7
西门子模块6ES7232-0HD22-0XA0参数选型
1、引言
冷轧窄带钢有着非常好的市场,但很多生产厂的轧机设备比较陈旧,特别是电气的装机水平和控制性能较差,直接影响到产品的质量、成材率和产量,当然也影响了企业的经济效益。总结前人的窄带钢冷轧机电控装置的设计生产经验,结合用户的具体要求,本着,的原则,选择德国VIPA 300S系列PLC和英国CT不可逆全数字直流调速装置MER-Ⅱ为控制,设计制造了一套五机架冷连轧机的电气控制系统,而且实现了速度的级联控制和张力的闭环控制,大大提高了设备和产品的各项性能指标,了较明显的经济效益。
2、系统介绍
2.1 机组情况
五机架冷连轧机是由开卷机、螺旋储料装置、1-5#四辊冷轧机和卷取机等主要机械设备组成,全线没有活套机构,在1-2#、2-3#、3-4#和4-5#机架间设有张力计,1#机架入口和5#机架出口各有一台测厚仪,以测量来料厚度和成品厚度;每个机架为立的直流传动系统,1-5#四辊冷轧机均为工作辊传动,辊缝按工艺人工摆放,压下控制采用四象限全数字直流调速装置电动压下替代交流电动压下,卷取机也采用了四象限直流传动系统。图1是机组的组成图。
图1 窄带钢五机架冷连轧机布置图
2.2 电气系统
针对窄带钢五机架冷连轧机的工艺特点,选择的控制元器件是满足控制要求的关键。作为控制的PLC,选择了VIPA公司300S系列的CPU作为PROFIBUS系统的主站,在主操作台设置了IM253DP从站和一块TP270触摸屏,在两个压下控制柜和卷取控制柜分别设置了S7-200从站,同时控制1-5#机架的直流控制装置都安装了PROFIBUS扩展板MD24,在1-5#机架的机旁操作箱以及卷取操作台都分别设置了VIPA公司的IM253DP作为从站。
该套PLC系统,以VIPA公司的Speed7系列的CPU 315-2AG12作为主站,从站数量达到了16个。作为主站的CPU 315-2AG12,本机自带1M内存(50%程序,50%数据),运算速度高达每毫秒100,000指令,主要采集各个从站的数据,同时向各个从站传递指令,控制整个轧机;1-5#机架从站主要功能是接受主站传输的指令和数据(例如合闸、运行、速度给定等)以控制每个机架电机,同时向主站传递信息和数据(例如故障、速度反馈、电流反馈等)以反映每个机架电机的状态;1-5#架旁操作箱从站分别采集各个机架控制的开关量信号;卷取机从站主要功能是传递卷取电机的各种信息和接受主站的各种指令,同时还进行卷取卷径的计算以实现张力恒定;两个压下从站的功能是控制1-5#压下十台电机,同时还计算2#和5#压下驱动侧和操作侧的位置;系统200V从站主要采集主操作台对整个机列的操作信号;TP270触摸屏,通过MPI与CPU 315-2AG12通讯,主要用于显示各种机列数据(例如机列速度、卷取卷径和设备的故障情况等)。
在本控制系统中,大量选用VIPA公司的IM253DP作为从站,是节省投资的另一个主要方面。IM253DP具有很高的性价比,使用上可以和ET200M相;同时VIPA公司的IM253DP的尺寸较小,采用35mm标准导轨安装,可以减小机旁操作箱的尺寸,接线采用弹簧卡接的型式,快速,。图2是PLC的配置图
图2 五机架冷连轧机PLC系统配置图
直流电机的直流驱动单元采用的是C.T公司的MER--Ⅱ系列全数字直流控制装置。该系列全数字直流控制装置具有典型的双闭环控制特性,全数字菜单式参数设定,并可在线调整,可编程的模拟量和开关量输入输出,速度反馈可选择电枢电压、测速发电机和码盘,电流环参数自整定功能,装置自检功能,自带小功率磁场驱动及可配套的磁场控制模块FXM5。为了节省投资,1-5#机架直流驱动单元都选用单象限工作的不可逆全数字直流控制装置及磁场控制模块FXM5,采用磁场换向的控制方式,满足点动时对反向的工作要求。
3、系统的控制功能
窄带钢五机架冷连轧机的电气控制系统需要实现:机列的逻辑控制、直流传动控制、速度级联控制、机架间张力闭环控制和卷取张力控制。
3.1 机列的逻辑控制和直流传动控制
这两部分的控制属于基本控制,逻辑控制上主要是在容错方面做了较多工作,因为直流装置采用的是不可逆装置,而工作中,各单机又需要反向点动,做好电机磁场的换向及避免各种误操作对设备造成损坏尤为重要。直流传动控制由于采用了全数字直流控制装置,保证了对给定信号的快速和稳定地响应,并能准确地反馈各种信号。
3.2 速度级联控制
在冷连轧机的轧制过程中,各机架的速度匹配关系应始终遵循金属秒相等的原则,针对五机架连轧机,确定3#机架为机列速度基准机架,1#和2#机架按逆向级联方式进行,4#和5#机架按顺向级联方式进行。
按照金属秒相等的原则,i机架的速度计算公式是:
Vi=Vi+1/Ki+1
公式中,Vi是本机架的出口线速度,Vi+1是相邻下游机架的出口线速度,Ki+1是相邻下游机架的延伸率。
有三个信号对各机架的速度产生影响:一是机列的主速度给定,根据主操作手给定的机列速度,按相应的级联关系分配给各机架;二是各机架的速度微调,3#机架是基准机架,不需要速度微调,1#、2#和4#、5#机架在操作台上各有一个微调电位器,1#和5#机架是级联终端,它们的微调Vw1、 Vw5分别只对本机架产生影响,而2#和4#机架的微调除了影响本机架,还应级联调节1#和5#机架;三是张力闭环调节信号,1-2#机架间的张力调节信号Vz12,附加给1#机架的速度给定,2-3#机架间的张力调节信号Vz23,除了附加给2#机架,还要级联到1#机架,3-4#机架间的张力调节信号Vz34,附加给4#机架,4-5#机架间的张力调节信号Vz45,除了附加给4#机架,还要级联到5#机架,各机架的终速度给定如下:
5#机架:V5=V4*K5 +Vz45+Vw5
4#机架:V4=V3*K4 +Vz34+Vw4
2#机架:V2=V3/K3 +Vz23+Vw2
1#机架:V1=V2/K2 +Vz12+Vw1
作为1#和5#机架的速度微调,因为它们只影响本机架的速度给定,其实是可以直接进直流控制器的,但是为了充分利用PLC资源,利用PROFIBUS的优点,减少现场布线,所以将各微调信号都送到了PLC。
3.3 张力闭环控制
连轧机机架间张力的变化主要是由金属秒的变化引起的,由于在轧制过程中,辊缝基本上是不做调节的,所以改变轧机的速度就能改变金属秒,从而达到控制张力的目的。
轧制过程中,PLC定时对机架间的张力反馈值进行采样,根据相应的张力给定计算出张力偏差值,调用PID控制指令,计算出张力调节信号,变换为速度信号形式,分配给相应的机架,达到通过速度实现对张力控制的目的。图3 是张力控制框图
图3 张力控制框图
需要说明的是,1-2#和2-3#机架间的张力控制信号对应1#和2#机架的速度给定是正性,也就是1-2#机架间的张力偏大的时候,PID计算的张力调节信号VZ12是使1#机架的速度增加,反之减小;而3-4#和4-5#机架间的张力控制信号对应4#和5#机架的速度给定则是负性的,也就是3-4#机架间的张力偏大的时候,PID计算的张力调节信号VZ34是使4#机架的速度减小,反之增大。
3.4 卷取机张力控制
卷取机的张力控制由卷取机的从站S7-200来完成,为了使卷取机以恒张力的卷取特性工作,就实时计算卷取机的带材卷径;本系统将测速辊的编码器接入S7-200的高速计数通道中,以计算带材长度,同时将卷取机的测速编码器的零脉冲接入高速计数通道,在S7-200的程序中做了事件中断,本系统设置了卷取机的测速编码器每转10转,调用一次中断程序,算出两次的长度差,即可算出卷径。
带材卷径计算出来后,即可通过程序计算出所需的卷取张力值,当卷径较小速度又较快时,卷取电机的速度有可能过基速,电机则需要弱磁,此时电机的力矩会减小,为了获得恒定的力矩,需要从卷取机直流装置中读取电机的实时转速,计算出弱磁的倍数,按倍数加大卷取电机的电流给定,以补偿弱磁后的力矩减小。
4、系统特点和应用效果
4.1系统特点
A、 将原来人工分别调各机架速度来保持机架间张力,改造为张力自动闭环工作方式,系统响应的快速性、稳定性得到了保证,了人为因素的影响;
B、 在300S PLC的编程中,应用OB35系统块的定时中断功能,对张力闭环采取内外环的控制方式,也就是说以3#机架为速度基准,先调用2#和3#PID环,以调节2#和4#机架的速度,在下一个循环周期再调用1#和4#PID环,以调节1#和5#机架的速度,这样就避免了同时调用1-4#PID环所容易引起的速度震荡,效果非常良好。
C、 张力的投入是在穿带过程中自动进行,从而在整个轧制过程中实现了张力控制,保证了产品的质量和成品率;
D、 因为整个系统都应用了PROFIBUS通讯,省去了柜子之间以及和操作台之间的布线,大大降低了系统故障率,同时在主操作台设置了良好的人机画面,为客户检修故障提供了方便。
4.2 应用效果
采用上述控制技术,窄带钢五机架冷连轧机的机列速度从90m/min,提高到240m/min,张力控制实现了自动闭环,带负荷试车一次成功,运行一年半时间,PLC和直流控制装置未出现任何故障,设备性高,经济效益十分显著
1 引 言
可编程控制器PLC外部接线简单方便,它的控制主要是程序的设计,编制梯形图是常用的编程方式,使用中一般有经验设计法,逻辑设计法,继电器控制电路移植法和顺序控制设计法,其中顺序控制设计法也叫功能表图设计法,功能表图是一种用来描述控制系统的控制过程功能、特性的图形,它主要是由步、转换、转换条件、头线和动作组成。这是一种的设计方法,对于复杂系统,可以节约60%~的设计时间.我国1986年颁布了功能表图的(GB6988.6-86)。有了功能表图后,可以用四种方式编制梯形图,它们分别是:起保停编程方式、步进梯形指令编程方式、移位寄存器编程方式和置位复位编程方式。本文以三菱公司F1系列PLC为例,说明实现顺序控制的四种编程方式。
例如:某PLC控制的回转工作台控制钻孔的过程是:当回转工作台不转且钻头回转时,若传感器X400检测到工件到位,钻头向下工进Y430当钻到一定深度钻头套筒压到下接近开关X401时,计时器T450计时,4s后快退Y431到上接近开关X402,就回到了原位。功能表图见图1:
图1 功能表图
2 使用起保停电路的编程方式
起保停电路仅仅使用与触点和线圈有关的指令,编程元件做中间环节,各种型号PLC的指令系统都有相关指令,加上该电路利用自保持,从而具有记忆功能,且与传统继电器控制电路基本相类似,因此得到了广泛的应用。这种编程方法通用性强,编程容易掌握,一般在原继电器控制系统的PLC改造过程中应用较多。如图2为使用起保停电路编程方式编制的与图1顺序功能图所对应的梯形图,图2中只有常开触点、常闭触点及输出线圈组成。
图2 起保停电路实现顺序控制
3 使用步进梯形指令的编程方式
步进梯形指令是专门为顺序控制设计提供的指令,它的步只能用状态寄存器S来表示,状态寄存器有断电保持功能,在编制顺序控制程序时应与步进指令一起使用,而且状态寄存器用置位指令SET置位,这样才具有控制功能,状态寄存器S才能提供STL触点,否则状态寄存器S与一般的中间继电器M相同。在步进梯形图中不同的步进段允许有双重输出,即允许有重号的负载输出,在步进触点结束时要用RET指令使后面的程序返回原母线。把图1中的0-3用状态寄存器S600-S603代替,代替以后使用步进梯形指令编程,对应的梯形图如图3所示。这种编程方法很容易被初学者接受和掌握,对于有经验的工程师,也会提高设计效率,程序的调试、修改和阅读也很容易,使用方便,程序也较短,在顺序控制设计中应考虑,该法在工业自动化控制中应用较多。
图3 步进指令实现顺序控制
4 使用移位寄存器的编程方式
从功能表图可以看出,在0-3各步中只有一个步在某时刻接通而其他步都在断开,把各步用中间继电器M200-M203代替,就很容易用移位寄存器实现控制。图4为用移位寄存器编程时的梯形图,采用移位寄存器M200-M217的位M200-M203代表4个步,组成1个环形移位寄存器。用移位寄存器主要是对数据、移位、复位3个输入信号的处理。该方法设计的梯形图看起来简洁,所用指令也较少,但对较复杂控制系统设计就不方便,使用过程中在线修改能力差,在工业控制中使用较少,大多数应用在彩灯顺序控制电路中。
图4 移位寄存器实现顺序控制
5 使用置位复位指令的编程方式
如图5为使用置位复位编程方式编制的与图1顺序功能图所对应的梯形图。在以置位复位指令的编程方式中,用某一转换所有前级步对应的辅助继电器的常开触点与转换对应的触点或电路串联,作为使所有后续步对应的辅助继电器置位和使所有前级步对应的辅助继电器复位的条件。对简单顺序控制系统也可直接对输出继电器置位或复位。该方法顺序转换关系明确,编程易理解,一般多用于自动控制系统中手动控制程序的编程。
图5 置位复位指令实现顺序控制
以上四种顺序控制编程方式各有特点,可以根据实际情况选择一种来编制梯形图,它们的一般比较见附表。教学实践表明这些编程方式很容易被初学者接受和掌握,用它们可以得心应手地设计出任意复杂的顺序控制程序。
在生产机械的自动控制领域,PLC顺序控制系统的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制系统梯形图。目前,不少电气设计人员仍然采用经验设计法来设计PLC顺序控制系统,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计方法,能快速地一次设计成功PLC顺序控制系统。
顺序控制系统的特点及设计思路
1.特点顺序控制系统是指按照预定的受控执行机构动作顺序及相应的转步条件,一步一步进行的自动控制系统。其受控设备通常是动作顺序不变或相对固定的生产机械。这种控制系统的转步主令信号大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的信号转换元件作为某些步的转步主令信号。
为了使顺序控制系统工作,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制系统的任一程序步(以下简称步)的得电以步的得电并且本步的转步主令信号已发出为条件。对生产机械而言,受控设备任一步的机械动作是否执行,取决于控制系统步是否已有输出信号及其受控机械动作是否已完成。若步的动作未完成,则后一步的动作无法执行。这种控制系统的互锁严密,即便转步主令信号元件失灵或出现误操作,亦不会导致动作顺序错乱。
2.设计思路本文提出的4种简易设计方法都是先设计步进阶梯,在步进阶梯实现由转步主令信号控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。
由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×”表示编程元件的编号,用十进制数表示。用这些方法设计实际的控制系统时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。
图1 顺序控制流程
下面分别介绍各种设计方法。其中,前3种方法的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令信号X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令信号均省去“输入继电器”几个字,只提输入信号),X1为原位开关信号,X2、X3、X4分别为步2、3、4的转步主令开关信号。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。
一、逐步得电同步失电型步进顺序控制系统设计法
如图2所示,这种设计方法是根据“与”、“或”、“非”的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。
图2 逐步得电同步失电步进顺控梯形图
1.步进阶梯的设计步进阶梯的结构
如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),满足原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件信号(M1的常开触点)。步1的执行动作完成时触发的行程开关信号X2作为步2的转步条件信号。步2的M2的输入满足其步进条件和转步条件后得电自锁,并为步3提供步进条件信号。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件信号和转步条件信号分别为:后一个工作步M4发出的步进条件信号(M4的常开触点)和该步动作完成时所触发的转步信号X1。由于M5的得电信号令控制系统失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个系统失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令信号有多个,则应将多个转步主令信号互相串联。
图3 逐步得电同步失电梯形图
2.输出阶梯的设计输出阶梯
如图2b所示。其设计方法是:(1)在控制流程图中,找出某输出继电器M在哪一步开始得电和在哪一步开始失电,以此确定其得电信号(步进阶梯中使M开始得电的辅助继电器常开触点)和失电信号(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电信号、失电信号和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联信号互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的次得电信号M1和次失电信号M2串联,二次得电信号M4和二次失电信号串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。
二、逐步得电逐步失电型步进顺序控制系统设计法
1.步进阶梯设计
按图1所示的控制流程,采用逐步得电逐步失电型顺序控制系统设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点之一是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路串联步2至后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而导致控制顺序错乱。其余的电路结与图3相同。
2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成方法与此相同。
图4 逐步得电逐步失电型顺控系统梯形图
三、置位/复位指令型顺序控制系统设计法
1.步进阶梯设计图5a为用置位/复位指令设计的顺序控制系统步进阶梯。其设计依据也是图1所示的控制流程。该步进阶梯结构的特点是每步的辅助继电器都有一个置位线圈和一个复位线圈,二者编号相同。步1利用置位指令S使辅助继电器M1置位(即M1线圈得电后内部自锁),建立步1程序,并为步2提供步进条件信号。当步2的转步主令信号发出(X2闭合),指令S使M2置位,建立步2程序,同时复位指令R使M1复位,撤销步1程序。同理可画出后续各步继电器置位/复位梯形图。当后一步完成并回到原位(X1闭合)时,指令R使M4复位,系统的工作循环结束。
2.输出阶梯设计图5b为输出阶梯结构,与图4b相同,不再赘述。
图5 置位/复位指令型顺序控制电路
四、移位指令型顺序控制系统设计
1.步进阶梯设计设计依据如图6所示。图7a为按图6所示要求采用移位指令设计法设计的顺序控制系统步进阶梯,这种步进阶梯由一个8位移位寄存器(由移位指令定义辅助继电器M20~M27而成)作为控制元件。该移位寄存器中的IN为移位数据输入端,CP为移位脉冲输入端,R为复位端。这三个输入端的输入信号均为脉冲上升沿有效。对顺序控制系统来说,输入IN的信号是一个单脉冲信号,即移位数据为“1”。起动步1时,IN和CP同时输入按钮信号X0的脉冲上升沿后,在IN端生成的移位数据“1”便移入移位寄存器的M20位,此时该位有输出(即输出M20的常开触点闭号),建立步1程序,并为步2提供步进条件信号;M20的常闭触点即时断开IN输入端和CP的步1输入端,完成数据“1”输入和移位脉冲输入。从步2起,本步的转步主令信号一发出(X2接通),便输入一个移位脉冲上升沿,使原来移入M20位的数据“1”移入M21位,建立步2程序,并为步3提供步进条件信号。移位后,M20位的状态变为0,即其相应的步1被撤销,输出为0。依此类推便可实现整个步进阶梯逐步得电和逐步失电。后一步完成并回到原位(X1接通)时,接通移位寄存器的复位端R,使移位寄存器复位清零,整个控制系统失电停止。
图6 移位顺序控制流程图
图7 移位指令型顺序控制电路
设计这种步进阶梯时要注意以下问题:(1)在一个自动工作循环内,移位寄存器的移位数据输入端IN只允许起动时输入一个单脉冲信号。也就是说起动时只能输入移位数据“1”。步进阶梯的工作原理就是根据输入的数据“1”,在移位寄存器中逐步向高位移位来实现逐步得电和逐步失电。所以输入端IN要串联每个移位输出位的常闭触点;(2)移位寄存器对移位脉冲输入端开关的抖动非常敏感。若开关抖动一次,相当于多输入了一个移位脉冲,移位数据“1”随之多移了一位。由于接点式开关被触发时难免产生抖动。为这种影响,在移位脉冲输入端的步1输入回路,串联移位寄存器0位(本例为M20)的常闭触点,一旦移位数据移入M20位,便断开步1的输入回路;而从步2开始,每步的输入回路也要串联上一位的常开触点。例如步2的输入回路要串联上一位M20的常开触点。这样,当移位到步2转步主令信号对应的M21位时,便立即断开步2的输入回路。采用这样的移位脉冲输入回路结构,可确保每步的转步输入信号持续时间只有PLC的一个扫描周期(一般只有几Ms),因开关的抖动时间远大于PLC的一个扫描周期。所以可有效地开关抖动的影响。
2.输出阶梯设计图7b为输出阶梯,其结构与图4b相同,只是辅助继电器编号不同而已。
结束语
上述4种PLC顺序控制系统设计方法的共同特点是:
(1)由输入继电器控制辅助继电器(包括由置位/复位指令和移位指令定义的辅助继电器),按此构成步进阶梯;
(2)由辅助继电器控制输出继电器,以此构成输出阶梯;
(3)无论步进阶梯还是输出阶梯,都是很有规律的回路结构。不管要设计的顺序控制系统有多少步,也不管其输入输出点数有多少,只要弄清各种设计方法所设计的步进阶梯和输出阶梯的回路结构的