顺序和故障源对相关节点影响的方向。




采用经验法构造SDG模型按如下步骤进行:

1.找出和故障相关的、关键变量作为节点;

2.尽量找出导致这些节点故障的原因,每个故障源到节点都有支路相连;

3.从原理清节点之间是增量影响还是间量影响,分别用“+”或“-”支路相连;

4.SDG图做出后,采用该过程的系统作案例分析,通过反复验与修改SDG模型直到满意为止。

其中,选择节点和支路的原则是:在符合客观规律的前提下,要有利于解释故障的原因及后果。

基于SDG建模的诊断技术存在如下缺点,有待与学者进一步的研究:

1.SDG通常只支持两种过程偏差(偏大或偏小),这在有些场合是不够的;

2.SDG没有包含设备的状态信息。因此,即使设备单元存在故障,SDG仍然把它当作正常设备来使用,这就会造成误差;

3.SDG对于故障序列处理得不好,仅能处理一些简单的线性事件链;

4.使用SDG模型,有时候不能在很多事件中区分出哪些是可能的、哪些是不可能的。这是因为有向图没有地与现实情况吻合,存在误差;

5.由于SDG模型没能包含设备单元的所有信息,经常会出现故障误报。虽然误报比漏报好,但是增加了用户区分这些预报真的工作量。
(四)基于定性观测器的诊断技术

Zhuang和Frank提出了定性观测器(QOB)方法。定性观测器主要包括如下4个部分(见图4):

(1)定性模型:是定性观测器的关键部分,通过定性推理,来预测系统的行为;

(2)差异检测器:用于确定测量值与计算设之间的差异;

(3)候选者产生器:依据差异,提出供候选的故障源;

(4)诊断策略:用于协调整个循环搜索过程,从而确保模型与实际过程相匹配。




基于定性观测器的故障诊断技术,通过构造系统的定性模型,对系统行为进行预测,将预测的结果与系统实际的输出相比较,利用差异检测器,衡量预测与实际之间的差异,如果存在差异则已出故障。将差异作用于候选者产生器,产生候选故障,反馈给定性模型,构成故障模型,直到预测与实际输出匹配,从而诊断出故障。



三、结束语和展望

本文介绍了基于定性方法的故障检测与诊断技术。影响方法选择的主要因素是系统的先验信息。如果无法建立定量模型时,定性方法是自然的选择。

基于定性方法的故障检测与诊断技术的主要优点如下:(1)当系统信息不完整,或者系统信息是定性信息,或者故障无法用解析模型描述时,无法建立定量模型,只能建立定性模型。采用基于定性方法的诊断技术仍然可以检测和诊断故障。(2)利用定量方法诊断时,虽然比较,但有时因为诊断速度问题,无法实现在线诊断;或者在对度要求不高的场合,利用定性方法为适宜。(3)用定性方法描述系统,可以保证所表述系统行为的性,因此可以减少误报现象。(4)定性方法利用系统的深层知识,关注于系统不同部分之间的因果性或相关性。这一特点有助于进行故障分离和故障分析。(5)利用定性方法进行故障诊断,具有较好的鲁棒性。

也存在着以下这些不足,同时这也是学者进行下一步研究的方向:(1)利用定性知识进行故障诊断时,定性知识的组合数会随着系统规模的扩大发生级数爆炸,影响了定性方法的实用性。(2)需要预先知道故障的定性知识,否则只能进行检测,不能准确地诊断出故障的原因。(3)由于定性描述相对于定量描述而言比较粗糙,存在冗余信息,这样会造成诊断结果的不性,需要进行筛选。(4)利用定性方法描述的系统进行故障诊断,同时达到低误报率和低漏报率还比较困难。(5)如何将定量信息定性化,在定性方法中加入定量信息,以及对诊断性能的影响都值得研究。

基于定性和半定性方法的故障检测与诊断是实用性很强的技术,它是在实践中发展起来的,只有通过实践才能不断促进其自身的发展与完善。


1 引言

变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、、的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。

2 变频调速系统的主要电磁干扰源及途径

2.1 主要电磁干扰源

电磁干扰也称电磁 (EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

2.2 电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当。
当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

3 抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是基本和重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。
单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有接地端子PE端,从和降低噪声的需要出发,接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为温度-10℃,温度不过50℃;变频器的安装海拔高度应小于1000m,过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺

要求如下:

① 确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

② 安装布线时将电源线和控制电缆分开,例如使用立的线槽等。如果控制电路连接线和电源电缆交叉,应成90°交叉布线。

③ 使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④ 确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤ 用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥ 如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到优效果,滤波器与安装金属板之间应有良好的导电性。

4 变频控制系统设计中应注意的其他问题

除了讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5) 注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

5 结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“”变频器不久也会面世。



http://zhangqueena.b2b168.com

产品推荐