产品描述
6GK7243-1EX01-0XE0使用方式
引言
随着社会的进步和工农业生产技术的发展,许多产品对生产和使用环境的要求越来越严,人们对温度、湿度、光强、二氧化碳浓度、灰尘等环境因素的影响越来越重视了。为此,本文以农业技术发展为目的开发了一种智能控制系统。
众所周知,光、温度、湿度是农业生产不可缺少的因素,所以本设计将其作为数据来处理,而目前市场上普遍存在的温度检测仪器大都是单点测量,而且温度信息传递不及时,精度达不到要求,不利于农业控制者根据温度变化及时做出决定。而湿度传感器价格昂贵,大多使用进口元件,但事实上,农用精度要求并不高,现在国产湿度传感器可以适用。为此,本设计开发了一种能够同时测量多点,并实时性高、精度高,能够综合处理多点温度信息,并能进行光控和湿度控制的测控系统就。
本设计以AT89C51单片机为来对多点温度进行实时巡检。各检测单元(从机)能立完成各自功能,同时能根据主控机的指令对温度进行定时采集。测量结果不仅能在本地显示,而且可以利用单片机的串行口和RS-485总线通信协议将采集的数据传送到主控机,以进行进一步的存档、处理。主控机负责控制指令的发送,以控制各个从机的温度采集,收集测量数据,并对测量(包括历史数据)进行整理、显示和存储。主控机与各从机之间也能够相互联系、相互协调,从而达到系统整体统一、和谐的效果。
1 系统整体目标
本系统能够同时检测2路温度,检测温度范围-55℃~+125℃。根据实际需要,检测点数可以扩展。系统采用的湿度传感器湿度检测范围为20%~90%RH。可通过LM555芯片和光电耦合器接入单片机,其检测精度为±5%。系统中的感光元件可通过LM555芯片和继电器来控制电动机的正反转,从而实现遮阳网的打开和收回。由于使用了RS-485串行总线进行传输,并选用MAX485驱动芯片进行电平转换,因此,其传送距离可大于1200 m,且抗干扰能力很强。
此外,本系统还应具有如下功能:
(1) 主控机统可设置系统时间和温度修正值。
(2) 主机、从机均具有温度报警上下限设置和声光报警功能。
(3) 具有定时、整点收集各从机数据功能,并可使用I2C串行E2PROM保存各从机以往24小时的数据,同时应具有数据新与掉电保护功能。
(4) 具有数据存储功能,可查询各从机以往24小时的温度、湿度情况。
(5) 自带+5 V和+12 V直流稳压电源。
2 系统方案
本方案以AT89C51单片机系统为来对温度、湿度进行实时控制和巡检。各检测单元(从机)能立完成各自功能,并根据主控机的指令对温度进行实时或定时采集。测量结果不仅能在本地储存和显示,而且可通过RS-485总线及通信协议将采集的数据传送到主控机。以便进行进一步的分析、存档、处理。主控机负责控制指令的发送,并控制各个从机进行温度采集,收集测量数据,同时对测量(包括历史数据)进行整理、显示和打印。主控机与各从机之间能够相互联系、相互协调,从而达到系统整体统一和谐的控制效果。图1所示是本系统的结构框图。
该方案主控机和从机由单片机实现,采用该方案可满足农业上部分需求。在图1中,从机部分实现的功能几乎和主机是对等的,但会接受主机发送过来的命令。
图2所示是该系统从机部分的结构框图。该方案采用数字式DS18B20作为温度传感器,该芯片在采集温度信号时,具有大范围、、数字量输出的特点。CHR-01湿度传感器采集的信号可利用LM555振荡器将电流信号转化成频率信号。选用CHR-01国产元件主要是其价格。
3 信号与放大电路
3.1 DS18B20的测温原理
DS18B20的测温原理如图3所示,图中,低温度系数晶振的振荡频率受温度的影响很小,主要用于产生固定频率的脉冲信号并送给减法计数器1,高温度系数晶振在温度变化时,其振荡频率有明显改变,它所产生的信号可作为减法计数器2的脉冲输入,图中隐含着的计数门打开时,DS18B20即对低温度系数振荡器产生的时钟脉冲进行计数,进而完成信号采集。
在DS18B20中,DQ为数字信号输人/输出端;GND为电源地;VDD为外接供电电源输入端。图4是DS18B20的引脚排列图。
DS18B20在光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,这样就可以实现一根总线上挂接多个DS18B20的目的。
有两种方法可确保DS18B20在有效转换期内得到足够的电源电流。种方法是在温度变换时,在I/O口接一个强的上拉。二种是将其连到VCC外部电源,这样就不用在I/O口接强上拉,也可在温度变换期间使口线保持高电平。以在变换时间内允许其它数据在单总线上传输。也可使用外部电源通过发跳过ROM命令和变换命令T来完成温度变换。需要注意的是:在工作状态,GND不能悬空。
3.2 CHR-01湿度传感器
CHR-01湿度探测振荡电路由电阻型高分子膜湿敏电阻、LM555集成芯片及相关的电子元件组成,并采用AT89C51单片机作为处理器。由于高分子湿敏元件的电阻会随着环境湿度的变化,因而该振荡电路会产生不同的振荡频率。将该信号通过光电耦合和接口元件传送到单片机的计时器中,就可完成信号采集。图5所示是CHR-01测湿电路结构框图。
由于不可能事先测定每个标准湿度值所对应的频率值(那样会大大增加工作量,并且也没有必要),所以只对其中某些特定的湿度值进行测量和记录即可。比如在图6所示的湿度传感器特性中,实际的湿度/频率曲线T0(如图6所示)在应用中只需标定A、B、C、D、E五个点的标准值,然后运用数值方法来实现对AB、BC、CD、DE各区间段湿度的近似测量。在此需要强调的是,由于湿敏元件的阻抗是随着温度变化的,这会导致不同温度下的不同湿度/频率曲线(如T1℃下对应的曲线T1;T2℃时对应的曲线T2),故要分别对不同温度下的湿/频曲线进行测定。
DS18B20正好可以完成对温度的标定。因为本测试装置只需标定15℃、20℃、25℃、30℃四条曲线,然后根据数值方法并利用软件便可对15℃~30℃之间任意温度下的湿度进行准确测量。
本传感器振荡电路的参数优化问题是指选择合适的电子元件(Cq和R)来保证湿度传感器的灵敏度和测量数据的单调性。高分子湿敏元件与LM555组成的振荡电路如图7所示。经研究表明,湿敏元件的等效电阻电容混合复杂二端网络在一定频率下可等效为电阻与电容串联结构(如图7所示的Rh和Ch)。其中,Uo表示输
3.3 PX-625型光控电路
PX-625型光控电路由电阻型薄膜光敏电阻、LM555集成芯片及相关的电子元件组成,它利用三管的导通和截止来控制电动机的正反转,并将控制信息传给单片机。图9所示是PX-625型光控电路原理图。
4 软件程序设计
4.1 程序流程
本系统软件主要由主控机程序和从机程序两部分构成。主程序主要实现系统的初始化、数据显示、从机相关信息设定及通信的处理。系统的初始化包括寄存器的初始化(控制寄存器、堆栈、中断寄存器等),通信初始化(串口的初始化,MAX485的初始化,通信缓冲区的初始化),数码管初始化,输出端口的初始化,以及采集、累计数据的初始化。数据显示则包括各类参数、测量数据等的读取和显示屏的刷新。
通信的处理主要是针对主空机与从机的信息交换与处理。主机程序流程图如图10所示。
从机程序主要由温/湿度信号采集程序、光控指示程序、报警程序、温度存储程序和响应主机命令程序组成,该从机采样流程图如图11所示。从机响应主机的程序实际上是一个中断处理程序。从机在工作过程中,当检测到主机发送来的命令时,它将停止温度信号采集程序,转而去响应主机的请求。主机命令或请求有以下四种:报警查询、设置从机时间、设置报警阈值和巡检温度。
4.2 主机与从机的通讯帧结构
由于温室智能控制系统的温度、湿度、光强的检测和控制都用到了通讯,本系统选用RS-485总线通讯并采用通讯帧结构。并约定数据的个字节为现场信息,当现场信息为SOH时才是合法的;二个字节用来判断是主机处理器发送的数据还是从机检测器发送的数据;三、四两个字节为从机检测器的ID号,每一台检测器的ID号都是不同的:五、六、七三个字节为功能码;八个字节为STX;后面的数据(DATA)为测试信息,其长度根据各功能码而有所不同,也可以为零;倒数二个字节为通讯结束标志,当其为ETX时才合法;后一位为通讯校验码(BCC)。
5 结束语
当今科技发展,单片机嵌入式开发有着光明的前景。由于单片机经济实用、开发简便,因而依然在工业控制、农业自动化、家电智能化等领域占据了广泛的市场。本文介绍的系统设计有一定的实用性,但该系统在设计过程中仍有很多漏洞。还需要在智能化方面加以改进。特别是语音告警、节省功耗,提高稳定度等方面。
1 引 言
楼宇广播系统在学校教学楼的应用非常广泛,需要每天按时播放楼宇管理通知、上下课铃声、眼保健操背景音乐等定时广播信息。因此要求此广播系统稳定、音质清晰、操作方便。市场上已有的此类系统大多是由计算机控制的一套设备,投资大,电能等资源消耗大,如果作为控制的计算机遭受病毒攻击,系统容易崩溃,稳定性差,需要经常维护。因此结合教学楼现有设备条件设计出稳定性好,操控灵活,由集成电路构成的一套定时广播系统是十分必要的。
2定时广播系统组成
较新的教学楼其电气化程度都比较高,一般配有水警、火警检测及其报警系统,报警终端是分布于各楼层的扩音设备。如有警情发生,控制将报警音频信号通过功率放大器送到各楼层的扩音器发出报警音频[1]。在绝大部分情况下,这套报警系统中工作的只是警情检测这部分,而其功放和扩音器这部分设备都处于闲置状态,因此我们可以将这部分功放和扩音设备作为教学楼广播系统的外围设备充分加以利用,如有警情发生时不会妨碍原有报警系统的工作。
除了定时广播系统的外围功放设备,主要的是定时广播系统的控制部分,也就是设计定时广播系统的控制器,广播控制器应该将广播的音频信号定时输出到功放设备。因此整个定时广播系统可分为两大部分,如图1所示。
图1 定时广播系统框图
3定时广播系统控制器的组成
定时广播控制主要功能有两个:一是定时功能,为播放定时广播设定时间;二是控制功能,能够按照所设定的时间播放相应的广播信息[2],因此系统控制部分可分成定时功能模块和控制功能模块两个模块单元进行设计。
3.1定时功能模块的实现
此定时功能模块利用市场上比较成熟的定时产品实现,本系统采用TW837A型定时器。此定时器24小时内任意定时个数多达700个,定时精度为一分钟,并且可以无数次修改定时时间。当所定的时间到达时,此定时器的输出信号线电平状态将发生变化:由0伏上升到12伏,并将保持15到45秒钟,因此可利用信号线的电平变化来得到定时信息。
3.2控制功能模块的实现
整个广播控制功能模块由51单片机、定时广播信息存储模块、驱动电路三部分组成。
定时播放的广播信息要事先存储下来以便定时播放,考虑教学楼楼层多,音频信号传输距离长,失真比较大,所以对于音频的质量要求比较高。而音频质量的好坏主要体现在音频信息的存储格式上,目前以mp3格式存储的音频信号质量比较理想,因此选择mp3格式作为广播信息的存储格式,播放时采用mp3解码芯片将解码后的语音信息解码后输出。
51单片机作为微处理器,其主要功能是根据定时器提供的定时信息,同时根据记录的定时次数信息判断出此时应该输出哪一个广播信息[3,4,5],然后通过驱动电路和多个继电器控制mp3解码芯片将相应的音频文件解码[6],并将解码后的音频数据流通过功率控制后输出。
定时广播控制各功能模块如图2所示。
图2 楼宇广播系统
4实际应用中控制部分功能模块设定举例
系统各功能模块在实际工作中,严格按照一定的工作时序进行工作,为达到这种要求对各功能模块进行设定和编程。现给出本系统的定时模块在实际教学楼应用中的设定情况。
教学楼日常的教学工作安排是上下午各两节课,每节课90分钟。下课时要求播放轻快的下课音乐铃声15秒钟,上课时播放15秒钟的急促音乐作为上课铃声。上下午课结束后播放教学楼关灯、关门窗管理广播,然后播放半小时轻音乐。要完成上述管理信息的定时播放,需要对控制的各个功能模块分别进行这样的设定和编程:对定时器设定定时信息,将不同的音频播放文件存储在mp3存储器中,并对单片机编程。
4.1各功能模块的工作时序
系统各功能模块在实际工作中,严格按照一定的工作时序进行工作,为达到这种要求对在设计时对各功能模块进行设定和编程,具体设定见表1:
表1 系统各功能模块工作时序
功能 模块 | 对应各时间点模块相应的动作 | |||||||||
定时器定时 | 8:00 | 9:30 | 10:30 | 12:00 | 12:30 | 14:00 | 15:30 | 16:30 | 18:00 | 18:30 |
上课 | 下课 | 上课 | 下课 | 关音乐 | 上课 | 下课 | 上课 | 下课 | 关音乐 | |
mp3播放音频文件 | 文件一 | 文件二 | 文件一 | 文件二 | 文件三 | 文件一 | 文件二 | 文件一 | 文件二 | 文件三 |
单片机控制mp3动作流程 | 开机、 解码、 计时15秒、 停止、 关机 (1) | 开机、 解码、 计时15秒、 停止、 关机 (2) | 开机、 解码、 计时15秒、 停止、 关机 (1) | 开机、 解码、 (3) | 停止、 关机 (4) | 开机、 解码、 计时15秒、 停止、 关机 (1) | 开机、 解码、 计时15秒、 停止、 关机 (2) | 开机、 解码、 计时15秒、 停止、 关机 (1) | 开机、 解码、 (3) | 停止、 关机 (4) |
1.音乐文件一:上课音乐 2.音乐文件二:下课音乐 3.音乐文件三:广播信息、背景音乐
4.2控制单片机工作流程
广播控制器主要功能由51单片机完成,51单片机作为控制要不间断的检测程控定时器的输出信号线的电平变化。一旦出时间到达,同时判断出在这个时间点应该输出何种广播信息,然后向mp3音频发出控制信号,控制mp3开始工作,并选中相应的音频文件使开始解码播放,同时控制输出音频的音量由小到大。此控制过程大约在40秒钟内完成,这段时间内51单片机不再定时器的输出信号线,过一分钟后恢复定时器的输出信号线。单片机根据定时信息选择播放音频文件的部分程序流程如图3所示。
图3 单片机控制实现部分流程图
5结束语
由于篇幅所限,本文只介绍了本系统主要的功能单元组成。此系统与其他类似系统相比具有系统结构清晰,各功能模块立性好,系统稳定性高,操控简单、灵活的特点,楼宇管理人员可方便地根据具体需要进行相应设定。
此项目成果已成功应用于新教学楼管理工作中。通过近一年的应用,系统稳定性高,维护简单,投资少、功耗低,帮助教学楼管理人员地完成日常的管理工作。
本文作者点:在充分利用楼宇现有设备的基础上,设计了此定时广播系统的实现方案。使楼宇广播控制系统与楼宇原有的水、火警监测系统结合,且互不干扰,楼宇原有设备得到充分利用,节省了设备投资。此种解决方案对绝大多数公共场所的广播控制系统的实现具有很好的启发意义。
1、总体方案
本应用是在测试终仪中增加网络接口模块,以互联网为传输平台,在远端接入诊断PC而实现远程控制及诊断功能的,其框图如图1所示。
诊断人员可在诊断PC上通过Internet向异地测试仪发送指令,测试仪接收并按照指令要求完成对故障设备的自动测试,将测试数据通过网络传回诊断PC,建立数据实时交互的传输平台。
图1 故障诊断系统的远程应用框图
2、基本原理
2.1 互联网的基本结构和特征
设备的远程监测诊断是计算机科学、通讯技术与故障诊断技术相结合的一种新的设备故障诊断模式。TCP/IP是发展至今成功的通信协议。该协议分为4层,由上到下依次为应用层、传输层、网络层和链路层。
本应用使用的是EM2000网络模块,底下3层的较复杂的协议已经固化在他的ASIC中,能够实现透明的数据通信。这样,研究工作主要集中在应用层的设计 和功能实现上。这包括建立在传输层上的数据帧定义、交换数据的定义、应用功能的设计和人机交互界面的设计等。
本应用中使用的是EM2000网关,他是用来在嵌入式系统与互联网建立数据连接和协议转换的设备。一方面PC端的网络应用程序将应用层数据打包成为IP包 在网络上传送,EM2000将辨识和解析这些数据包,把应用层的原始数据转发至RS 232接口。另一方面EM2000也将RS 232接口的数据封装成为IP包,传送至PC端的网络应用程序。支持透明传输和简单协议两种工作方式;EM2002网关在网络接口部分具有WWW接口,用 户可以通过浏览器在网络上实现对EM2002及串行设备的配置和管理。在网络中的具体位置如图2所示。
图2 EM2000网关在路由中的位置
2.2 传输帧的定义
下面主要考虑4层应用层的具体使用,即的帧格式、具体的定义等。根据本测试设备的状态和显示的功能,其格式可设计成2大类,即测试数据帧和命令 控制帧。格式的设计应能实现系统对端间信息的无障碍交流、易于识别和判断,同时,还应保证传输的性,兼顾信息利用率。对该系统,经过实际信息交互统 计,确定使用一个字节的长度,即256种状态。
(1)帧类型定义
传输帧格式的定义如表1所示。7位为类型定义位,“1”表示为数据帧;“0”为命令控制帧。
表1 传输帧格式定义
(2)数据帧
数据帧格式的定义如表2所示,主要用来传送检测的数据结果。根据需检测信道数量和检测项目来设置数据帧的字节。本系统设置8个数据信道,8个测试项目和“正常”/“故障”2个参数。
表2 数据帧定义
对于数据帧,考虑到本设备测试信道的数量和测试项目的多少,兼顾处理速度的快慢和复杂程度,后确定信道号范围为0~7,占用数据帧的6位至4位,以 二进制表示,高位在前,低位在后;测试项目范围为0~7,占用数据帧的3位到1位,表示方式同上(根据需要,以后扩容时,适当增加字节即可)。数据帧 的后一位定义为测试结果,“0”表示正确无误,“1”表示故障。这里没有采用通常的校验位,主要是因 为该通信速率较低,目前网络传输的性非常高,这方面可以忽略,以提高处理效率,简化程序编写难度。
(3)命令控制帧
命令控制帧的格式定义如表3所示。字节的位固定为“0”,主要用来传输测试终端和远端诊断终端的控制命令和设备状态信息。
表3 命令控制帧定义
命令控制帧按传送方向不同,可分为命令控制字和状态表示字2种。对于命令控制字,6位到4位为“101”,是命令识别位;后 4位为命令代码,表示不同种类的测试进程。测试平台将自动返回相应的信息,其帧格式为6至4位为“001”,这是信息数据的识 别位,其余位为不同类型的定义。对于硬件复位命令,测试端返回1EH;链路检测为1FH。
3、具体实现
3.1 网络接口设计
嵌入式系统和微型计算机系统一样,通过TCP/IP协议转换才能接入Internet。在这里数据通信的设计主要体现在串口的设计[2>, 将MCU的数据按照预先定义的格式通过与转换芯片连接的串行接口发送或接收即可。设计中只要MCU的串口和EM2000网关的交换速率匹配即可,按照字节 方式逐字发送和接收。另外,EM2000网关的接口电平与TTL兼容,这就省略了电平变换电路,使得设计实现起来简便。
3.2 MCU的软件设计
嵌入式MCU系统软件主要由MCS-51汇编程序编写。为了实现本地键盘控制与异地远端控制同步工作,需要对部分软件进行重新编写。主要包括初始化程序、扫描程序、执行程序、串口中断调用程序、协议翻译程序等。
(1)存储单元初始化的特殊要求
众所周知,测试主程序对系统所用变量进行初始化,包含堆栈栈底的指针设定、寄存器、状态字的初始值设定、串口模式/状态字的初始设置等,但在这里由于 远程通信的特殊情况,具有特殊要求。虽然部分存储单元在从加电到复位完成时,单元值已经被置位,但是仍需再置位。这主要考虑当在平台运行期间,各个寄存器 和存储单元都会有不断变化的新值存入,这样,当进行远端复位操作时,有些存储单元的值不会自动复位,如果按原程序执行就会发生不确定的问题。为保证存储单 元内容的一致性和可控性,对寄存器空间进行初始化是的。
(2)子程序间的通信机制
在处理键盘控制和远端控制同步运行时,嵌入式实时操作系统常采用邮箱查询方式。扫描及防抖程序[3>负 责对键盘的操作进行扫描,经抖动和干扰影响后,将键盘值放入35H,并向邮箱发送“键盘动作事件”的信件;同时,串口通信程 序不间断扫描端口数据,如果判断有命令数据注入,则将命令值放入36H内,同时向邮箱发送。串口命令发生事件”的信件。这样通过对主程序信箱 的查询,如果发现有信件存在,则对信件进行相应翻译,变成机器可以执行的代码,对设备进行动作调度和相关信息处理。
3.3 TCP/IP端口配置
TCP/IP端口相当于挂在Internet网上的一块标准网络设备,具有惟一的识别地址,可以接入任意的网段而不受限制。在配置网络参数时, 只要知道通信双方的网络IP和路由,即可以轻松实现网络连接。该模块设置了1 B的缓冲区,通信速率为2 400 b/s,提高了IP包传输效率。
3.4 远端诊断终端的设计
远程诊断终端主要为软件程序设计,该部分采用Visual Basic,HTML等语言进行编写,主要分为2个部分。
(1)通信模块配置网页的设计及上传
在远程测试之前,需要对通信模块相关参数进行网络配置,使远程软件能够对测试终端进行访问和控制操作。本设计采用HTML语言编写了Web网页风格的界 面,上载至模块FLASH存储器,用户可通过浏览器对硬件访问和网络配置。为加强保密,还增添了Password入口参数的设置。
(2)远端终端主程序的设计
主程序采用Microsoft Visual Basic语言编写,主要功能包括控制和测试2部分。测试前,先输入分配到的IP地址与要侦听的端口号,然后根据网络状况,利用VB语言中WinSock 插件的Connect方法在本地计算机与测试平台之间建立一个Socket,以便完成控制等数据的传送和接收。各项操作的运行状态和操作结果都将由当前状 态框实时显示。当本地计算机与远程测试平台连接正常之后,便可以开始测试。
4、应用验证
测试通信模块,在单台计算机上建立2个级终端,一个与串口建立连接,另一个与Socket建立连接。在级终端的一窗口内输入数据,另一窗口即时响 应,说明网络接口模块功能正常。其次测试MCU串行通信性能,通过电平转换电路建立与计算机的串口连接,用级终端进行验证。完成后,对全系统进 行联调,行直连试验,即将测试终端与诊断终端通过交叉网线直连,验证功能的正确性;然后将测试平台接入Internet网,通过异地连接,验证功能的 正确性。目前,经过多项调试验证,能够建立诊断终端与测试终端的连接,并可进行异地的各项状态显示、控制测试、复位等功能,实现了原设计目标。
产品推荐