• 6ES7222-1BF22-0XA8代理订购
  • 6ES7222-1BF22-0XA8代理订购
  • 6ES7222-1BF22-0XA8代理订购

产品描述

产品规格模块式包装说明全新

6ES7222-1BF22-0XA8代理订购


 0 引言

    由于电力电子技术发展,使得高压变频器(HighVoltageVariableFrequencyDrives,简称HVVFD)在石油化工、电力、冶金等行业得到了大规模的使用,对高压电机设备的节能、调速发挥了重大作用。同时,这些使用场合又对高压变频器的性、稳定性提出了高的要求,本文旨在从高压变频器的控制器部分分析电磁干扰(ElectromagneticInterference,简称EMI)的影响与解决方法。

    高压变频器是融合了微控制器、大功率器件、磁性材料、传感器等强、弱电部件为一体的自动化系统,其控制系统一般由控制箱、PLC、触摸屏及相关控制元器件组成,有的还有上位机及DSC系统,因此,电磁干扰问题也日趋复杂,EMI可以使传动系统的———计算机控制系统的信号错乱,同时能够破坏或降低其他,电子设备的工作性能,从而导致严重后果。

    1 控制系统结构和产生电磁干扰的环节

    主控制器的功能方框图如图1所示,结构为单元组合式,其为双DSP的CPU单元,通过总线与接口板和相控A、B、C板互通信息。从接口子模块DI、AI可接受操作命令、给定信号、电机电流与电压等。CPU板根据操作命令、给定信号及其他输入信号,计算出控制信息及状态信息。相控A、B、C板接受来自CPU板的控制信息,产生PWM控制信号,经电/光转换器,向功率单元发送控制光信号。来自功率单元的应答信号在相控A、B、C板中转换成电信号,予处理后送CPU板处理。状态信息可通过接口板和接口子模板送出。

 


    电磁干扰一般包含三个环节,即电磁干扰源、电磁干扰传递途径(传导、辐射、耦合)及接受电磁干扰的响应者。三个环节相当复杂,不同的场合有不同的表现。根据电磁感应、集肤效应、电磁振荡与电磁波传播等基本物理规律可知,电磁物理量随时间变化越快,越容易感生电磁干扰;频率越高越容易产生辐射;电磁场强度与距离平方成反比;一些灵敏度高的未屏蔽电路容易产生耦合等。

    高压变频控制系统电磁干扰按传播形式分为传导型干扰和辐射型干扰两大类。传导干扰指电磁干扰通过电源线路、接地线和信号线传播到达对象所造成的干扰;辐射干扰指通过空间辐射传播到敏感器件的干扰。控制系统中信号传输线和其他电气设备的电容性耦合、电感性耦合都是重要的干扰源。

    2 电磁兼容性分析

    控制系统经由多个单元组合而成,不可能避免电磁干扰,因此在控制器敏感设备上采取抗干扰措施。屏蔽、滤波、合理接地、合理布局等抑制干扰的措施都是很有效的。根据电磁干扰的三要素可采取以下控制方法,如屏蔽、接地、搭接、合理布线等,此外还可以采取回避和疏导的技术处理,如空间方位分离、滤波、吸收和旁路等,这些都是有经验的工程技术人员经常采用的控制方法。解决电磁干扰问题,应该在整个电气系统设计、布线、安装、调试时同时进行,而不能仅仅在调试阶段才去着手处理。

    2.1屏蔽

    屏蔽一般分为两种类型,一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响,静电屏蔽应具有完善的屏蔽体和良好的接地,另一类是电磁屏蔽,主要用于防止交变电场、交变磁场以及交变电磁场的影响。电磁屏蔽不但要求有良好的接地,而且要求屏蔽体具有良好的导电连续性,对屏蔽体的导电性要求比静电屏蔽高得多,使用屏蔽信号电缆的抗电磁干扰原理如图2所示。

 


    屏蔽电缆的屏蔽层如果接地不好,则起不到屏蔽干扰源的作用,反而会成为干扰源(电缆的屏蔽层会吸收外在的电磁干扰)。电缆的屏蔽层要单端接到接地端子PE上。

    2.2接地

    接地看似简单,却是很难掌握和处理的问题,因为至今尚未形成系统的理论或模型,实际上,在一个场合运行效果很好的方案拿到另一场合就不一定适用。接地设计在很大程度上依赖工程技术人员对“接地”概念的理解和实际工作经验。

    接地的方法很多,具体使用取决于系统的结构和功能。常用的方法有3种。

    1)单点接地为许多在一起的电路提供公共电位参考点,这样信号就可以在不同的电路之间传输。该点常常以大地为参考。由于只存在一个参考点,因此可以相信没有地回路存在,因而也就没有干扰问题。

    2)多点接地设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。这种接地结构能够提供较低的接地阻抗,因为多点接地时,每条地线可以很短,而且多根导线并联能够降低接地导体的总电感。在高频电路中使用多点接地,并且要求每根接地线的长度小于信号波长的1/200。

    3)混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用混合接地。

    根据接地要求,接地又分以下几种。

    1)接地使用交流电的设备通过黄地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。

    2)电磁兼容接地出于电磁兼容设计而要求的接地,包括:

    (1)屏蔽接地为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,进行必要的隔离和屏蔽,这些隔离和屏蔽的金属接地。

    (2)滤波器接地滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。

    (3)噪声和干扰抑制对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“阻抗”通道。

    (4)电路参考电路之间信号要正确传输,有一个公共电位参考点,该公共电位参考点就是地,因此所有互相连接的电路接地。

    2.3滤波

    滤波是压缩干扰频谱的一种有效方法,当干扰频谱不同于有用信号的频带时,可以用滤波器将干扰滤除。因此,恰当地选择和正确地使用滤波器对抑制传导干扰十分重要。

 


    滤波将信号频谱分为有用频率分量和干扰分量两段,剔除干扰部分。滤波器一般分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。在主电路交流侧的滤波器主要用于滤出电网的电磁干扰,图3所示为电网上常见的尖峰干扰。在直流回路的滤波器主要减少线路的电感效应引起的干扰。

    使用电源滤波器,应尽量靠近电源入口处安装,并使滤波器的输人/输出端之间屏蔽隔离,避免电磁干扰从输入端直接耦合到滤波器的输出端。此外,滤波器的接地点应尽量靠近设备的接地点。图4所示为电源滤波器电原理图。

    2.4隔离

    隔离是因地环路而引起的公共阻抗干扰而采取的有效措施。一般有隔离变压器、光电耦合隔离器、光纤等。光电隔离具有单方向传递信号且频带宽,抗干扰能力强,绝缘电压高,体积小,,耐冲击等优点,在控制系统中应用十分广泛。此外,差分电路和平衡电路均可减少地环流,起到抑制干扰的作用。

 3 解决电磁干扰的硬件措施

    高压变频器在工作中由于整流和逆变,会产生很多高频和低频的干扰电磁波,这些电磁波对系统控制器、PLC、触摸屏、数字仪表、传感器等有一定的干扰。为了抑制高压变频器对其他弱电设备、仪表的干扰,所有的元器件均应接地,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地,并采取输入、输出模拟量和开关量的滤波措施,必要时采用光电隔离的方法。

    1)系统中的动力线和控制信号线都采用屏蔽电缆。高压电机使用的高压电缆采用屏蔽电缆,可使噪声电流高频分量得到部分抑制。屏蔽电缆是在非屏蔽普通导线的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及集肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽电缆综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容特性。控制器与功率单元部分采用光纤通信,以保证强电与弱电的有效隔离。

    2)整个系统进行良好接地处理。高压部分的接地和控制部分的接地分开处理。变频器正确接地是提高控制系统灵敏度、抑制噪声能力的重要手段,变频器接地端子PE的接地电阻越小越好,接地导线截面积应≥2mm2。高压系统的接地与控制设备接地点分开,防止信号串扰。信号输入线的屏蔽层应把就近的一端接至PE上,另一端要悬空,否则会引起信号变化波动,使系统振荡不止。控制柜各设备应电气连通,可利用铜芯导线跨接。每台变频器的PE端应连接形成等电位。控制部分的零电位单连接到接地体。

    3)在变频器控制器的交流输入侧安装交流滤波器和隔离变压器,以提高输入电源质量,图5所示为加装隔离变压器屏蔽及其接地方式图。为保证控制器的不间断运行,防止电压跌落,可加装UPS。

    4)在变颇器控制回路和网络回路中设置滤波器可以抑制中低频电磁干扰,增设du/dt滤波器或差模滤波器效果好。

    5)控制电缆的布线应尽可能远离动力电缆(小间隔20cm),使用单的走线槽。如果使用同一走线槽,中间须加装隔离板,且隔板沿其长度设有多个接地点。当控制电缆与动力电缆交叉时,使相互交叉成90°角,可将电磁干扰降低到小。

    6)PLC与变频器之间加装光电隔离卡,防止高压变频器通过PLC将电磁干扰传输到控制网络上。

    7)控制柜内的接触器、继电器等线圈上须使用抑制元件,如RC,二管,压敏电阻。

    8)电缆的备用线两端接地以增加屏蔽效果。

    9)在DSP的I/O口,电源线,电路板连接线等关键地方使用抗干扰元件,如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

    4 软件抗干扰设计

 

    1)多用查询代替中断,把中断减到少,以避免误触发和感应触发。

    2)A/D转换采用数字滤波,以防止突发性干扰。如采用平均法、比较平均法等。

    3)在软件中的关键地方设置和软件陷阱,即使软件跑飞也能使系统处于受控状态。

    4)对于输入的开关信号进行延时去抖动。

    5)I/O口正确操作,检查I/O口执行命令情况,防止外部故障不执行控制命令。

    6)通信应加奇偶校验或采用查询、表决、比较等措施,防止通信出错。必要时,重新复位通信寄存器的设置,从而防止通信错误而导致通信失败或造成其他故障。

    5 结语

    在高压变频调速电气系统中,由于高压换流装置的存在,致使大量的电磁干扰产生,如不加以抑制,将影响整个控制系统的正常工作。但电磁干扰是不现实的。电磁干扰的抑制应根据不同元器件,不同的电磁环境采取适当的抑制措施,以系统可以正常工作为衡量标准,没有必要单纯为了追求电磁干扰抑制指标而采取复杂的措施。通常电磁干扰抑制能力的强弱与投资成正比。变频调速电气系统的电磁兼容性是一项十分复杂的系统工程,有许多实际的工作经验需要总结,还有许多的理论需要探讨。


如今,运行参数监测已成为功率模块的一个组成部分。在功率模块中,温度传感器已或多或少地成为标准配置,甚至连电流传感器也正越来越广泛被采用。事实上,与外置传感器解决方案相比,集成传感器是具有成本效益的解决方案,它为用户带来附加的保护功能,同时减小了模块的体积。
电流传感器

如果一个功率模块配备了电流传感器,其信号主要是用作输出电流控制(例如:在传动应用中),并且还可以起到保护器件的作用。电机控制的需求确定电流传感器的特性。在许多情况下,故障(包括温度漂移)都1 ... 2%。对温度(-40℃~125℃)和低电流损耗的要求是通过功率模块自身来设定的。器件保护功能设定过流能力(大短路电流为额定电流的5倍),上限截止频率(> 100kHz)。

对于中低功率器件,使用电流分流器是一个且率的解决方案。电流限额约为30A~40A。不足之处是有额外的功率损耗,并且如果分流器用于测量发射电流,将会失去隔离且IGBT栅信号中存在干扰。

对于和大功率半导体模块,一般使用电气隔离的传感器。无补偿电流的纯霍尔效应传感器在误差和温度稳定性方面的性能较差。传感器可用在用户的模块中,因为这些模块中的需求定义的很清楚。具有高线性度和低温度漂移的传感器与补偿电流一起运作。该电流抵消传感器内测量电流的磁场。补偿电流放大器的控制信号由霍尔效应、磁场或磁阻探头提供。

对于像赛米控SKiiP系统这样的智能功率模块(IPM),由于终应用对于的要求,使用的传感器是合适的。在终应用中,传感器直接集成在模块的外壳中,环绕主端子以节省空间(图1)。用于信号监测和转换的评估电路是驱动器电路的一部分。特殊设计的ASIC芯片保证高集成度和高性,这在采用外部传感器的方案中是难以实现。

在IPM内部,电流监测电路与驱动器电路直接相连。它可以在短时间内检测到外部短路,并且可在2~3µs内关断功率半导体。未来,这一特性将变得越来越重要,因为与过去的IGBT允许10 µs的短路时间相比,新一代IGBT只允许6 µs的短路时间。

电压源逆变电路AC端子处的电流传感器不能检测到逆变桥内的短路。这里,通过监测VCE(sat),处于开态的半导体的斜率电阻用于保护目的。该方法对于短路保护是足够的,但并不适合电流的测量。

图1:AC端子集成了电流传感器的SKiiP功率模块

温度传感器

对于器件保护而言,有几种温度传感器可供使用。这些传感器具有负温度系数(NTC)或正温度系数(PTC)。标准工业模块中使用多的是NTC传感器。赛米控使用自己的硅芯片传感器SKCS,该传感器为PTC特性、具有线性度高和误差小的特点。配合适合的监测电路,诸如SKiiP的IPM提供一个模拟输出信号用于温度测量和故障率5°C的保护功能。

传感器在模块内的位置在很大程度上影响其温度保护的能力。事实上,在这方面传感器的位置比传感器的误差重要。如果硬件断路电平由驱动器或控制电路设置,则尤为如此。

图2:功率模块内有关不同温度传感器位置的案例研究和温度模式图

对不同位置传感器所带来的影响进行了一项研究。功率模块的一个模型如图 2所示。该模块没有铜底板,安装在一个风冷铝散热器上。不同传感器的热耦合不同,从传感器A)在同一铜层上与功率半导体直接相连,到传感器B)和C)在模块内不同位置进行隔离,到放置在散热器上模块旁的传感器D)。由于不同的热耦合,每个传感器有不同的结( j )到传感器(r)热阻Rth(j-r)。

用于过热保护的断路电平可在准静态条件为每个传感器设定。例如,如果Tj 不能过140°C,则所研究案例系统的“过热关断”断路电平将从120°C(传感器A)、110°C(传感器B)、100°C(传感器C)至70°C(传感器D)不等。源和传感器之间的耦合越好,冷却系统的影响越低。这是集成解决方案的一个很大的优势。

不过,对于其他冷却条件(散热材料和根基厚度、冷却介质、导热硅脂厚度),断路电平不得不设定为新的值。这使得IPM的制造商很难为任意给定的应用将过热断路电平设定至一个适当值。为此,传感器信号应由外部上位控制器进行监测,并且如果需要的话,热保护电平应与冷却系统相匹配。

为显示冷却系统所产生的影响,导热硅脂层的厚度由原来的50 µm增加至100 µm。由于传感器A与功率半导体有着的热耦合,因此可以看出对Rth(j-r) 的影响,其值只增加了3%。 传感器B和C的Rth(j-r) 值增加了 7…8%。冷却系统对传感器D的Rth(j-r)影响大,其值的增加过 25%。

另一个问题是温度传感器是否能够在短时过载的情况下保护功率半导体。每个传感器对结温升高做出反应的时间存在延迟,该延迟与传感器的位置相关。这一特性由热阻抗Zth(j-r)来描述。它的表现与期望的不一致(见图3)。Zth(j-r)与结到散热器的热阻抗Zth(j-s)(直接在芯片下)的比较表明 在一秒钟之后系统的结-散热器热阻抗已达到稳态条件,而系统的结-传感器则需要100秒才能到达稳态。其中的原因是散热器内部存在热扩散。

图3:结( j )到不同位置传感器(rX )和散热器的热阻抗

对于每一个功率半导体,其静态功耗Ptot的大值是的。对于示例中的从50% Ptot至200% Ptot的过载跳变,半导体将一段时间后过热。传感器A将在0.19s后达到其120°C的断路电平,提供的设备保护并将结温保持在约150°C。由传感器B和C提供保护的设备的结温将处在160 °C至170°C这样一个危急的范围内;在这些情况中,传感器需要0.3…0.4s达到断路电平。取决于器件的特性,这可能意味着已经过了数据手册中规定的限额。传感器D的反应时间过1秒,因此无法保护设备。对于过载非常高且启动温度低的情况,温度传感器不能提供任何适当的保护。

有关不同温度传感器位置优缺点的概述在表1中列出,由于有隔离,位于B位置的传感器如今是的方案。如果未来驱动器带保护电路并且信号在驱动器二次侧进行变换,则可能意味着传感器位置A 也许是好的解决方案。

集成保护
如果发生短时过载,设备保护将存在一个空隙。电流传感器的断路值设定为较高值以允许短时过载,比如在电机起动的时候。长期运行在该电流等级下将导致设备过热。在大多数情况下,温度保护元件的反应时间太长而无法检测到这种过热。

这一空白的一种可能的方式是利用电流及温度信号的软件关断。逆变控制器以传感器的温度和电气运行条件为基础计算结温。tp时刻的结温可由下式计算出:

P0为t=0s 时的功耗,Pover为过载时的功耗。这里,热阻抗Zth(j-r)如数据手册中所述,模拟温度信号Tr也是需要的。

表1:有关不同位置温度传感器是否适合于保护功率半导体的比较。


传感器 A

传感器B

传感器C

传感器D

与功率半导体之间优异的热耦合

与二管和IGBT之间可接受的热耦合

与IGBT间的热耦合可接受,与二管间的热耦合不足

低热耦合

快速反应时间

中等反应时间

中等反应时间,比传感器B快

 

外部冷却系统对Rth(j-r)的影响小

外部冷却系统对Rth(j-r)的有影响

外部冷却系统对Rth(j-r)的影响比传感器B大

外部冷却系统对Rth(j-r)的影响大

无隔离, 驱动器侧需要额外的措施

基本隔离,需要额外的隔离措施

基本隔离,需要额外的隔离措施

隔离


 

总结


IPM内的集成传感器在宽范围运行条件下保护像SKiiP这样的功率模块。配备合适的评估电路,它能作为一个协同效应为过程控制提供高质量的信息。这可以节省空间、成本和开发时间。通过外部观测器,可用传感器信号的联合可应用中特定保护的空隙


电源(VCCA,VCCD):为使噪声小,芯片的模拟和数字电路使用不同的电源总线,并且分别引到外封装的不同管脚小,模拟和数字电源端分别走线。尽可能在靠近供电端处相连,而去耦电容应尽量靠近器件。地线(VSSA,VSSD):芯片内部的模拟和数字电路也使用不同的地线。

同相模拟输入(ANA IN+):录音信号 的同相输入端。输入放大器可用单端或差分驱动。单端输入时,信号由耦合电容输入,大幅度为峰峰值32mV,耦合电容和本端的3kΩ 电阻输入阻抗决定了芯片频带的低端截止频率。差分驱动时,信号大幅度为峰峰值16mV,与ISD33000 系列相同。

反相模拟输入(ANA IN-):差分驱动时,为录音信号的反相输入端。信号通过耦合电容输入,大幅度为峰
峰值16mV。音频输出(AUD OUT):提供音频输出,可驱动5kΩ 的负载。片选(SS):此端为低,即向该ISD4004芯片发送指令,两条指令之间为高电平。

串行输入(MOSI):此端为串行输入端,主控制器应在串行时钟上升沿之前半个周期将数据放到本端,供ISD 输入。串行输出(MISO):ISD 的串行输出端。ISD 未选中时,本端呈高阻态。串行时钟(SCLK):ISD 的时钟输入端,由主控制器产生,用于同步MOSI 和MISO 的。数据在SCLK 上升沿锁存到ISD,在下降沿移出ISD。中断(INT):本端为漏开路输出。ISD 在任何操作(包括进)中到EOM或IVF 时,本端变低并保持。中断状态在下一个SPI 周期开始时。中断状态也可用RINT 指令读取。OVF 标志用来指示ISD 的录、放操作已到达存储器的末尾。只在放音中检测到内部的EOM 标志时,此状态位才置1。行地址时钟(RAC):漏开路输出。每个RAC 周期表示ISD 存储器的操作进行了一行(ISD4004系列中的存贮器共2400 行)。该信号保持高电平的时间为175ms,低电平时间为25ms。在快进模式,RAC 可保持高电平218.75μs,低电平31. 25μs。该端可用于存储管理技术。

3 工作原理与功能特性

ISD4004 声音录放采用CchipCorder 技术,即无须A/D 转换和压缩就可以直接储存,没有A/D转换误差,在个记录位(BIT)可存储250 级声音信号,相当于通常的A/D 记录的8 倍。

3.1 SPI(串行外设接口)ISD4004 工作于SPI 串行接口。SPI 协议是一个同步串行协议,该协议定微控制器的SPI移位寄存器在SCLK 的下降沿工作,因此对于ISD4004 而言,在时钟上升沿将锁存MOSI 引脚的数据,
而在下降沿则将数据送至MISO 引脚。

3.2 SPI 接口指令

SPI 的接口指令如表1 所列。

表1 SPI 的接口指令

3.3 SPI 端口的控制位

SPI 端口控制位如图2 所示。

3.4 SPI 控制寄存器
SPI 控制寄存器控制器件可以实现如录放、、信息检索(快进)、上电/掉电、开始和停止操作、忽略地址指针等功能。具体控制位如表2 所列。

当IAB 置0 时,录、放操作从A9~A0 地址开始。为了能连贯地录、放到后续的存储空间,在操作到达该行末之前,应发出二个SPI 指令将IAB 置1,否则器件在同一个地址上将反复循环。这一点对语音提示功能很有用。RAC 脚和IAB 位可用于信息管理。

4 在智能控制中的典型应用

本系统是以单片机,语音处理芯片及报警传感器为基础,利用公共电话网络建立起来的智能家居服务系统。它具有以下主要功能:

(1)家电控制功能:打电话在通过密码校验后,在语音的提示下,进行远程控制家电、查询其工作状态及家电定时操作。

(2)电话功能:可来电留主及用户自己录音

(3)自动语音报警功能:在无的情况下,监控系统检测到非法闯入,能自动拔打电话。在叫通后,能接报警信息以语音的形式发送出去。由上可以看到,在整个家居服务系统中,要多次实现语音提示,应答,查询等功能。这些功能的实现是靠单片机89C51 与ISD4004 之间的通讯来完成的。89C51 与ISD4004 的连接如图3 所示图中,ISD4004 的13 管脚是模拟语音信号的输出端,输出的语音信号通过LM386 功率放大器放大,然后经过变压器耦合到电话线上。

可编程控制器类型很多,可从不同的角度进行分类: 

1按控制规模分 

控制规模主要指控制开关量的入、出点数及控制模拟量的模入、模出,或两者兼而有之(闭路系统)的路数。但主要以开关量计。模拟量的路数可折算成开关量的点,大致一路相当于8~16点。 

依这个点数,PLC大致可分为微型机、小型机、中型机及大型机、大型机。 

微型机控制点仅几十点,为OMRON公司的CPM1A系列PLC,西门子的Logo仅10点。 

小型机控制点可达100多点。如OMRON公司的C60P可达148点,CQM1达256点。德国西门子公司的S7-200机可达64点。 

中型机控制点数可达近500点,以至于千点。如OMRON公司C200H机普通配置多可达700多点,C200Ha机则可达1000多点。德国西门子公司的S7300机多可达512点。 

大型机:控制点数一般在1000点以上。如OMRON公司的C1000H、CV1000,当地配置可达1024点。C2000H、CV2000当地配置可达2048点。 

大型机:控制点数可达万点,以至于几万点。如美国GE公司的90-70机,其点数可达24000点,另外还可有8000路的模拟量。再如美国公司的PC-E984--785机,其开关量具总数为32k(32768),模拟量有2048路。西门子的SS-115U-CPU945,其开关量总点数可达8k,另外还可有512路模拟量。等等。 

以上这种划分是不严格的,只是大致的,目的是便于系统的配置及使用。 

一般讲,根据实际的I/O点数,凡落在上述不同范围者,选用相应的机型,性能价格比必然要高;相反,肯定要差些。 

自然,也有特殊情况。如控制点数不是非常之多,不是非用大型机不可,但因大型机的特殊控制单元多,可进行热备配置,因而采用了大型机。 

2按结构划分 

PLC可分为箱体式及模块式两大类。微型机、小型机多为箱体式的,但从发展趋势看,小型机也逐渐发展成模块式的了。如OMRON公司,原来小型机都是箱体式,现在的CQM1则为模块式的。 

箱体的PLC把电源、CPU、内存、I/O系统都集成在一个小箱体内。一个主机箱体就是一台完整的PLC,就可用以实现控制。控制点数不符需要,可再接扩展箱体,由主箱体及若干扩展箱体组成较大的系统,以实现对较多点数的控制。 

模块式的PLC是按功能分成若干模块,如CPU模块、输入模块、输出模块、电源模块等等。大型机的模块功能单一一些,因而模块的种类也相对多些。这也可说是趋势。目些中型机,其模块的功能也趋于单一,种类也在增乡。如同样OMRON公司C20系列PLC,H机的CPU单元就含有电源,而Ha机则把电源分出,有单的电源模块。 

模块功能单一、品种多,可便于系统配置,使PLC能物尽其用,达到高的使用效益。 

由模块联结成系统有三种方法: 

①无底板,靠模块间接口直接相联,然后再固定到相应导轨上。OMRON公司的CQM1机就是这种结构,比较紧凑。

②有底板,所有模块都固定在底板上。OMRON公司的C200Ha机,CV2000等中、大型机就是这种结构。它比较牢固,但底板的槽数是固定的,如3、5、8、10槽等等。槽数与实际的模块数不一定相等,配置时难免有空槽。这既浪费,又多占空间,还得占空单元把多余的槽作。 

③用机架代替底板,所有模块都固定在机架上。这种结构比底板式的复杂,但牢靠。一些特大型的PLC用的多为这种结构。 

3按生产厂家分 

目前生产PLC的厂家较多。但能配套生产,大、中、小、微型均能生产的不算太多。较有影响的,在中国市场占有较大份额的公司有: 

德国西门子公司:它有SS系列的产品。有SS-95U、100U、115U、135U及155U。135U、155U为大型机,控制点数可达6000多点,模拟量可达300多路。近还推出S7系列机,有S7-200(小型)、S7-300(中型)及S7-400机(大型)。性能比S5大有提高。 

日本OMRON公司:它有CPM1A型机,P型机,H型机,CQM1、CVM、CV型机,Ha型、F型机等,大、中、小、微均有,特别在中、小、微方面具特长,在中国及世界市场,都占有相当的份额。 

美国GE公司、日本FA合资的GE-FA的90-70机也是很吸引人的。据介绍。它具有25个特点。诸如,用软设定代硬设定,结构化编程,多种编程语言,等等。它有914、781/782、771/772、731/732等多种型号。另外,还有中型机90-30系列,其型号有344、331、323、321多种;还有90-20系列小型机,型号为211。 

美国公司()的984机也是很的。其中E984-785可安31个远程站点,总控制规模可达63535点。小的为紧凑型的,如984-120,控制点数为256点,在大与小之间,共20多个型号。 

美国AB(Alien-Bradley)公司创建于1903年,在世界各地有20多个附属机构,10多个生产基地。可编程控制器也是它的重要产品。它的PLC-5系列是很的,其下有PLC-5/10,PLC-5/11,……PLC-5/250多种型号。另外,它也有微型PLC,SLC-500即为其中一种。有三种配置,20、30及40I/O配置选择,I/O点数分别为12/8、18/12及24/16三种。 

日本三菱公司的PLC也是较早推到我国来的。其小型机FI前期在国内用得很多,后又推出FXZ机,性能有很大提高。它的中、大型机为A系列。AIS、AZC、A3A等。 

日本日立公司也生产PLC,其E系列为箱体式的。基本箱体有E-20、E-28、E-40、E-64。其I/O点数分别为12/8、16/12、24/16及40/24。另外,还有扩展箱体,规格与主箱体相同其EM系列为模块式的,可在16~160之间组合。 

日本公司也生产PLC,其EX小型机及EX-PLUS小型机在国内也用得很多。它的编程语言是梯形图,其的编程器用梯形图语言编程。另外,还有EX100系列模块式PLC,点数较多,也是用梯形图语言编程。 

日本松下公司也生产PLC。FPI系列为小型机,结构也是箱体式的,尺寸紧凑。FP3为模块式的,控制规模也较大,工作速度也很快,执行基本指令仅0•l微秒。 

日本富士公司也有PLC。其NB系列为箱体式的,小型机。NS系列为模块式。 

美国IPM公司的IP1612系列机,由于自带模拟量控制功能,自带通讯口,集成度又非常之高,虽点数不多,仅16入,12出,但性价比还是高的,很适合于系统不大,但又有模拟量需控制的场合。新出的lP3416机,I/O点数扩大到34入、12出,而且还自带一个简易小编程器,性能又有改进。 

国内PLC厂家规模多不大。有影响的算是无锡的华光。、它也生产多种型号与规格的PLC,如SU、SG等,发展也很快,在价格上很有优势。相信会在世界PLC之林中一定有其位置的。



http://zhangqueena.b2b168.com

产品推荐