6ES7222-1HD22-0XA0保内产品
  • 6ES7222-1HD22-0XA0保内产品
  • 6ES7222-1HD22-0XA0保内产品
  • 6ES7222-1HD22-0XA0保内产品

产品描述

产品规格模块式包装说明全新

6ES7222-1HD22-0XA0保内产品

 福州市祥坂污水处理厂是福州市规划建设的个污水厂,是市区内河综合整治系统工程的主体项目。工程于1992年筹建,1995年底建成运行。污水厂主要处理福州市西湖截污管、白马河以西及其支流大庆河两岸汇集来的污水,服务面积约560km2,设计污水处理能力5万m3/日,全厂主要设备和自控、仪表均利用芬兰从芬兰YIT公司引进,工程投资约8000万元。该工程在国内是一个较早采用具有脱氮除磷A/O工艺和利用国外的污水处理厂,也是国内较早采用盘式微孔曝气和潜污泵技术的项目。污水厂具有工艺设计、适用,总体布置合理紧凑,占地指标较小(0.68m2/m3污水)的特点。污水厂运行以来,泥、水处理效果良好、稳定,对保护福州段闽江水环境发挥了重要作用。该厂2005年扩建2.5万m3/日后总规模为7.5万m3/日,扩建工程已于2006年竣工投产。在配套管网支持下,能按设计规模运行。
鼓风机是污水处理厂比较的设备,基本上都要求进口产品,以确保性,如法国HIBON,德国AERZEN的罗茨风机等。随着自动化技术的发展,一部分设备也面临着淘汰的状态,亟须对其进行升级改造。当前工厂自动化向着总线和网络等集成化趋势发展,所以一些老设备也亟须寻求新旧系统的解决方案。本次正是基于自动化解决方案提出,对该厂的鼓风机进行改造升级。

一、对鼓风机系统进行改造的主要原因

目前国家对环保要求很严,全国各地都在建污水处理厂。 2004年,福州市国家环保总局验收,获得“国家环保城市”荣誉称号,成为全国五个获得这一荣誉称号的省会城市。 4年多时间里,在已建成洋里、金山、祥坂、快安和马尾等5座污水处理厂的基础上,投入2.4亿元开展市区污水处理厂扩容和污水管网配套建设,祥坂污水处理厂扩容2.5万吨/日,达7.5万吨/日;洋里污水处理厂扩容10万吨/日,达30万吨/日。目前城市污水处理能力达46.5万吨/日,全市生活污水处理率由2004年的65%提高到目前的80%以上。
而祥坂污水处理厂,全厂自控系统2005年通过升级,在中控室对厂内大部分设备(包括潜水泵、电动阀、刮泥机等)运行状态和各种运行参数都已实现了实时监控,并能远程控制和设备间的联动。现有丹麦鼓风机是国外进口,鼓风机自带一套控制系统,人机界面为控制面板,在控制面板上操作设备开停,设备的故障也显示在控制面板上,并且没有外接信号端口,无法使鼓风机的运行参数接入到该厂自控系统,无法实现在中控室对其运行参数实时监控和远程控制,无法实现依据曝气池的DO5值变化自动调整鼓风机的供气量。所以,对鼓风机的控制系统进行升级改造,使其与厂自控系统形成一体,才能对整个风机系统实现PLC的自动控制和监视功能,做到大的兼容性。改造后实现了就地和远程的双重控制,中控计算机失去控制能力各台鼓风机也仍然可以就地操作,大限度地避免停产的风险,提高了运行效率,降低了能耗。原系统采用的是西门子公司的S5序列PLC。目前S5序列PLC已处于停产状态,库存量少,购买备件成本高,对以后的维护很不方便。所以,本系统采用同西门子的S7-200序列PLC进行改造。

二、对鼓风机系统进行改造的范围与方案

(一)鼓风机系统进行改造的范围
对鼓风机房4台鼓风机PLC控制系统进行改造, 4台鼓风机可通过就地和远程两种方式进行操作。
为使鼓风机系统和正常的运行,整个风机系统的技术改造把控制分为三级控制方式:本地手动控制、PLC远程手动遥控和自动控制。(1)本地手动控制。将现场“手动/自动”选择开关切换到手动,鼓风机设备由本地控制柜上的控制按钮直接控制其开、停。这是级,在这种方式下PLC系统仅对鼓风机系统进行监视,而不能控制,现在风机系统采用的是这种运行方式,但改造后这种运行方式只在风机调试和检修时使用。(2)PLC远程手动遥控。将现场“手动/自动”选择开关切换到自动。污水厂上位机操作系统使用bbbbbbs XP Professional版,人机界面及通讯软件使用组态iFix。在这种方式下,操作人员用上位机的计算机终端,通过iFix软件,根据曝气池上传送的溶氧数值确定风机开启的台数和风门开启度,来控制鼓风机设备开停。这种控制方式使操作人员不用到现场就可以控制鼓风机设备的开停和风门开启度调整,但鼓风机之间开停的切换以及换向阀的开闭都有运行人员来人为干预实现。在此模式下,远程仅作为本地控制按钮的延伸或转移,在今后风机系统的运行中也只用于调试或检修。(3)自动控制。在这种方式下,鼓风机设备的开停、频率调整和各个换向阀的开闭切换,都由PLC按照预先编制好的程序自动完成,不需要运行人员人为干预。所有鼓风机的运行时间、风门开启度调整、鼓风机的开启台数,以及换向阀的开闭情况都可以由PLC根据现场溶解氧数值的情况进行自动调整,每台鼓风机的运行情况也都可以由PLC系统进行监视并存储备份。
四台鼓风机的状态,包括运行、故障等参数,如风门开启度大小等均可传送到中控室计算机上显示。中控计算机也可以远程对鼓风机启停、风门大小调节等进行操作,达到在鼓风机正常运行时无人值守的目的。改造后的系统,在保持原来就地操作不变的情况下,扩展中控调节能力。就地操作的方式和流程不予改变,做到大的兼容性,即使中控计算机失去控制能力各台鼓风机也仍然可以就地操作,大限度地避免停产的风险。
(二)鼓风机系统进行改造的方案
鼓风机系统框架结构示意图如图1所示:

1.鼓风机控制系统改造
每台鼓风机反馈和控制的I/O包括:

(1)鼓风机运行状态:运行/停止、手自动、泄空阀开启和关闭、风门全开和全关、启动允许状态等。其中运行/停止、风门全开和全关、启动允许为原系统已提供信号输出,手自动、泄空阀开启和关闭状态信号为原PLC内部状态点,不提供I/O输出。
(2)鼓风机报警状态:油压过低、油温过高、冲击报警、循环故障报警、电机温度过高5个立报警以及1个总报警。当5个立报警其中任意一个发生时均发生总报警。原系统PLC只提供一个总报警输出。
(3)外部对鼓风机控制:原鼓风机控制系统中已预留外部控制点,包括:启动/停止、开启风门和关闭风门3个控制点。
从以上所列出的原系统I/O点可以看出,原鼓风机控制系统只提供:启停、开关风门控制,风门全开全关状态以及总故障报警状态。还缺少的状态点包括:风门开启度(连续量)、5个单的故障报警点、现场紧急停止状态和风门目标值控制几个重要的数据。这些参数对于中控室进行远程调节是至关重要的。所以,针对这个特点如下改造方案。


           如图1所示,各台鼓风机控制系统的PLC均换为西门子公司的S7-200序列PLC。S7-200和S5均为西门子公司的PLC产品,可以在上达到兼容度,也就是说改造后可以快速地切换到新系统运行,缩短改造周期,不影响生产。
原系统采用S5序列PLC,均为DI/DO开关量控制,无模拟量控制。对于DI/DO,S7-200有相应的模块替代S5,很容易即可实现。另外,中控室需要显示鼓风机当前风门的开度大小,并依据开度和所需空气量调整鼓风机。所以,风门的当前模拟量进入到PLC。在此,增加一个模拟量输入模块,将风门就地显示量采集入控制系统。风门开度为4-20mA标准模拟量信号,可直接进入模拟量模块。
风门开度进入S7-200 PLC后,中控只需输入所需的风门开度,通过预先编写的PLC程序即可自动对开度进行调节。调节风门开度的PLC程序存放在S7-200内,达到快地调节响应速度。
2.Profibus网络
为实现中控室对各台鼓风机的远程遥控和状态监视,需要将4台鼓风机连接进入到现有全厂总线网络。考虑到鼓风机系统为一个比较立的系统,避免对全厂控制网络的影响,所以建立一个Profibus子网,将水控室S7-300 PLC和4台鼓风机的S7-200组成网络。
为将S7-200加入到Profibus网络,在每台鼓风机PLC上配置一块EM277模块。EM277为S7-200Profibus从站模块,不需任何的软件配置,只需将其连接入S7-200 PLC即可,基本不需维护。将4台鼓风机的EM277模块通过Profibus电缆连接后,再连接到水控室的S7-300 PLC中。水控室S7-300 PLC加入一块CP342模块作为Profibus主站,组成Profibus子网。
组成Profibus网络后,水控的PLC通过STEP 7进行重新配置,加入对新网络的支持,中控室即可对4台鼓风机进行状态监视和控制。监视和控制的内容除了I/O点外,还可以包括内部的状态点,即就地显示的状态量进入PLC后即可在中控室显示。(1)点所提到的每台鼓风机反馈和控制的I/O均能反馈到中控室显示。
3.中控室人机界面升级
现场到PLC系统和网络改造完成后,所有的I/O和状态均可反映到中控室,所以中控室需要对鼓风机部分的画面进行升级。
鼓风机的EM277作为从站,起一个数据对S7-300主站输入输出功能,和中控室计算机交换的数据需要S7-300(水控室PLC)进行处理。和其他设备相似,在水控室PLC内部增加相应的处理程序(梯形图),将交换的数据映射到中控室交换数据区。
中控室计算机到现场鼓风机数据,通过在iFix画面上增加相应的数据显示和控制功能,操作人员直观的界面。iFix画面的编写方式和风格与其他设备相似,保持操作的习惯性。

三、本鼓风机系统改造方案的优点

经过上述方案的改造后,4台鼓风机即进入到全厂的监控网络,除了原来简单的运行状态、电流状态监视外,鼓风机内部的所有运行状态均可在中控室显示,操作人员可实时掌握鼓风机的运行情况。另外,还增加了远程调控功能,包括启停、风量调节等,操作人员只需在控制室即可操作,达到现场无人值守等目的。

本方案采用S7-200这种主流的PLC替代已停产的S5序列PLC,解决了维护过程中的备件问题。另外,通过S7-200和S5序列比较,S7-200不采用后备电池方式运行,可避免若干年后由于电池电量过低导致S5程序丢失或混乱造成的停机现象。

202202221739073176584.jpg202202221739072455394.jpg20220222173907301904.jpg

  针对这些必需的输入点数,选用了fx1s-30mr的plc,因为选用了人机界面,其它一些手动动作,如前进、后退、换等都通过人机界面实现,不需占用plc输入点,从而为选用位的fx1s系列plc成为可能,因为fx1s系列plc输入点多只有16点。另外此系列plc的高速计数器具有处理频达60千赫的脉冲的能力,足可以满足切纸机对精度的要求。

    3.2编码器的选取

    编码器的选取要符合两个方面,一是plc接收的脉冲频率,二是进给的精度。我们选用的是编码器分辨率是500p/r(每转每相输出500个脉冲)的。通过验正可以知道此分辨率可以满足上面两个条件。验证所需的参数:电机转速是1500转/分(25转/秒)、进给丝杆的导程是10mm/转。验如下:

    本系统脉冲频率=25转/秒×500个/转×2(a/b两相)=25khz

    理论进给分辨率=10mm/500=0.02mm

    同时由上面的数据知道进给系统每走1mm编码器发出50(此数据很重要,在plc程序的数据处理中要用到)个脉冲信号。由于此工程中对编码器的a/b相脉冲进行了分别计数,使用了两个高速计数器,且在程序中应用了高速定位指令,则此plc可处理的脉冲频率为30千赫,因此满足了个条件;我们的切纸机的载切精度要求是0.2mm,可知理论精度满足此要求。

    3.3变频器和hmi的选取

    这两个部件我们都选用了三菱公司的产品,分别是fr-e540-0.75k-ch和f920got-bbd-k-c。f920got是带按键型的hmi,它的使用和编程非常简单方便。它具有以下特点:(1)可以方便的实现和plc的数据交换;(2)通过本身自带的6个功能按键开关,可以控制plc内部的软继电器,从而可以减少plc输入点的使用;(3)具有两个通讯口,一个rs232c(用于和个人电脑通讯)和一个rs422(用于和plc通讯),利用电脑和f920got相连后不仅可以对hmi进行程序的读取和上传,还可以直接对plc的程序进行上传下载、调整和监控。

    4 plc和hmi程序的设计

    此工程中程序的难点主要在于数据的处理上。在切纸机工作过程中除手动让进给定位机构前进后退外,还要实现等分裁切功能和具体位置定位功能,并且hmi上还要即时显示定位机构的当前位置。我们为了简化程序中的计算,采用了两个高速计数器c235和c236。c236通过计算前进后退的脉冲数,再进行换算后用于显示进给机构的当前位置;c235用于进行定位。定位过程是这样的,每次进给机构需要定位工作时,通过计算把需要的脉冲数送到c235,不论进给机构前进还是后退c235进行减计数,同时对c235中的数值进行比较,根据比较驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而达到定位。因为任何系统都有惯性和时间上的迟滞,所以变频器停止输出的时间并不是c235中的计数值减小到0时,而是让c235和一个数据寄存器d130比较,当c235中的值减小到d130中的设定值时plc控制变频器停止输出。d130的值可通过人机界面进行修改和设定,在调试时通过修改这个值,以达到定位准确的目的。


   1 引言

    切纸机械是印刷和包装行业常用的设备之一。切纸机完成的基本动作是把待裁切的材料送到位置,然后进行裁切。其控制的是一个单轴控制。我公司引进欧洲一家公司的两台切纸设备,其推进系统的实现是利用单片机控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,断开进给电机的接触器,同时电磁离合制动器的离合分离,刹车制动推进系统的惯性,从而实现。由于设备的单片机控制系统老化,造成定位不准,切纸动作紊乱,不能正常生产。但此控制系统是早期产品,没有合适配件可替换,只能采取改造这一途径。目前国内进行切纸设备进给系统改造主要有两种方式,一是利用单片机结合变频器实现,一是利用单片机结合伺服系统实现,不过此两种改造方案成本都在两万元以上。并且单片机系统是由开发公司设计,技术保守,一旦出现故障只能交还原公司维修或换,维修周期长且成本高,不利于改造后设备的维护和使用。我们结合自己设备的特点提出了新的改造方案,就是用plc的高速计数器功能结合变频器的多段速功能实现定位控制,并利用hmi(人机界面humanmachineinterface)进行裁切参数设定和完成手动操控。

    2 改造的可行性分析

    现在的大多plc都具有高速计数器功能,不需增加特殊功能单元就可以处理频达几十或上百khz的脉冲信号。切纸机对进给系统的精度和响应速度要求不是很高,可以通过对切纸机进给系统相关参数的计算,合理的选用编码器,让脉冲频率即能在plc处理的范围内又可以满足进给的精度要求。在进给过程中,plc对所接收的脉冲数与设定数值进行比较,根据比较驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而减小系统惯性,达到定位的目的。另外当今变频器技术了长足的发展,使电机在低速时的转矩大幅度提升,从而也保证了进给定位时低速推进的可行性。

   一工艺要求


点击此处查看全部新闻图片

    (1)正常生产过程中,2台压缩机应至少有1台运行,即使在相互切换时,也不允许发生两台机器全部停止的现象。

    (2)保持压缩机出口压力在预定值上。

    (3)能实现对压缩机运行状态进行分析,以实现预测性检修。

    二系统控制原理

    (1)工艺设定压缩机管网正常出口压力为P1,而现场实际测定压力为P2,根据ΔP(=P2-P1)值大小由PLC内PID功能模块进行PID运算,控制变频器来改变电动机转速,达到所要求的压力。当ΔP>0时,现场压力偏高,则提高变频器输出频率,使电动机转速加快,提高实际风压;当ΔP<0时,现场压力偏低,则使转速降低,ΔP减小。这样不断调整,使ΔP趋于0,现场实际压力在设定压力附近波动,保证压力稳定。系统结构如图1。


点击此处查看全部新闻图片

    (2)压缩机长期运行,造成各部件间隙变大,这样引起的振动会越来越大,容易造成压缩机各部件的损坏。由PLC对现场振动情况进行判断分析,可提前对压缩机进行计划性维护保养,这样可大大延长设备的使用寿命,提高设备运行可*性,减少设备故障引起的非计划性停车。

    三设计方案

    该方案主要由1台SiemensECO1-7500/3变频器、1台S7-200型PLC(CPU215/216,配套EM235扩展模块)以及接触器、操作按钮、1台现场压力变送器和2台振动测量装置(振动变送器)组成,用PLC实现压缩机出口压力单回路闭环PID控制以及压缩机起动、停止、切换、故障处理等各种电气控制功能,由振动变送器对压缩机状态进行监控分析,以实现预测性维护维修。主回路如图2。


点击此处查看全部新闻图片

    (1)PID运算功能的实现

    S7-200系列中CPU215/216具有32位浮点运算指令和内置PID调节运算指令等特殊功能。使用时,只需在PLC内存中填写1张PID控制参数表(见下表),再执行指令:PIDTABLE,LOOP,即可完成PID运算。其中操作数TABLE使用变量存储器VBx,用来指明控制环的起始地址;操作数LOOP是控制环号(常数,0~7)。编号为2、4、5、6、7的参数固定不变,可在PLC主程序中设定;编号为1、3、8、9的参数具有实时性,须在调用PID指令时填入。

    由于S7-200输入和输出为开关量,而变频器、压力变送器和振动变送器的信号为模拟量,因此EM235模块要实现D/A转换。一个EM235模块可同时扩展3路模拟量输入通道(接1路压力信号,2路振动信号)和1路模拟量输出通道(接至变频器)。

    (2)起动

    M1和M2各有两种起动方式,可通过转换开关选择变频/工频起动方式。

    (3)运行

    正常情况下,电动机M1处于变频调速状态,电动机M2处于停机备用状态。现场压力变送器管网出口压力(4~20mA模拟量信号),并与预定值相比较,经PLC内部PID指令进行运算,得到变频器所需频率信号,自动调节电动机转速,达到所需管网压力。

    (4)停止

    按下“停止按钮”,PLC控制所有接触器断开,变频器停止工作。

    (5)切换

    当需从电动机M1切换到M2时,接触器KM2断开,KM1闭合,此时电动机M1工作在工频下,在变频器停止后,KM4闭合,变频器重新起动,电动机M2在变频器驱动下起动;起动后,KM1断开,电动机M1停止,切换操作结束。电动机M2切换到M1过程类似。

    (6)报警及故障自诊断

    通过PLC内部程序设定报警及联锁保护,一旦出现故障立即停止相应操作并报警。对于故障自诊断功能,考虑到成本问题,未设计上位机,只设置相应故障代码,通过4位数码管显示,使维修人员可根据故障信息方便查找到故障点。如:(a)压缩机油压低、水压低等故障信号,可由现场防爆电接点压力表测得,直接送至PLC,由PLC控制实现声光报警和延时停车;(b)增设现场振动传感器,并将信号送至PLC,对压缩机运行状况进行显示和诊断。

    四几点体会和设计中应注意的问题

    (1)采用变频控制后,实现了压缩机的软起动,减小了起动电流对电网的冲击;节电效果明显,1年内可回收全部投资。

    (2)采用PLC后,组成闭环自控系统,实现自动调节,运行加稳定可*。

    (3)变频器、PLC、接触器等可安装在一台控制柜内,可就地或远控操作,方式简单灵活。

    (4)系统可扩展性较好。若有多台压缩机在变频/工频供电方式下运行时,只需将增加信息或信号引至PLC,即可实现整个系统的自动控制;若生产需要,本系统也可方便接入DCS或上位机,建立人机界面的监控系统等。

    (5)预测性维护检修可大大延长压缩机使用寿命,提高可*性,减少停车损失,降低运行费用。

    (6)PLC控制电动机在变频/工频供电方式下切换时,须保证各接触器闭合和断开顺序以及足够的延时,以防止电动机绕组产生的感应电动势加载到变频器的输出逆变桥上,造成损坏。

    (7)PLC须实现KM2和KM4间的互锁,以防止2台电动机同时变频起动,使变频器因过载而损坏。

    (8)因2台电动机会在短时间内分别在工频和变频下同时运行,故变频控制柜的总电源开关需按2台电动机负载量考虑




http://zhangqueena.b2b168.com

产品推荐