6ES7214-2AD23-0XB8一级代理
  • 6ES7214-2AD23-0XB8一级代理
  • 6ES7214-2AD23-0XB8一级代理
  • 6ES7214-2AD23-0XB8一级代理

产品描述

产品规格模块式包装说明全新

6ES7214-2AD23-0XB8一级代理


一、概述

随着科学技术的发展,PLC(PLC的相关产品)在工业控制中的应用越来越广泛。PLC控制系统的性直接影响到工业企业的生产和经济运行,系统的抗干扰能力是关系到整个系统运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统性,一方面要求PLC生产厂家用提高设备的抗干扰能力;另一方面,要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。

-------------------------------------
二、电磁干扰源及对系统的干扰

1、干扰源及干扰一般分类

影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

-------------------------------------
2、PLC控制系统中电磁干扰的主要来源

(1)来自空间的辐射干干扰

空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;而是对PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。

(2)来自系统外引线的干扰

主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。

来自电源的干扰

实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后换隔离性能高的PLC电源,问题才得到解决。

PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,入开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。


在棉纺织企业广泛使用喷气织机的情况下,空压站建设是一项重要的辅助工程。在天津纺织园区所有空压站配备的主要设备为离心式空气压缩机、冷冻式空气干燥器,通过储气罐、连接管道和阀门等组成压缩空气供气系统,并配套冷却系统、仪表空气系统,计算机检测系统,以实现空压站为生产保证不同压力、不同负荷的用气需求。在此前提下确保合格的供气品质,满足稳定的气源压力,自动调节供气等是空压站自动控制的基本任务。随着自动化水平的不断提高,关于建设无人值守空压站的讨论,是一个发展过程中的必然的课题。

空气系统自动控制的必要性

应用在天纺控股有限公司棉纺一工厂的空压站,安装有4台70M3/min 4台,53M3/min 4台,48M3/min 2台,43M3/min 4台离心式空压机和1台42.5M3/min螺杆式空压机,配有相应处理量的冷冻式干燥器。空压机设备自身带有的CMC控制器,能够自动控制和保护主机的运转,自动提示工作信息,具有故障报警和保护停机功能,能自动根据用气量的大小加载或卸载,并配有LCD显示屏供现场观察各工艺参数和设备状态,具有RS422/485通讯接口,可以实现与现场控制室计算机监控系统的完整连接。

目前,空压站的自控系统通过西门子S7-300可编程控制器,将部分空压机的实时运行数据通过RS422/485通讯接口采集进PLC控制系统,并将数据传送到现场控制室计算机上进行显示,以代替传统仪表。但是没有对空压机进行控制。

空压机设备自带的CMC控制器已经能很好的控制单台空压机,但是不具备对空压系统的整体调控能力。在空压系统中,相对单台空压机的调整,空压系统的整体自动调控具有重要的意义:

■ 单台空压机无法保证空压系统整体供气压力的稳定,而空压系统的整体自控可以有效保持系统内空气压力稳定。

■ 整体的负载平衡,减少排气放空,可以节约多的能源,节省人力成本。

■ 可以实现无人操作,根据实际需要自动开机或加载空压机以保持系统压力。

■ 可以定时间断地记录空压机运行数据和报警,如跳车、喘振、通讯故障、压力等。

在已有的PLC系统中,没有实现空压系统的整体调控功能。由于空压机自带的CMC控制器提供了RS422/485通讯接口,所有的数据采集和控制功能都通过通讯接口来实现,对比原有的控制系统,不需要增加硬件设备的投资,只需要改进和增加控制软件即可实现空压系统的整体控制。

除空压机设备外,还可以将与空压机配套的冷冻式干燥器集成到RS422/485网络中来,实现空压供气设备的自控。

空压站其他系统的自动控制

除空压供气系统外,空压站的其他系统也需要进行自动控制,如水循环冷却系统等。这些系统的控制方法与空压供气系统不同,主要是采用传统控制模式。使用仪表采集需要的运行参数,进行数据处理和分析运算后,输出控制信号给执行机构就可以实现系统的自动控制。

自动控制具有以下优点:

■ 操作简单,可以实现无人值守;

■ 良好的实时调节,防止了人为因素滞后;

■ 具有高性;

■ 减轻工作人员负担;

■ 节省人力成本。

需要控制的参数和可能的控制方式

空压站需要的控制需求;⑴高、低压供气压力控制(机组自动开停控制); ⑵系统自动排水控制; ⑶循环水液位控制和自动加药控制; ⑷所需压缩空气温度、循环水温度等参数控制等等。

空压系统的整体自动调控一般可以使用以下2种方法之一来实现:

⑴采用PLC系统进行通讯和控制。

⑵可以采用英格索兰公司或自己编制的控制软件。

种方法性高,适用于工业控制系统。当监控计算机出现故障时,PLC还可以按照设定的程序进行自动控制。

二种方法是通过控制系统的计算机进行单的分析运算进行控制,它具有较好的灵活性,但缺点是如果出现如计算机死机等故障时,有可能影响系统的正常运行。好在计算机的一般恢复往往不需要太多的时间。

除空压供气系统自控外,空压站可与制冷站、热力站系统一起建立设备控制网络,实现集中控制,或与工厂控制联网,由控制的控制器实时远程监控,实现真正的无人值守。

系统构成

对于以上讨论,如果需要实现空压站的整体自控,又许多成熟PLC自控系统可以选用,现以ZH公司的PLC自控系统为例。

该自控系统选用西门子S7-300系列可编程控制器,带有RS422/485网络接口,支持MODBUS等相关网络通讯协议。该系统可以采用工业通讯网络技术实施远程联网。空压站自控设备可根据生产实际情况和各设备的特点,以及可能存在的问题,综合各方面因素后确立分级控制网络的实施方案,如图1所示。

■ 硬件配置

现场仪表,受控设备、执行器、带有串行通讯接口的设备(如空压机,冷干机等),PLC和监控计算机。

■ 软件功能

选用的工业组态软件(如WINCC或iFIX)用来监视和操作整个生产过程,为控制系统提供通讯、显示及报表管理等功能,各设备控制器自成一子系统,其应用程序功能包括:信息,设备控制,故障报警,连锁保护,以及数据处理和通信传输。

在系统实施过程中,还可引入故障检测和故障诊断的处理程序,能够提高系统的智能化程度,有利于进一步改善自控系统的有效性和性,通过优化调度策略,软件连锁保护等自动控制功能模式的应用,有望将自动化水平提升到高层次,可以为确定空压机设备状态检修点提供依据,并由此获得大的效益。

结论

总之通过自动化控制可以克服由于人为因素造成的调节滞后等不利因素,减少运行参数的波动,达到减少用工和节约能源的目的。对于提升天纺控股有限公司的整体技术水平是相当重要的。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


产和居民的安居乐业起着至关重要的作用。
从目前来看,油田变电站的控制和管理来看还是处于落后的状况,与国外和一些省市相比具有很大的差异。对于直流系统,自动化监控程度低,大部分的变电站直流系统控制方式简单,多为人工控制和调节,而电池也多为铅酸电池,需要专门直流工进行维护。在管理水平上,变电站的设备管理记录和统计都是值班人员填写报表进行汇报。
随着电子技术和通讯技术的飞速发展,变电站微机保护的成功改造,对直流系统的运行也提出了高的要求。所以必需对直流系统进行改造和完善。向无人化监控管理发展,以达到减员增效和提高自动化管理水平的目的。
AEUD-WIII 全自动智能免维护直流屏采用模块化设计、数字化控制,智能化程度高。该直流电源具有的系统监控功能,着重电池在线管理、接地选线、“四遥”通讯、告警显示和事故追忆等功能进行开发,使得系统性、性高。
该系列全自动智能免维护直流屏采用SEIMENS 公司生产的OP170B 型人机界面,该监控模块具有结构紧凑、显示分辨率高、性高、寿命长等优点。通过人机界面可以完成整流模块启动,充电状态显示,查看报警信息,手动电池巡检,绝缘监察、接地选线、报警试验、报警复位等直流屏的所有操作,并能显示直流屏的原理图及各个运行参数和各种故障信息。控制模块采用S7-300 系列模块,进行数字和模拟信号的采集及输出。一、控制要求
①整个系统实现了数字化控制、电压调节等都可由PCC 通过软件实现,提高了系统运行的性。
②大屏幕液晶显示屏,汉字菜单驱动,在线帮助,操作简单方便;
③智能化的电池管理,主、浮充自动转换,手动和自动实时监控电池状态。
④接地选线功能,实时监控母线和支路绝缘状况。
⑤完善的告警处理及事故追忆功能,掌握系统运行状态。
⑥完善的“四遥”功能,监控能够监控直流系统。
二、硬件系统构成
根据以上要求,我们开发研制了孤北电厂集中控制室直流控制系统。系统配
置如下:
1、PLC 配置
变电站直流监控系统的PLC 采用SIEMENS 的S7-300 系列模块,根据系统要求,PLC 总体配置如下:
① 处理模块(CPU):选用CPU314。
② 数字量输入模块(DI):选用SM321,共1 块(16 点/块)。处理4 点输入信号。
③ 数字量输出模块(DO):选用SM322, 共4 块(16 点/块)。处理56 点输入信号。
④ 模拟量输入模块(AI):选用SM331,共1 块(8 点/块)。处理8 点输入信号。
⑤ 模拟量输入、出模块(AI):选用SM334,共1 块(4 点入和2 点出/块)。处理
2 点输入和2 点输出信号。
2、操作屏配置
操作屏采用两个OP170B,一个安装在控制柜,一个安装在监控。三、监控系统软件变电站直流监控系统的软件主要有两部分:显示单元和软件单元。
显示单元:主画面、电池巡检画面、电池组电压记录画面、绝缘监察、当前报警画面、历史报警画面、累计运行画面等画面。
软件单元:系统时钟读取、整流器控制、电池巡检、绝缘监察、接地选线、限流电阻控制、累计运行时间、当前报警处理、历史报警信息处理、报警试验、
(一)、显示单元:
操作屏采用工业级人机界面。主要完成下列任务:直流系统运行监控、故障报警、记录和排除提示、参数设置、模拟键盘操作、数据记录处理、累计运行时间等的运行时间和控制。


1. 概述
近年来中国机动车产量和保有量增长,机动车排放造成的污染问题逐渐显现出来,要使环境能够容纳多的机动车,降低排放负荷是解决机动车污染问题的必然选择和有效手段。2004年,北京实行了欧II排放标准,2005年7月北京实行欧III排放标准,低排放甚至零排放汽车将成为未来汽车工业的发展方向。


随着柴油机技术水平的提高,柴油机的使用呈上升趋势。喷油泵是柴油机的重要总成,其工作性能直接影响与其匹配的柴油机的动力性、经济性和排放,所以喷油泵的调试是柴油机的生产和维修的一个重要环节。喷油泵的调试在喷油泵试验台上进行,调试质量与喷油泵试验台所反映的油量真实性密切相关。


目前国内喷油泵实验台大多采用单片机开发,喷油泵进油口温度控制,温度控制范围在±2℃,无法满足喷油泵欧Ⅱ排放标准的检验要求。进口实验台以博世为例,全套引进大约200民币左右。采用施耐德Twido PLC和ATV31变频器配合控制,触摸屏设置和监控整个校验过程,除可满足欧II排放标准喷油泵的校验要求外,也大大降低了成本,同时解决了原有实验台操作不直观、界面不友好及维护升级困难等缺点。


2. 系统描述
系统要实现智能化的试验模式,操作简捷方便简单、界面友好美观,重要参数(转数、温度、压力、计数值)要醒目。系统、、使用的技术,细致考虑,涉及多方位。

1) 系统框图


2) 施耐德电气元件配置表


3) 系统组成及功能
油箱
(1) 热油箱采用电阻丝加热,通过PID功能配合热油箱温度传感器的反馈将热油箱温度控制在设置范围内。
(2) 冷油箱采用压缩机制冷,由于压缩机不能够频繁启动,故采用前馈控制,通过冷油箱温度传感器反馈的上下限温度来开启和关闭制冷机。
(3) 热油箱、冷油箱的加热和制冷工作前提:油泵开启,油位正常。油位报警实时在触摸屏中显示。
(4) 热油温度、冷油温度、制冷机小起动时间可在触摸屏中设置。


油泵
油泵控制为外部电路完成,热油泵、冷油泵同时启停。PLC采集油泵起动信号作为控制油箱加热和制冷起动的条件。
温度和压力控制和测量
温度通过PLC控制热油和冷油电磁阀的开启时间将油混合的方式,将回油温度控制在设置值的±0.3℃。进油压力、泵腔压力稳定并在触摸屏上显示。不同流量喷油泵的校验参数通过触摸屏一键转换。
电机控制和量油计数值设置
电机控制采用2种不同方式,控制精度±1转/分。为防止分配泵干磨,油泵起动后方可起动电机。
(1) 种方式为自动方式,即PLC和变频器通过内置的RS485接口连接,MODBUS RTU协议DRIVECOM标准进行通讯控制。可实现对电机的正转、反转、停机和20段转速的控制。每一转速可单设置回油温度和量油次数值。大大增加了性,并减少了模拟量输出的成本和接线复杂度。
(2) 二种方式为手动方式,即通过变频器的外部AI/DI端子通过电位器0-10V模拟量信号自由调速并控制电机正反转。对应输出为0-3200转/分。回油温度和量油计数值单设置。
量油次数和控制
量油计数采用霍尔开关检测,通过PLC高速计数功能计算,大大提高了度。开始计数时电磁铁吸合拉开挡油板,油开始进入量油杯。计数到,电磁铁释放推回挡油板。油从挡油板回流。
报警
多种实时报警功能:油箱油位报警,霍尔开关损坏报警,制冷时间报警,油温未在控制范围内量油计数报警,变频器故障报警,急停报警。


3. 结束语
(1)使用全套施耐德产品,如XBTG人机界面,Twido PLC,使控制系统能够好的相互结合,实现无缝化通信。
(2)充分利用XBTG触摸屏内部大量的内存空间来存放用户工艺参数,简化了Twido PLC的编程工作,使PLC系统容易。
(3)可以读取变频器内部许多参数,如电机电流,电机转速等等,用于变频器的故障报警,好地维护保养设备。
ATV31可以实现控制与给定分开,这样可以保证系统在发生故障时及时停车。


由于人们对智能印刷生产方法以及对报纸生产多样化提出了越来越高的要求,因此相应在印刷机管理方面也形成了新的理念。在这种新的印刷环境下,柔性和一致性成为关键要求,而基于PLC和HMI的印刷机控制系统就能够达到此项要求。

多色印刷机要求易于操作,精度高,故其输入,输出点较多,因此采用了双机通讯。上位机主要负责主传动的控制,各机组离合压的控制,以及气泵,气阀的控制等,下位机主要负责水辊电机的控制,主传动的调速输出,调版电机数据采集等。上位机与下位机采用了RS485通讯,通讯方便,。同时选用了一台触摸屏,主要负责水辊电机速度显示,调版显示,以及整机故障显示等。

对多色机而言,因素很重要。在设计中,每个机组既要考虑到控制,其中包括本位机组的急停,按钮;还要考虑方便操作,包括每个机组均应有正点,反点按钮。因此,一方面输入点增加很多;另一方面,走线也很不方便。采用双机通讯,可以很好地解决此问题,各机组的走线可以按照就近原则,进入离它较近的控制柜内,既节省了走线,也方便了控制。                            

印刷品的好坏一方面在于机械加工以及安装的精度,另一方面,也取决于水路,墨路的平衡以及合压的准确性。双色机的每一色组,都有水路和墨路装置。为了便于水辊速度的调节,每根水辊都用一个变频器控制,同时,主电机速度也需要变频器调节。因此,为了实现多路速度调节,需要采用数模转换器,它将PLC方给出的数字量,根据相应的算法,转换成0~10V直流电压输出,很好地实现了多路速度调节要求。                         

在印刷过程中,调版是一个比较繁琐的过程。尤其对多色机来说,各组版对正的精度会对印品产生很大的影响。如果套印不准,印刷品就会出现字面重叠或影像不清。一般来说,印版轴向调节范围为-2mm~+2mm  ,周向调节范围为-1mm~+1mm。如果使用手动调版,会浪费很多时间,而且精度不高。为了实现自动打版,我们在版辊上安装了电位器,通过电位器将模拟量传送给4A/D,经过PLC处理,可将版辊的转动精度很好地控制在打版范围内。                     

触摸屏的应用省略了原有的一些按钮、指示灯、计数器、转速表、时间继电器及润滑程控控制器等元器件,降低了故障率,也减少了接线的工作量。触摸屏的画面中可以以走马灯的形式提供了大量的报警信息,也可以设计多屏PLC输入、输出状态监视画面,还可以在系统帮助里看到本机电气操作及维修提示的详细介绍,使整机的电气系统操作、使用、维修简单方便。

该系统应用在印批量生产后,没有发现大问题。PLC功能齐全,,指令简洁,触摸屏与PLC有很好的通用性,可通过触摸屏监视并修改程序,给设计人员和用户带来了很多方便。


  工控机选用研华工控机,软件为组态王。对现场各类数据及系统设定参数进行实时显示,为系统报警和远程数据监控提供一个数据信息交互平台;对机组各类运行控制要求进行命令触发,为介入系统实时改变系统运行状态提供一个控制命令操作平台。

    1#EC20PLC和2#EC20 PLC分别为两个空压机站的控制完成组态与单片机的数据交换和存储以及工控机各类控制信号处理。主要的自动控制任务都由PLC自行完成,组态只能选择具体的机组运行方式,以及特定状态下对单台机组的单一运行方式改变。各台空压机的信号通过RS485总线连接至PLC;

    由于空压机自带的单片机控制器提供了RS485通讯接口,所有的数据采集和控制功能都通过通讯接口来实现,在原有的控制系统基础上,增加2台PLC,改进和增加控制软件即可实现空压系统的整体控制与连网监控。

二、设备工艺

    PLC控制部分是系统的部分:而供气压力是系统各种运行状态改变与保持的指标。简言之:压力小于供气压力要求下限就要多的供气机组运行以增加供气量,压力大于供气压力要求上限就要把当前运行供气机组减少以减少供气量。而处于上下限之间的压力值时就保持当前机组的运行状态不变。

    就单台空压机而言,其可以自行进行供气量大小的调节。当一台机器运行时,它的供气量是一个从零到大气量之间浮动的值而不是一个额定输出的定值。所以在整个供气方案中我们用改变运行机组台数的方法来改变对管网的供气。每台机组有加载、满载、卸载、和停机四种状态。加载到满载之间,供气量的值是0到大值的过程;卸载是停止供气的状态但机组仍在运行;而停机是机组不供气也不运行。

    一个正常的供气流程如下:

    把确定在网机组数与机组中间运行状态结合起来就构成了控制思路的基本环节。即通过压力报警确定机组数目需要增加或减少,如果已经在中间状态了加载、满载、卸载任意一个,就按增气或减气的方向移动中间状态直到运行到边界状态;当到达边界状态时按增气或减气的方向移动到下一台。当然如要稳定下来是在中间状态,边界状态是不能稳定的。




http://zhangqueena.b2b168.com

产品推荐