产品描述
6ES7223-1PL22-0XA8参数选型
1、系统概述
玻璃熔窑各参数的稳定运行非常重要,它直接影响到玻璃的产量和质量。在玻璃生产过程中对窑压和温度的稳定有严格的要求,同时窑压和温度的写急定又涉及到其它环节和参数,比如燃油的压力和温度,雾化介质的压力以及换向过程等等。要想实现这些参数的稳定,并且达到较好地配合有不同的方法可以实现。随着微电子技术的发展,PLC产品在其功能和性能指标上都大大地丰富和完善,因此,我们就应用PLC的一些特殊功能模块和一些普通的I/O模块对玻璃熔窑的各个参数进行自动控制,包括提到的各种参数、熔窑的换向控制以及通过PLC和变频器的通讯实现对变频器输出频率的控制。系统投入使用以来运行状况良好。
2、系统构成
本系统上位机部分选用一台上位机配以FIX软件包,PLC部分选用的PLC,它具有、运行、功能较强的特点。执行机构主要有变频器、电磁阀、薄膜调节阀、三相异步电动机等。
3、PLC实现的功能
本系统大致可以分为三个部分;1、PID调节部分,2、熔窑的换向系统,3、PLC和变频器的通讯部分。其中PID调节部分包括油压、油温、油流(1-6号)、雾化介质、窑压等参数的控制。
3.1PlD调节部分
PID控制主要通过PID控制单元,该单元主要有以下特性;1、l00ms高速采样周期,实现了高速PID控制。2、数字滤波器衰减输入噪音,控制输入意外干扰,使PID控制成为有效的快速响应系统。3、多种输出规格可供选择。4、八组数据设置,八个数值(如设(SP)和报警设置值)可以预置在八个数据组中。5、可以用数据设定器输入和显示当前值。6、PID控制,利用PID控制器及自动调谐的特性获得稳定的PID控制。7、可以用PLC程序输入和检索数据。同时我们通过PLC的程序实现双PID控制,从而实现了窑压和油流的稳定运行。
PID控制可以分为本地控制和远程控制两种模式,远程控制即通过PLC实现的控制,又有自动和手动两种方式,自动控制即由PLC进行全自动控制,不需要进行人工干预。手动控制即在上位机上给定一个阀位输出值,通过PLC对阀位进行控制。在正常情况下都是在远程控制模式下的自动状态进行,并且每个PID控制回路的SV值、PV值、OUT值都可以在上位机上用棒图显示出来,非常直观。
同时在上位机上可以很方便地修改油温、油压、油流、雾化介质、窑压等每个控制回路的PID参数,如设定值(SV)、“P”值、“I”值、“D”值,并且操作界面非常友好,操作方便。
3.2熔窑的换向部分
熔窑的换向分为手动、半自动、和自动三种方式,手动即在控制柜上进行操作;半自动和自动都是通过PLC进行控制的,正常情况下都是在全自动换向状态下运行,不需要进行人工干预,只要在上位机上设定换向时间,PLC就会按给定的时间进行自动换向。并且PLC能自动地识别方向,在上位机上显示。
同时还能保证在于动/半自动/自动三种状态之间无扰动切换。
3.3PLC与变频器的通讯(现场总线DeviceNet)
现场总线是近年来进入工业现场控制领域的一项的技术,在本项目中我们采用了DeviceNet开放式的现场总线来实现PLC与变频器之间的通讯。DeviceNet有很多特点;1、它为开放式现场总线网络,符合DeviceNet总线标准的国内外各生产厂商的机器均可连接。2、它支持广泛的数据处理操作,从通常的ON/OFF数据处理到条形码读入器的数据位操作。3、DeviceNet保证了波特率为125kbps,节点间大500m的距离,因而在较长的生产线上应用简单方便。当采用某种PLC机型时它可以使用多达2048个I/O点和63个从站。过去我们都是利用一个模拟量信号(4-2OmA或0-10v)来控制变频器的输出频率,从而实现节能或调速的要求。但是模拟量信号不管是4-20mA的电流信号或者是0-l0v的电压信号,即使采用数字化处理,但在传输过程中仍然是以模拟量信号进行传输,容易受到干扰,同时模拟量信号精度较低,只能用于精度要求不高的系统中,在精度要求较高的系统中,模拟量信号还易受干扰,造成系统的不稳定,而我们采用通讯的方式来控制变频器的输出频率,是一种纯数字化的控制,即数字的处理采用数字化处理,传输是纯数字化的传输,精度很高,这就能够使变频器的输出频率非常稳定。同时还可以把变频器的运行状态,故障信息在上位机上显示出来。
4、结束语
该系统应用于某玻璃生产线后运行稳定,也降低操作者的劳动强度,受到生产分厂的。由于该系统在改造前,油流量的控制一直不能技入自动,长期处于手动控制状态,需要很频繁地调节流量阀的开度大小,工作量很大。改造后能实现自动控制。而且该系统的操作也非常方便,凡是需要修改的参数都可以在上位机上直接输入,如变频器的起/停、基准频率、每个PID控制回路的参数值等。另外,该系统价格低,投资少,降低了产品成本,效益显著。
1 引言
传统的升降机普遍采用交流绕线式异步电动机转子串电阻调速方式,电阻的投切用继电器—接触器控制,这种控制方式的缺陷明显,不但制动和调速换档时机械冲击大,调速性能差,外接电阻能耗大,而且接线复杂,经常出现故障,性差。
采用结构简单、价格低廉的鼠笼式电动机,并利用PLC及变频器对升降机的控制系统进行改造,可实现升降机电动机的软起动和软制动,即起动时缓慢升速,制动时缓慢停车,还可实现多档速度的程序控制,让中间的升降过程加快,货物上下传输快速、平稳、。
2 小型货物升降机的基本结构
升降机的升降过程是利用电动机正反转卷绕钢丝绳带动吊笼上下运动来实现。小型货物升降机一般由电动机、滑轮、钢丝绳、吊笼以及各种主令电器等组成,其基本结构如图1所示。SQ1~ SQ4 可以是行程开关,也可以是接近开关,用于位置检测,起限位作用。
1. 吊笼 2. 滑轮 3. 卷筒 4.电动机 5.SQ1~ SQ4 限位开关
3 PLC和变频器控制的调速系统
3.1 多档速度控制
根据吊笼在升降过程中,要求有一个由慢到然后再由快到慢的过程,即起动时缓慢升速,达到一定速度后快速运行,当接近终点时,先减速再缓慢停车,为此将图1中的升降过程划分为三个行程区间,各区间段的升降速度如图2所示。按下提升起动按钮SB2(或下降按钮SB3),吊笼以较低的一速速度平稳起动,运行到预定位置时,以二速速度快速运行,等再到达预定位置时,以一速实现平稳停车。
3.2 系统的硬件构成
升降机自动控制系统主要由三菱FX2N—32MR可编程控制器、三垦SAMCO—i 变频器、三相鼠笼式异步电动机组成。系统的硬件接线如图3所示。
PLC控制一方面代替继电线路,另一方面,对于系统所要求的提升和下降、以及由限位开关吊笼运行的位置信息,通过PLC内部程序的处理后,在Y0~Y2 端输出相应的“0”、“1”信号来控制变频器输入端子2DF、FR、RR的状态,使变频器及时按图2所示输出相应的频率,从而控制升降机的运行特性。速度档由2DF选择,每档速度的大小则通过对变频器进行功能预置设定,再通过PLC的程序来控制频率切换。当PLC输出端Y0Y1Y2的状态为“010”时,变频器输出一速频率,升降机以10HZ对应的转速上升,当为“110”状态时,变频器输出二速频率,升降机以30HZ对应的转速上升;相应的,当Y0Y1Y2的状态为“001”、“101”时,升降机分别以10HZ、30HZ对应的转速下降。
图中QF为断路器,具有隔离、过电流、欠电压等保护作用。急停按钮SB1、上升按钮SB2、下降按钮SB3根据操作方便可安装在底部和部,或者两地都安装,操作时,只需按下SB2或SB3,系统就可自动实现程序控制。
3.3 SAMCO—i 变频器主要功能指令设定
Cd000=1 ; 选择变频器监视器显示频率(HZ)
Cd001=1 ; 选择外部端子信号作为变频器运转指令
Cd002=1 ; 选择由操作面板设定变频器1速频率
Cd007=30 ;变频器上限频率为30HZ
Cd029=10 ;变频器一速频率为10HZ
Cd030=30 ;变频器二速频率为30HZ
Cd049=5 ; 使用制动电阻
Cd050=1 ; 电机可以正反转
3.4 PLC梯形图
当吊笼在底部位置,且SQ1常开触点闭合时,按下SB2 , 电动机以一速缓慢上升,到达SQ2 、SQ3位置时,依此以快速、慢速上升。下降时与此类似,当遇到紧急情况时,按下SB1 ,升降机会停在任意位置。
系统主要由工控机、PLC、打印机和电气控制柜等组成,如图1所示。为了提高控制系统的性与灵活性,系统采用PLC可编程逻辑控制器。PLC选型为SIEMENS公司的S7-200系列PLC,处理单元为西门子公司推出的PLC采用S7-200系列CPU226,该CPU在本机体中集成了2个RS-485通讯口,其,满足本系统的所有要求。
使用485总线的一端连接PLC的通讯口PORT1,另一端通过RS-485/232电平转换器连接至PC机的RS-232串口,实现PC机向PLC发送命令帧、并接收PLC响应帧。
系统共有6个台位,共有12个传感器,其开关量控制点数有限所以需要扩展模块EM221和EM231。
2.控制的内容和要求
系统采用集散控制,工控机为上位机主要负责监控和管理功能:如数据的处理、与PLC通讯、误差修正等。PLC为下位机也是控制的,通过RS485接口与工控机相连。把发送信息输入到上位机,上位机向PLC发送发放的数据和指令。PLC接受上位机的信息并响应,实时控制电磁阀的打开合关闭,实时采集监测压力,并把每一路状态的相关数据反馈到上位机,由管理程序生成数据库,可对数据进行统计、报表、打印等。
本控制系统设计任务需要实现以下目标:
(1)可以监控蝶阀腔体内压力的变化,可以人工设定并自动控腔内压力值。
(2)可以通过自动方式和手动方式控制该系统。
(3)现场显示界面显示的内容主要包括:当压力值、当前的检测状态、实时故障报警和历史故障报警等。
(4)通讯采用RS-485总线通讯方式,使PLC与远程PC机联系,实现通过PC机控制电磁阀的开关,来压力大小目的。PC机同时与其他系统发生联系,进而使工厂整个生产过程构成了一个的整体。
3 PC机与PLC通信基础
3.1PLC自由口通信命令
所谓自由口通信模式即Freeport模式,它是建立在RS一485硬件基础上的一种通讯方式,它允许用户自己定义一些简单、基本的通讯协议设置,如数据长度、奇偶校验等等,通讯功能由用户程序控制[1]。自由口模式使用的相关的命令为XMT和RCV命令[2],分别用于发送和接收数据。这两个命令都对应各自的一个数据缓冲区,该缓冲区可以由用户在编程中决定,如VB100,即为从VBl00 起始的一块数据存储区。其中,XMT的缓冲区格式如图2
但应当注意的是,自由口协议在PLC处于RUN 模式下才有效,如果处于STOP 模式下PLC会自动的回到PPI模式(前提是使用PPI模式) 。
3.2 Mscomm 控件
为了实现PC 机与下位机PLC 之间的通信,bbbbbbs 提供了Mscomm 控件以供用户使用。它封装了关于通信的相关内容,我们只需在Ⅷ平台中,设置其相关属性,并且对其的事什进行相应的编程即可使用。关于Mscomm 控件的一些重要属性见表1。
关于Mscomm控件的事件,只有一种,即OnComm事件,通信中只要有错误或事件发生时,就会产生OnComm事件,而CommEvent 属性传回不同的错误或事件:
对应的数码值,据此可对事件进行处理。在本文的通信过程中,主要用到的是ComEvReceive值。当接收缓冲区有数据时产生该值,然后对bbbbb值进行相应的处理。
4.VB6.0平台PC机与PLC的通信
Microsoft公司生产的Visual Basic6.0是bbbbbbs 环境下的一种可视化编程语言开发系统,它以强大的图形设计能力,简易的编程语言和容易学习使用等优点在工程中得到了广泛的应用,我们正是使用它进行了与PLC 通讯的开发。
PLC I/O分配表见表2,只列出了4个台位的。,结合工程的实际,我们编制了相应的PLC 通信程序。由于篇幅有限,只列出部分程序。但在编程中需要注意的是,程序中与通讯有关的除了进行相关寄存器的设置之外,还应该对接受的命令进行判断,己选择运行相关的程序。另外,由于PLC 中的通讯口是RS—485通讯口,其为半双上通讯口,所以XMT 和RCV 命令不能同时运行。
任何一种控制系统都是为了实现被控对象的工艺要求,以提高生产效率和产品质量。因此,在设计PLC控制系统时,应遵循以下基本原则:
1. 大限度地满足被控对象的控制要求
充分发挥PLC的功能,大限度地满足被控对象的控制要求,是设计PLC控制系统的要前提,这也是设计中重要的一条原则。这就要求设计人员在设计前就要深入现场进行调查研究,收制现场的资料,收集相关的国内、国外资料。同时要注意和现场的工程管理人员、工程技术人员、现场操作人员紧密配合,拟定控制方案,共同解决设计中的问题和疑难问题。
2. 保证PLC控制系统
保证PLC控制系统能够长期、、稳定运行,是设计控制系统的重要原则。这就要求设计者在系统设计、元器件选择、软件编程上要考虑,以确保控制系统。例如:应该保证PLC程序不仅在正常条件下运行,而且在非正常情况下(如突然掉电再上电、按钮按错等),也能正常工作。
3. 力求简单、经济、使用及维修方便
一个新的控制工程固然能提高产品的质量和数量,带来的经济效益和社会效益,但新工程的投入、技术的培训、设备的维护也将导致运行资金的增加。因此,在满足控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地降低工程的成本。这就要求设计者不仅应该使控制系统简单、经济,而且要使控制系统的使用和维护方便、,不宜盲目追求自动化和高指标。
4. 适应发展的需要
由于技术的不断发展,控制系统的要求也将会不断地提高,设计时要适当考虑到今后控制系统发展和完善的需要。这就要求在选择PLC、输入/输出模块、I/O点数和内存容量时,要适当留有裕量,以满足今后生产的发展和工艺的改进PLC控制系统主要由输入部分、CPU、采样部分、输出控制和通讯部分组成。输入部分包括控制面板和输入模板;采样部分包括采样控制模板、AD转换模板和传感器;CPU作为系统的,完成接收数据,处理数据,输出控制信号;输出部分有的系统用到DA模板,将输出信号转换为模拟量信号,经过功放驱动执行器;大多数系统直接将输出信号给输出模板,由输出模板驱动执行器工作;通讯部分由通讯模板和上位机组成。据中国变频器维修网的工作人员介绍:一般PLC本身的故障可能性小,系统的故障主要来自外围的元部件,所以它的故障可分为如下几种:
1、输入故障,即操作人员的操作失误;
2、传感器故障;
3、执行器故障;
4、PLC软件故障
5、这些故障,都可以用合适的故障诊断方法进行分析和用软件进行实时监测,对故障进行预报和处理。
PLC控制系统故障的宏观诊断
故障的宏观诊断就是根据经验,参照发生故障的环境和现象来确定故障的部位和原因。PLC控制系统的故障宏观诊断方法如下:是否为使用不当引起的故障,如属于这类故障,则根据使用情况可初步判断出故障类型、发生部位。常见的使用不当包括供电电源故障、端子接线故障、模板安装故障、现场操作故障等。如果不是使用故障,则可能是偶然性故障或系统运行时间较长所引发的故障。对于这类故障可按PLC的故障分布,依次检查、判断故障。检查与实际过程相连的传感器、检测开关、执行机构和负载是否有故障:然后检查PLC的I/O模板是否有故障:后检查PLC的CPU是否有故障。在检查PLC本身故障时,可参考PLC的CPU模板和电源模板上的指示灯。采取上述步骤还检查不出故障部位和原因,则可能是系统设计错误,此时要重新检查系统设计,包括硬件设计和软件设计
1 引言
可编程逻辑控制器(Programming Logic Controller, PLC)作为一台工业计算机,集数据的采集、处理、显示于一身,那么作为数据终端,数据的显示是必要的。虽然PLC本身有许多指示灯,可以观测到PLC的CPU单元、输入/单元及网络通信单元的运行工作状态,但无法显示PLC内部数据。计算机通过与PLC通信以及触摸屏都可以实现PLC显示,但价格昂贵,对一些小型不需要经常改动的系统来说是浪费。本文采用拨码开关和数码管来显示PLC内部数据,操作简单、廉,对实验教学和工程人员有参考。
(1)应用行业:机加工、过程控制等。
(2)使用产品:CJ1M(CPU22), CS1W-ID211,CS1W-OD261
(3)应用的主要工艺点及要解决的主要问题:内部数据的动态显示
(4)应用方案简介:用高频率晶体管输出单元,结合高速定时器指令TIMH实现内部数据的动态显示。
2 动态数据显示
2.1 硬件系统设计
LED数码管有7段显示灯,可以用来显示0~9间的10个数字。CJ1M系列PLC内部通道数据一般都是四位,如果用借用每个输出点来控制一个显示灯,那么一个数码管就需要7个输出点,这显然要占用大量的输出点,是不经济的。这里选用含有内置译码电路的数码管如CD4511,可以把8421码自动译成7段码。8421码或BCD码用4个接口加选通信号,就可以显示一个数据位。将四个8421输入线组合与某个输出通道的四位相连,每个选通信号的输入信号与通道中剩下的四位相对应连接,这样一个输出通道就能显示PLC四位(一个字)内部数据。具体接线图如图1所示。
注意,这里的PLC输出模块应选用晶体管或者晶闸管输出单元,而不宜采用继电器输出单元。因为继电器输出单元为有触点开关,响应慢、速度低,不适用于高频率的通断,也不适用于动态数据显示[1]。故图1中采用OMRON公司CJ1W-OD261(64点)晶体管作为输出单元,其在本PLC机架上的IO地址分配为6.00~9.15,这里用0006通道作为内部数据的显示通道。6.00~6.03为CD4511的数据输入端A、B、C、D,其中A为位,D为位, 为高电平时锁存数据,四位数据的 端由PLC的6.04~6.07分别控制,4个数码管共占用8个输出点。
2.2 选通信号的生成
由于4个数码管 的线皆由一个I/O口控制,因此,在每一瞬间,4位LED会显示相同的字符。要想每位显示不同的字符,就采用扫描方式轮流点亮各位LED,即在每一瞬间只使某一位显示字符。使每位分时显示该位应显示字符,根据人眼视觉特性,当LED所加信号频率大于50Hz时,人眼不能感觉其变化,所以每位显示的间隔不能过20ms,也就是说要在20ms之内分时的点亮所有LED,LED越多所分的时间越短,亮度就会不足;如果增加点亮时间,又会使扫描频率下降,有闪烁感容易造成人眼的彼劳,故常采用动态扫描方式[2]。这种扫描方式仅适用于LED不过10个时的场合,本例中只有4只LED数码管,故可以选用此方法。
CJ1M系列PLC有丰富的定时指令,其定时器类型有1ms、10ms和100ms,这里选用TIMH指令[3],定时器的设定值为#1,这样选通信号的周期为10ms。
2.3 同步化处理
PLC采用循环周期扫描工作方式,指令的执行由上至下,有左至右,的结果将影响后面;个周期的结果影响下一周期。PLC逻辑设计同步化就是设法实现:用脉冲信号控制输出及内部状态的转换,有脉冲作用的周期,执行指令才有效果;而且在脉冲信号起作用的这周期中,指令的执行结果,不改变后面指令的执行条件[4]。同步化处理的方法很多,在图2中是通过合理安排指令的先后顺序来实现同步的。
图2中,系统上电,高速定时器开始定时,10ms后,其常闭触点断开,即T0输出一个脉冲,宽度为一个扫描周期。个脉冲到了, 6.04置位,成为行的指令执行条件,但这时它的指令已经执行完毕,故在此脉冲作用期间,也不会有什么变化。依此类推,四个脉冲之后,6.07置位,6.06复位,成为工作寄存器W0.00输出的条件,五个脉冲到来,6.07复位,梯形图又回到初始状态,如此反复,分时实现四位数据的 端6.04~6.07轮流接通10ms。
2.4 数据显示
采用MOVD指令,将要显示的内部数据如DM区、W区、T/C区等中的一个字通过通道6显示出来。如图3所示,本例中,依不同的选通信号,将D0中的数据通过选择不同的位进行显示。
3 功能扩展
3.1 显示双字
在图1中,PLC输入端0.01接拨码开关SA,其作用根据其所在位置不同结合跳转指令(JMP/JME)来确定数据显示是哪个通道。如图4中,当SA为ON时,显示D0中的数据;当SA为OFF时,显示D1中的数据。
3.2 硬件扩展
如果对4个选通输出点6.00~6.03采用一片4线-16线译码器(如SG74HC154)进行译码,可以扩展成16个循环的选通信号,就能显示4个通道的数据。如果结合开关SA,按图4中的方式,就可以显示8个通道的数据。
5 结束语
本文以CJ1M系列PLC为例,用9个I/O点(1个输入,8个输出)结合软件编程和硬件扩展来显示8个内部通道的数据(128位)。实践证明,该方法简易、成本不高,适合实验教学和工程现场操作。
产品推荐