6ES7222-1BF22-0XA8诚信交易
  • 6ES7222-1BF22-0XA8诚信交易
  • 6ES7222-1BF22-0XA8诚信交易
  • 6ES7222-1BF22-0XA8诚信交易

产品描述

产品规格模块式包装说明全新

6ES7222-1BF22-0XA8诚信交易

一 工艺简介
染缸系统用于为布料着色,通过调节温度,压力,和颜料的流量形成一定的工艺条件,在相对稳定水位、压力、温度条件下对布料进行染色。系统属于全电脑控制,对各个控制量均实现闭环控制,根据反馈实时调节补偿,以达到稳定的控制效果。
用户对于每种染色工艺的要求不同,要求程序按照功能进行模块式划分,可以根据需求在上位机中灵活调用,组成一个工艺方案。
二.电气技术方案
2.1 系统组成
根据客户需求,结合当前工控技术的和产品,设计采用的电气技术方案如下。
上位机采用工业平板PC机。PC机与PLC以RS232方式通信,上位机开发平台采用Wonderware Intouch 9.5版组态软件,可实现对整机运行工作情况的监控和历史纪录数据的保存。
在可编程控制器(PLC)方面,选择业内的艾默生PLC作为控制器,采用MODBUS通讯协议,与艾默生变频器通过RS485总线通讯控制方式实现传动控制,并可与流量传感器通讯。根据系统要求,这些PLC分配在三个控制箱中。主控制箱中1台PLC配置为MODBUS主站,由主站对全部从站PLC、变频器、流量传感器进行监控;上位机通过主站来进行系统监控。
变频器选型采用艾默生TD3000系列和SK系列产品。 TD3000系列变频器是、多功能、低噪音的矢量控制通用变频器;SK系列变频器具有体积小巧、操作简便、功能实用、宽输出频率和低噪音等优点。
文本显示器采用无锡汇联SLIAN文本显示操作屏。
2.2 电气系统结构图
 
图中粗黑线表示的是MODBUS总线。
电气系统结构图说明
1、PC作为系统的上位机通过串口与主控制箱的PLC主站模块的通讯口0连
接,采用RS232通讯实现对PLC数据的采集和控制。
2、系统主干通讯网络采用MODBUS协议。
3、系统分为三个控制箱:主控制箱、机身控制箱、机身电磁阀接线盒。系统需要配置5个PLC主模块,以MODBUS总线协议进行通讯。主控制箱内有3个PLC主模块,其中1个主模块配置为MODBUS主站。机身控制箱和机身电磁阀接线盒分别各配置1个PLC主模块。
4、主控制箱的主站PLC采用EC20-2012BTA主模块(晶体管输出),扩展了2个EC20-4PT模块(温度测量)、2个EC20-4AD模块(4-20mA模拟量测量);主控制箱的从站PLC采用2个EC20-2012BTA主模块(晶体管输出)。
5、机身控制箱从站PLC采用EC20-2012BRA主模块(继电器输出),扩展了1个EC20-4AD模块(0-10VDC模拟量测量)。控制箱应留出未来扩展的空间,以便将来增加扩展模块。该控制箱上安装1个无锡汇联SLIAN的文本显示屏,通讯线与PLC的通讯口0连接(RS-232)。
6、机身电磁阀接线盒从站PLC采用EC20-3232BRA主模块(继电器输出)。
7、5个比例阀分别由主控制箱的3个PLC主模块进行控制。每个PLC主模块可控制2个比例阀。
8、4台变频器和2个计都作为MODBUS从站,由主控制箱主站PLC进行监控。
2.3工作原理说明
人机交互通过PC实现,PC可以实时监控整个系统的工作运行状态、动作过程及故障报警、实时曲线描绘和保存历史数据等,同时可发送各种操作命令给PLC以控制系统的运行。
在主站PLC与PC、从站PLC、变频器和流量计仪表通讯方面,EC20 PLC充分利用自身的优势,由于EC20 PLC本身带有2个串行通信口(1个RS232口,集成自由协议/编程协议/MODBUS从站协议,1个RS232/485口,集成自由协议/MODBUS主站/从站协议),EC20 PLC利用COM0口和PC进行通信(EC20 PLC做从站,设置成MODBUS从站协议),利用COM1和多台从站PLC、变频器和流量计仪表组成网络进行集中控制(EC20 PLC的COM1设置成MODBUS主站协议)。
艾默生变频器自带RS485接口的通讯单元,用于实现PLC与多台变频器的联网。对变频器的所有控制都通过RS485通讯链路来完成,可省去变频器的外部起停控制线路。
5个比例阀控制器均由步进电机及放大器组成,由主站PLC及2个从站PLC通过高速脉冲输出口来进行控制。
流量计仪表具有MODBUS协议,可由主站PLC通过MODBUS网络访问和监控。另外,流量计具有脉冲计数和频率输出,可用于计量,作为备用方案。脉冲输出可以接入到EC20的高速输入通道。
三.PLC逻辑控制
此次编程采用顺序功能图(Sequential Function Chart),利用顺序功能图的过程划分和步骤间转换功能。可将程序段进行模块化自由组合。
由于顺序功能图编程具有直观和流程化的特点,分解后的每一步骤和每个转换条件都为相对简单的程序过程,在顺序控制领域应用比较广泛。
3.1 模块化的分解与实现
染布工艺经过长时间的积累,已经形成一套相对固定的工艺流程。但是随着布料种类、染料种类和印染要求的不同,会在原有流程上进行一定的增加、删减或者参数的改变,因此需要将整个印染工艺分解为若干个小模块以实现这一功能。
经过对印染工艺的了解,现将整体工艺拆分为如下功能块:

模块功能的实现应用顺序功能图流程的概念。在一个关联且封闭的顺序流程中,每一时刻只有一个步骤在运行,且各流程间互不干扰。而工艺模块的划分也正是本着一个模块内的工艺顺序执行、各个模块间的工艺尽量立这一原则。因此,一个模块对应一个流程即可。
3.2  自由式组合编程的实现
工艺要求能够自由的对功能模块进行顺序组合和重组,而PLC的程序是通过软件将PC中的内容写入到PLC固件中的,因此一经写入就不再可以改,程序的执行按照预定流程。于是我们通过与上位机的配合,再结合顺序功能图的特点,来实现自由编程的

引言

供水系统是国民生产生活中不可缺少的重要一环。传统供水方式占地面积大,水质易污染,基建投资多,而主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。变频调速技术是一种新型成熟的交流电机无调速技术,它以其特优良的控制性能被广泛应用于速度控制领域,特别是供水行业中。由于生产和供水质量的特殊需要,对恒压供水压力有着严格的要求,因而变频调速技术得到了加深入的应用。恒压供水方式技术、水压恒定、操作方便、运行、节约电能、自动化程度高,在泵站供水中可完成以下功能:(1)维持水压恒定;(2)控制系统可手动/自动运行;(3)多台泵自动切换运行;(4)系统睡眠与唤醒。当外界停止用水时,系统处于睡眠状态,直至有用水需求时自动唤醒;(5)在线调整PID参数;(6)泵组及线路保护检测报警,信号显示等。

将管网的实际压力经反馈后与给定压力进行比较,当管网压力不足时,变频器增大输出频率,水泵 转速加快,供水量增加,迫使管网压力上升。反之水泵转速减慢,供水量减小,管网压力下降,保持恒压供水。

1 系统硬件构成

系统采用压力传感器、PLC和变频器作为控制装置,实现所需功能。

安装在管网干线上的压力传感器,用于检测管网的水压,将压力转化为4~20 mA的电流信号,提供给PLC与变频器。

变频器是水泵电机的控制设备,能按照水压恒定需要将0~50 Hz的频率信号供给水泵电机,调整其转速。ACS变频器功能强大,预置了多种应用宏,即预先编置好的参数集,应用宏将使用过程中所需设定的参数数量减小到小,参数的缺省值依应用宏的选择而不同。系统采用PID控制的应用宏,进行闭环控制。该宏提供了6个输入信号:启动/停止(DI1、DI5)、模拟量给定(AI1)、实际值(AI2)、控制方式选择(DI2)、恒速(DI3)、允许运行(DI4);3个输出信号:模拟输出(频率)、继电器输出1(故障)、继电器输出2(运行);DIP开关选择输入0~10 V电压值或0~20 mA电流值(系统采用电流值)。变频器根据给定值AI1和实际值AI2,即根据恒压时对应的电压设定值与从压力传感器获得的反馈电流信号,利用PID控制宏自动调节,改变频率输出值来调节所控制的水泵电机转速,以保管网压力恒定要求。

根据泵站供水实际情况与需求,利用一台变频器控制3台水泵,因此除改变水泵电机转速外,还要通过增减运行泵的台数来维持水压恒定,当运行泵满工频抽水仍达不到恒压要求时,要投入下一台泵运行。反之,当变频器输出频率降至小,压力仍过高时,要切除一台运行泵。所以不仅需要开关量控制,还需数据处理能力,采用FX-4AD(4模拟量入)获得模拟量信号。它在应用上的一个重要特征就是由PLC自动采样,随时将模拟量转换为数字量,放在数据寄存器中,由数据处理指令调用,并将计算结果随时放在的数据接触器中。通过其可将压力传感器电流信号和变频器输出频率信号转换为数字量,提供给PLC[1>,与恒压对应电流值、频率上限、频率下限(考虑到水泵电机在低速运行时危险,保证其频率不20Hz,因此频率上限设为工频50Hz,下限设为20Hz)进行比较,实现泵的切换与转速的变化。

系统在设计时应使水泵在变频器和工频电网之间的切换过程尽可能,以保证供水的连续性,水压波动尽可能小,从而提高供水质量。但元件动作过程太快,会有回流损坏变频器。为了防止故障的发生,硬件上设置闭锁保护,即1Q与4Q,2Q与5Q,3Q与6Q不能同时闭合。

2 系统软件设计


控制系统软件是指用梯形图语言编制的对3台泵进行控制的程序。它对3台泵的控制,主要解决 系统的手动及自动切换、各元件和参数的初始化、信号及通讯数据的预处理、3台泵的启动、切换及停止的条件、顺序、过程等问题。

当变频器输出频率达到频率上限,供水压力未达到预设值时,发出加泵信号,投入下1台泵供水。当供水压力达到预设值,变频器输出频率降到频率下,发出减泵信号,切除在工频运行方式中的1台泵。系统刚启动时,情况简单,启动一号泵即可。但考虑3台泵联合运行时情况复杂,任1台或2台泵可能正在工频自动方式下运行,而其他泵则可能在变频器控制下运行,因此预先设定增减水泵的顺序。即获得加泵信号后,按照1号泵、2号泵、3号泵的顺序考虑。获得减泵信号后,按照3号泵、2号泵、1号泵的顺序考虑。

为了防止故障的发生,软件上也设置保护程序,保证1Q与4Q、2Q与5Q、3Q与6Q不能同时闭合。在加减泵时设置元件动作顺序及延时,防止误动作发生。

考虑到系统工作环境对运行状态的影响,在设计中采用硬件、软件上的双重滤波来干扰的影响。硬件上变频器提供了滤波时间常数,当模拟输入信号变化时,63%的变化发生在所定义的时间常数中;软件上采用数字滤波的方式,系统采用平均值的方法[2>。

计算近10次采样的平均值,其计算公式如下:

3 系统参数的确定

系统变频运行主要靠变频器来实现。变频器有一数量很大的参数群,初始情况下,只有所谓的基本参数可以看到。只需设定简单的几个参数,变频器就可以工作。

除基本参数外,还对完整参数进行设定。

完整参数的设定主要是PID参数的整定,它是按照工艺对控制性能的要求,决定调节器的参数Kp,TI,TD。控制表达式为:

变频器根据偏差调节PID的参数,当运行参数远离目标参数时,调节幅度加快,随着偏差的逐步接近,跟踪的幅度逐渐减小,近似相等时,系统达到一个动态平衡,维持系统的恒压稳定状态[3、4>。

4 试验结果

由于系统的显示和通讯功能,可以对系统工作情况进行监测。考虑到管网覆盖面积大,泵站海拔高度相对低,远端供水压力需维持3kg,因此泵站出水口压力维持5kg。试验条件为管网初始无压 力,电磁阀控制一定量相同用水情况下启动系统。获得的数据经MATLAB进行插值拟合可得系统在不同条件下跟踪压力变化的曲线[5>。

试验记录的数据显示,系统在未进行滤波和PID控制时,响应速度特别慢、误差大、振荡严重,见图5。在未进行滤波而引入数字PID控制时,响应速度明显加快,但振荡问题未能得到解决,这是由于喘振现象的存在;当管道压力与设定值近似相当时,水锤效应影响明显,压力波动异常,PID的参数跟踪整定,形成恶性循环,管道中空气的存在也会导致振荡问题。

该系统是按照工业生产需求设计的,实现了预定的一系列功能,保证了系统的稳定和性,在长时间运行中了良好的效果。只需作相应修改就可推广到相关供水系统中。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


1、引言
    小丸包衣制粒机是用于实验室或小批量生产小丸颗粒的制药设备。由于实验室原有的控制系统使用的是十年前的人机界面和PLC,故其硬件均已老化,性能下降,在运行的过程中经常出现死机、黑屏、重启动,甚至某些画面参数不能修改;同时由于无相应的PLC编程器、编程软件和人机界面软件,因此可维修性也差。为了解决这些问题,我们采用西门子S7-200PLC和北京亚控公司的组态王6.05工控组态软件 的控制方案对小丸包衣制粒机的控制系统作了改进。

2、小丸包衣制粒机系统组成
    小丸包衣制粒机系统组成如图1所示。小丸包衣制粒机是专门用于实验室或车间小批量生产的。粉或类似的物料能在流化床中进行干燥、制粒以及包衣等过程。流化床物料容器底部装有筛网,药粉或小丸颗粒等类似的物料被盛放在筛网上。流动的空气经过滤处理后经容器底部的筛网向过,当流速达到一定速度时,颗粒(药粉)就会被空气托起,床内粒子就开始流化起来,形成流化床。流化床内的颗粒(药粉)在容器中剧烈搅动,并延伸到容器的扩展区,细微的粉末或轻微的颗粒则被粘附在袋式过滤器上。为了防止袋式过滤器的堵塞,控制滤袋升降的气缸会有一个间歇的抖动操控。空气经过袋式过滤器、控制风量大小的风门和风道被风机引出室外的大气中。在这个过程中,流化床容器内的微粒能充分的与空气流接触,并且搅动剧烈,因而能够很好的完成充分干燥,良好制粒,精致包衣等制过程


  3.2 三地操作 
    
    (1) 本地操作台即主操作台,对所有电动机进行远程启停操作;加热器加热、停止控制;所有工艺过程进行远程自动操作控制(如主缸、提升缸升降,出缸出、缩回,大小压边缸升降,压制大小封头的工进等);对设备的运行状态进行集中指示(电动机的运行、停止,各缸的进、退,泵的工作、卸荷等),使设备整体运行状况一目了然;对系统的故障(横梁上下限,液压系统压、高低液位、高低温等)进行集中声光报警;对主压力、大小压边力、系统压力进行数字显示;对主压力、大小压边力进行远程手动调定;对数字面板表进行定度等。 

    (2) 机旁操作箱,对主缸、提升缸、大小压边缸、出缸的升降,对大小封头工进进行集中点动操作控制,方便生产过程的上料和卸料。 

    (3) 远地操作台即液压站旁操作箱,对主泵、循环泵、加热器进行本地启停操作控制,本地、远程控制切换,泵的卸荷控制等,方便调试及维修。 

 4、PLC性保护措施 

    系统采用多种措施,以保护PLC及其输出点。如每一模板都设一单自动开关(2A/3A/)进行短路保护;当输出点需驱动交流接触器线圈时,经直流中间继电器转换,且接触器线圈两端并联阻容吸收块。454模板单点大输出电流为2A(24VDC),可直接驱动阀用电磁铁(DC24V/1A),考虑到输出点的保护,电磁铁线圈并接吸收二管,且串联2A熔断管。 

    4.1 电动机组保护 

    三台160SCY14-1B型高压变量柱塞泵,加之阀台控制,可以实现对流量的无级调节。三泵两用一备进行冗余,由三台75kW电动机驱动,并采用卸荷启动、卸荷停止方式,启动负载较轻。同时三台电动机采用自动Y-△降压启动方式,一方面提高了泵和电动机的使用寿命,另一方面可减少对电网的冲击。电动机组


1 引言


随着变频器技术的日益成熟,变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、、的供水质量等优点,在小区供水和工厂供水控制中发挥了很大的作用。

根据某洗衣机进水电磁阀生产厂家的需要,为了给该厂电磁阀性能测试生产线提供基准恒压水源,本文利用PLC控制技术和变频调速技术设计的全自动恒压供水系统,能较好地满足生产需求,水压精度较高。为了不浪费水资源,系统还具有自动水循环功能。

2 系统组成及实现原理

恒压供水的基本控制策略是:采用可编程控制器(plc)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于工作状态,实现恒压供水。



图1 恒压供水系统控制原理框图


变频调速恒压供水系统由变频器、泵组电机、供水管网、储水箱、智能pid调节器、压力变送器、plc控制单元等部分组成,控制系统原理图如图1所示。

其中变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化,同时变频器还可作为电机软启动装置,限制电机的启动电流。压力变送器的作用是检测管网水压。智能pid调节器实现管网水压的pid调节。plc控制单元则是泵组管理的执行设备,同时还是变频器的驱动控制,根据用水量的实际变化,自动调整其它工频泵的运行台数。变频器和plc的应用为水泵转速的平滑性连续调节提供了方便。水泵电机实现变频软启动, 了对电网、电气设备和机械设备的冲击,延长机电设备的使用寿命。

3 控制系统硬件设计

本系统采用三套电机-水泵对水网进行恒压供水,每台电机均可工作在变频方式或工频方式,但每次仅有一台电机工作在变频调速状态。工作时可根据实际情况选择,变频器根据实际水压的变化,不断地调整水泵转速,通过调节流量达到恒定水压的目的。另外,可编程序控制器根据当前水泵的供水情况对其进行合理切换, 及时增泵和减泵,实现匹配。

3.1 主控电路设计

电控系统的主电路由3台电机分别为m1、m2和m3。接触器km1、km2、km3分别控制电机m1、m2和m3变频或工频运行,fr1、fr2、fr3分别为3台水泵电机过载保护的热继电器,qs1、qs2、qs3、qs4分别为变频器和3台水泵电机主电路的隔离开关,fu1为主电路的熔断器,vvvf为通用变频器。

3.2 智能pid调节器和变频器接线图

变频器选用三垦力达电气有限公司的shf系列,功率分别为7.5kw,1.5kw和15kw,变频器采用模拟量控制方式。通过变频器对电机水泵实现软启动功能。图2为pid调节器和变频器的接线图。变频器根据pid调节器输出信号,及时调节输出频率,改变电机和水泵的转速,调节系统供水量,使供水管网中的压力稳定在设定压力值上。



图2 pid调节器和变频器接线图


3.3 plc输入/输出分配

根据对控制系统的分析,本系统选用中达电通公司的dvp60es00t2 plc实现控制,共有60点输入输出,其中36个输入点,24个晶体管输出点,交流供电,其环境温度、抗冲击、抗噪声等性能指标均能满足要求,附表为plc输入/输出分配表。

附表 plc输入/输出分配表

4 系统软件设计

系统的软件设计包括plc的程序设计和变频器的功能参数设定。这里主要讨论plc的程序设计。

plc的程序设计包括手动控制和自动控制的程序设计,手动部分是通过按钮控制电机在工频下运行和停止,主要考虑系统调试或检修时用。

当选择开关打到"自动"时,系统能够进入自动工作状态,由plc和变频器联合控制各台电机的投入或切除、工频或变频运行方式。供水系统共有3台泵组电机,在根据水压决定投入泵组台数后,只有初投入的电机进行变频调速,其它后投入的电机则在工频下全速运行,泵组电机的切换过程由逻辑控制单元plc实现。



图3 系统控制流程图


图3为选择p1泵为变频泵,p2、p3泵为工频泵时的plc状态转移图。设增泵顺序为p1、p3和p2,当供水设备开始工作时,先起动变频泵p1,当管网水压达到设定值时,变频器的输出频率则稳定在一定数值上。当用水量增加时,水压降低,压力变送器把水管出口变化了的总管实际压力信号变成4~20 ma的标准信号送入智能pid调节器, pid回路调节器经运算,得出调节参数送给变频器,使变频器的输出频率上升,水泵的转速提高,水压上升。如果用水量增加很多,使变频器的输出频率达到大值(50hz)时,若供水压力仍不能使管网水压达到设定值,延时20s后,pid调节器就发出控制信号,通过PLC控制单元起动一台工频泵p3泵,若管网水压仍不能达到设定值,则延时20s后,继续起动工频泵。反之,当用水量减少,供水压力大于设定值时,变频器的输出频率降低,水泵转速下降,变频器的输出频率达到小值(30hz)时,延时20s后,则发出减少一台工频泵的命令,其他泵依次类推。

5 结束语

自行设计的变频调速恒压供水系统实现简单,廉,投入运行以来,工作,具有较好的控制效果。主要体现在:

(1) 系统供水压力平稳,压力变化在 0.01mpa 以内;

(2) 节能,系统有plc和变频器管理,可有效解决不同用水量时电机轻载或空载时节能问题;

(3) 整个系统自动化程度高,不需人员职守,故障时可以自动保护并发出报警信号。

(4) 自动水循环,实现了有效的节水。

另外,系统采用plc控制,容易随时修改程序,以改变工作状况,满足不同控制要求,有较大的灵活性和通用性,有一定的推广应用。



http://zhangqueena.b2b168.com

产品推荐