西门子6ES7212-1BB23-0XB8一级代理
  • 西门子6ES7212-1BB23-0XB8一级代理
  • 西门子6ES7212-1BB23-0XB8一级代理
  • 西门子6ES7212-1BB23-0XB8一级代理

产品描述

产品规格模块式包装说明全新

西门子6ES7212-1BB23-0XB8一级代理

治理大气污染,有准确的监测仪器和系统来保证。烟气连续监测系统CEMS在国内越来越多的满足广大用户需求。在一些大型的项目和企业中应用CEMS,结合环境监测仪器、ABB PLC和杰控FameView软件,完善烟气连续监测系统,对促进高技术在监测仪器中的应用,具有很重要的意义。

CEMS中有很多种监测方法:比如烟气SO2自动分析仪的原理有电导法、非分散红外吸收法(动态范围较窄)、紫外吸收法、紫外荧光法、火焰光度法和定电位电解法。采用方式主要有:

(1)直接抽气采样法

(2)稀释抽气采样法(包括烟道内稀释和烟道外稀释,占85.5%,主要为欧美产品);

(3)在线直接测量法;

(4)定电位电解法。

CEMS环保行业有两个典型的特点:

一是典型的SA应用,二是数据及报表处理比较复杂。

ABB AC500 PLC 和FameView在这两方面做的为出色:

 ABB PLC集成有MODBUS 主、从协议,通讯灵活;

 可配置的开关量、模拟量模块,集成简单;

 AC500的模块和端子分离,预接线方便;

 FameView强大而简单的数据库连接功能,存储各种数据到各种数据库中;

 根据需求能提供各种打印报表;

 能通过宽带/ADSL/GPRS/CDMA/电话拨号向站提供实时数据和历史数据;

 提供站软件,能接收和管理100个分站的数据;

 FameView近三年已成功应用到900多套CEMS子站和多个站。


AC500 PLC的部分开关量通道可以通过软件设为输入或输出,这大大的方便了用户的使用和适应现场的变化。而模拟量模块上的每个通道都可以根据用户的需求接入:电流,电压和热电阻信号,可以在同一个模块上接入各种不同的分析信号,简化了系统。

近年来,由于CEMS系统的要求越来越高,使得“组态软件+PLC”的组合模式在CEMS系统中的应用越来越广泛,并已逐步取代以前惯用的“上位软件+单片机+板卡”,成为CEMS系统中实现数据采集及控制的。

FameView组态软件和ABB公司的AC500系列PLC共同开发的CEMS系统,以其稳定的通讯能力和强大的数据处理能力,逐渐为业界所认可。

AC500系列PLC是ABB公司的产品,其中烟气上用了一款CPU是PM571,它的特点是:

1、24VDC供电,64K程序内存,1K字节指令执行时间0.3mS;

2、用户程序密码保护,支持多任务、浮点运算;

3、集成RS232/RS485、以太网RJ45;

4、CPU面板上能显示状态、诊断信息;

5、串口直接支持MODBUS 主、从协议

6、支持多种语言编程FBD、IL、LD、ST、SFC、CFC

7、可以用SD卡扩展128M的数据空间


在没有上位监控子站的系统中,AC500 PLC的串口除了可以作为Modbus通讯外,还可以通过Modem 直接和GPRS 等系统相连,并可以在就地用SD卡储存高达128M 的历史数据。


系统概述:

烟气污染物排放总量数据监测系统(CEMS),根据使用需要的不同,可以选择不同的测量参数(如:SO2、NOX、CO、CO2、O2、颗粒物、温度、压力、流速、湿度等)。这些参数数值一般由各类分析仪采集烟道中气体进行测量分析后传送到上位机,由上位机对其进行处理、运算、存储、报表等。同时,上位机还要作为服务器与环保行政主管部门进行远程通讯,向其提供数据。

污染源在线监控系统由数据处理软件和传输系统两大部分构成。系统拓朴结构如下图:



硬件设计:

CEMS测量烟道中的固体烟尘。现国内一般采用直接抽取法采样,将湿烟气经过过滤送氧化锆分析仪,测出湿氧含量。再把烟气经干燥器送入烟气分析仪,分析CO、SO2及氮氧化合物、干氧的含量。烟气的湿度可采用干湿润氧法计算得出,直接测量得出。压力一般由压力测试仪测得,并通过压力计算出烟气流速和流量。

软件设计

CEMS一般由PLC控制、上位机程序、远程通讯三部分组成。

•  PLC控制程序

由于CEMS中需要控制的是按一定时间序列开闭的管路,故PLC程序主要用于接收各种操作命令,控制各种阀、泵、指示灯的开闭及互锁,并定时或实时完成对采样通道的吹扫、测量仪器的标定。并对采集到的各模拟量进行数字滤波。

•  上位机程序

主要用于显示各个分析设备的工作情况,汇总烟气的历史数据,进行打印归档、趋势显示及报警信息处理。

上位机通过FameView组态软件与AC500 PLC通过MODBUS-RTU或MODBUS-TCPIP协议进行通讯。实时的从仪器上数据,将采集到的数据分析处理后保存到数据库中,并实现实时数据和历史数据查看和曲线查询,对数据库中的数据进行查询、报表打印或导出到 EXCEL 表格中。

实时数据监测:能实时的从与计算机连接的仪器上采集数据,并进行分析显示,可实时显示各种检测数据及系统运行时各部分的运行状态。系统主要完成如下功能:

系统设置:设置系统参数。

用户管理:实现系统的权限管理。

设备控制:能在计算机上对仪器进行控制,实现实时反吹和标定。

数据处理:将采集到的数据分析处理后保存到数据库中。

历史数据查询:可以按时间段来查询历史测量数据。

数据报表打印:可以打印小时平均值日报表、日平均值月报表及月平均值年报表。

•  远程通讯

远程通讯主要是上位机与环保站之间通过GPRS/CDMA/电话拨号/局域网进行数据通讯。CEMS中的上位机作为服务器,环保站作为客户机,采用C/S模式数据。具体来说就是环保站站发送查询请求,CEMS上位机返回相应时间段内的烟放数据。


经过在现场的实际运行,整个系统稳定。很好的完成了用户的工艺要求。


一、系统概述:
本系统主要是针对煤粉蒸汽或热水锅炉的控制。具有锅炉水位自动控制、燃烧经济性自动控制、炉膛负压自动控制、炉压波动补偿点火系统、蒸汽压、缺水保护等自动联锁保护功能。
本系统的控制方式分自动/手动/就地,三种方式可转换。锅炉正常运行生产时,使用自动方式,设备按工艺要求的顺序和流程由控制台自动控制、联锁保护;手动时,可在控制台操作各设备,有互锁和联动关系;就地时,在现场操作可启停设备,闭锁,保护现场操作人员的。


二、系统的实现:
①、初始化
检测各电气设备已通电,并且有动作;然后依次检测锅炉水位是否下限,蒸汽压力是否限,煤粉罐料位是否下限,中间料仓是否下限,如上述条件有任意一条为“是”均不能。
②、点火
关闭一、二次风电动调节阀,然后依次启动引风机、二次风机、全开二次风阀门,如任意动作未执行,则停炉并报警;如设备运行正常,则延时吹扫1分钟,然后调节二次风电动阀至设定位置,启动点,此时监测火焰是否建立,延时30秒,启动一次风机,调节一次风阀门至设定位置,启动搅拌器,启动给料螺旋并调节至设定转速,此时监测火焰是否建立,如火焰建立,则油与煤粉混燃10分钟后关闭点,火焰检测器继续监测火焰是否建立,如上述任意条件为“否”或任意动作未执行,则执行停炉控制程序。
③、运行
实时监测蒸汽压力,如过设定压力,则执行停炉控制程序;如未出设定压力,则执行经济燃烧控制程序。
④、停炉
检测点是否关闭,然后依次停止搅拌器、供料螺旋、一次风机;将二次风阀门调至全开位置,延时吹扫1分钟后;检测炉膛温度直至设定温度后停止引风机、停二次风机,关闭一、二次风阀门。

锅炉紧急或异常停车:


2、锅筒水位自动控制
根据本系统锅炉容量,采用单冲量控制方式。


3、燃烧经济性自动控制
根据5分钟内对烟气中氧气含量检测的平均值,改变送风量的大小,进而达到调节锅炉经济、燃烧的目的。

燃烧经济性自动控制条件:
①、在一定的采样周期内,实际含氧量浓度变化率大于或小于工艺设定的含氧量目标值时,差值经PID运算后控制二次风阀执行器,执行器调整二次送风量,并在一定的时间内保持,以满足燃烧的经济性。
②、在一定的采样周期内,实际含氧浓度变化率在工艺含氧量目标值范围内时,系统不做运算,二次送风量保持原状态。
4、炉膛负压自动控制
考虑到燃烧过程的波动性,控制系统应设有死区不响应功能。但是当炉压持续出现波动时,起动给油泵,同时点火器动作并延时,当炉压趋于稳定,关闭点火器同时停给油泵。启动给油泵、点火器点火并在给定的延迟时间内炉压还不能趋于稳定状态,则停止锅炉的运行。

5、中间粉仓料位自动控制
根据粉仓重量控制煤粉罐旋转阀的启停,当中间粉仓重量到达下,启动旋转阀;当中间粉仓重量到达上,停止旋转阀。

6、煤粉锅炉系统连锁保护
①、水位保护
锅炉水位报警共设定水位高、水位高、水位低、水位低等4种水位报警信号。
锅炉水位保护共社水位高、水位低等两种保护。当水位高或低时停止锅炉运行。
②、蒸汽压力高保护。当蒸汽压力过设定的压力保护值时停止锅炉运行。
③、锅炉炉膛熄火保护。即锅炉在正常的运行状态下的非正常的熄火保护。
④、紧急停车保护。在现场设备调试及设备试运行期间,如果设备出现故障而设置的手动紧急保护功能
三、控制系统硬件配置:
根据工艺要求及操作使用方便,本系统将配置:低压电气柜一台和操作箱一台。
(1) 主要的低压电气元件选用富士。
(2) 数据集中采集及控制采用日立EH-150系列。
(3) 变频器采用日立L300P系列。
(4) 集中监控采用工控机。
(5) 温度传感器选用符合IEC标准的热电阻和热电偶。

(6) 锅筒水位采用配备就地式水位表和的压差变送器。
(7) 蒸汽压力采用蓝宝石高温压力传感器。
(8) 蒸汽流量和给水流量采用一体化带温补的涡街计。
四、 上位机控制系统:

五、 结束语:
该煤粉锅炉控制系统性高、自动化程度高、使用方便、操作简单、功能丰富、控制灵活,满足用户的控制要求,运行正常稳定。


202202221739073176584.jpg20220222173907301904.jpg202202221739072455394.jpg


随着科学技术的发展,实现中低压配电网的自动化已成为电力系统发展的趋势。中低压配电网作为输配电系统的后一个环节,其实现自动化的程度与供用电的质量和性密切相关。为此,本文特对中低压配电网自动化的必要性及其实现方案作简单的讨论。

    1 实现中低压配电网自动化的必要性

    1.1 实现中低压配电网自动化是提高人们生活质量、发展国民经济的要求

    在现代社会中,供电质量的好坏,不仅反映一个国家或地区人们的生活质量、水平和投资环境的好坏,是影响经济发展的重要因素,它决定着工业发展的方向、规模。实际上,信息时代的到来,要求不间断供电的计算机设备越来越多,给供电提出了高的要求。停电或限电会导致减产,而忽然的停电则会危害工厂的重要设备。只有实现中低压配电网的自动化,才可能大限度地提高供电质量,满足人们日常生活工作与生产的需要。

    1.2 实现中低压配电网自动化是电力企业自身发展的需要

    实现中低压配电网自动化,可提高供电的质量和性。实现中低压配电网自动化,可减少故障次数,缩小事故范围,缩短事故时间,为恢复供电、快速分析、诊断、事故原因提供有效的依据。

    实现中低压配电网自动化,可以提高整个电力系统的经济效益:减轻维护人员的劳动强度;减少操作人员;增强电力系统的免维护性;有利于提高设备的和健康水平,延长使用寿命。

    实现中低压配电网自动化,可以提高整个电网的管理水平。主要包括:为电力系统计算机管理自动、准确、及时地提供为详尽、丰富的数据和信地方、任何用户的计划停电、供电;可以方便、直观地监控全局内各个用户的用电、供电情况,实现总体控制。

    1.3 中低压配电网是我国配电网自动化的薄弱环节

    配电网自动化建设,在我国尽管起步较晚,但也已经进行了近20年的研究和实践,初步成效。但是研究与实践成果大多数都是在高压配电网(35 k V以上)层次上进行的,而在中低压配电网(配电房这一层次)的自动化问题上,还是一片空白,既没有总体的规划,也没有一个统一的技术原则。不仅如此,目前的纵向监控一般只限于变电站的出线以前,对于从变电站馈线到终端用户等属于用电管理范畴的监控,除少数大用户的负荷控制外,尚无其它监控手段。

    2 中低压配电网自动化方案

    2.1 电力系统自动化现有方案的比较

    中低压配电网(主要指开关站、开关房、开闭所)的自动化和变电站的自动化具有一定的相似性。因此,分析一下变电站自动化的实现方法,对于正确确定中低压配电网自动化方案具有重要意义。

    变电站自动化系统由5个部分组成:主站、远方终端单元(re mote terminal units,RTU)、线路传感器、远方控制SF6或真空开关、通信电缆。其中,RTU装置位于变电站现场,可以自动采集各种开关状态量(遥信)、模拟量(遥测),并经通道传递到监控的主站系统;有的RTU还可以按监控人员的意图和指令执行特定的遥控操作,并将操作结果返送监控主站系统。

    从变电站RTU可以实现的功能来看,变电站的自动化包括3个方面的内容:遥信、遥测、遥控。除此之外,有的系统还可以根据遥测的结果实现电能量总加功能。与此相应,变电站自动化系统可以分为两类:一类只实现了遥信、遥测的功能,即传统的SA系统;而新的SA 系统则属于另外一类,它应该可以实现所有“三遥”功能。这两类系统对应着电力系统自动化的不同阶段和水平。

    从变电站RTU实现遥测的方法来看,RTU存在两种实现方案:

    a)直流采样方案

    这种类型的RTU装置在采集模拟量之前,先利用变送器将交流转化成直流,然后再使用RTUA/D转换元件将直流量表示成数字量。其装置以模拟电路为主,辅以少量的数字电路。其特点在于需要变换器,的数字处理单元(CPU等),难以反映模拟量的瞬时变化,无法进行谐波分析,电能量总加功能的实现比较复杂困难。

    b)交流采样方案

    这种类型的RTU装置直接使用A/D转换元件对交流电量进行采集计算,变送器之类的转换设备,但需要快速的数字处理单元进行配合,以对采集到的数据进行分析、综合。它不仅可以反映电量的瞬时变化,而且可以进行谐波分析,计算频率,简单地实现电能量总加功能。它们多使用微型计算机(如8 X86等)配合多个单片机(如8051、8098等)、并加上大量的A/D转换电路,来实现开关量、模拟量的采集。

    当前在数字技术得到充分发展和应用的情况下,交流采样方案是配网自动化的一个合理选择。它以数字电路为主,辅以少量的模拟电路,功能强大,扩充容易,性较直流采样方案有较大提高,综合。

    2.2 中低压配网自动化的应用特点

    中低压配网自动化系统由主站、远方终端单元(RTU)、线路传感器、远方控制SF6 或真空开关、通信电缆等五个部分组成。中低压配电网自动化的应用有自己不同的特点:

    a)传统的变电站RTU在功能上偏重遥信、遥测,但中低压配电网的自动化对象(开关房、开闭所和配电房)数目繁多,开关操作频繁,注重遥信、遥控功能。

    b)中低压配电网的自动化对象遍布城市、农村等各种不同环境,被不同层次的用电管理人员(包括农村电工)所操作。要求其具有安装灵活、易操作、免维护、抗恶劣环境等特点。

    c)应用于中低压配电网的RTU,在功能上应具有模块化结构,在硬件上要越简单、越越好。是同一套简单硬件,只要简单进行一下设置,就可以满足不同场合、不同规模的要求。

    由此可见,有必要开发新型的、不同于传统结构的RTU,以适合中低压配电网自动化的特点和需要。
    2.3 中低压配电网自动化RTU的PLC实现

    可编程序控制器(programmable logic con-troller,PLC)技术经过几十年的发展,已经相当成熟。其品种齐全,功能繁多,已被广泛应用于工业控制的各个领域。用PLC来实现中低压配电网自动化的RTU功能,能够很好地满足RTU的特有的要求。在,有来自许多厂家的PLC产品。这些产品从简单到复杂,都自成系列,可以满足不同应用的特殊要求。大多数中低档次的PLC产品,都包含有离散点输入和输出(点数的多少可以依据应用情况增减)、模拟采样输入、时钟、通信等功能。利用这类PLC的现成功能,可以方便地实现中低压配电网自动化的 RTU功能。使用PLC的离散输入点来实现遥信、用PLC的离散输出点来实现遥控、用PLC的模拟采样输入来实现遥测、用PLC的通信功能来实现和主机的通信。完成这些功能,都额外的硬件,只需根据开关房的实际情况,对PLC进行简单编程即可。不仅如此,利用PLC的模拟输出功能,甚至还可以实现配电网的遥调。例如调节调压变压器的变比,调节静止无功补偿设备的电压、电流相角等。

    这样一种基于PLC的中低压配电网自动化的RTU实现方案,可以满足中低压配网自动化的特殊要求。它具有以下特点和优势:硬件结构简单,免维护;规模可大可小,只需将 PLC的扩展模块连接在一起,就可以实现遥控点、遥信点、遥测点的增加;抗恶劣环境;高性;编程实现各种功能,免硬件调试;廉。

    PLC方案在具体设计时,包括以下几个步骤:

    a)操作点数。了解配电网的基本情况及自动化的具体要求,确定系统需要进行遥控、遥信、遥测、甚至遥调的设备,统计各处配电房需要这4种信号的具体点数。

    b)确定通信方案。根据配电网的规模及分布情况,确定总体设计方案,主要是通信方案的设计和选择。

    c)PLC选型。根据各处各种操作的点数以及所确定的通信方案,选择恰当型号的PLC 来实现RTU功能。

    由于RTU需接受监控的指令,并上传配电网、开关柜的信息,所以通信功能是选择PLC的主要考虑因素。

    由于各开关房、开关柜的操作类型、操作点数往往相差很大,因此,PLC是否具有模块化结构和组态能力,是否能够灵活、经济地组成输入点、输出点、测量点(A/D)、调节点(D/A)的规模可变系统,是选择PLC型号的另一个主要考虑因素。

    目前,很多厂家的产品,都可以满足通信以及模块化的要求。例如,SIEMENS的 S7-214以上系列,三菱的A1S系列,松下的较别的PLC系列等。根据具体情况,在一个配网自动化工程中,整个配电网系统可以选用同一个厂家的PLC,也可以根据配电房的具体情况,选用不同厂家的PLC,以利用各厂家PLC的优势和特色。

    3 RTU功能的PLC实现

    RTU功能的PLC实现包括硬件实现和软件实现两个方面。

    3.1 硬件实现方面

    在硬件方面,主要存在PLC的电源如何提供,PLC如何实现长距离的通信,遥控、遥信、遥测、遥调如何具体实现等问题。

    由于PLC都有配套的电源模块,因此在设计RTU时,主要应考虑电网断电后PLC 的供电问题,通常以配置充电电池的方式解决。

    一般PLC的通信模块只具有短距离的通信能力,虽然有些公司为PLC提供配套的组网模块,但通信距离也限制在若干千米以内。而配电网的特点是点多、面广,因此,借助其它方式以延长PLC的通信距离。方法很多,有电话调制解调器方案、专线调制解调器方案、无线方案、寻呼台服务方案、光纤方案等。在同一个配电自动化工程中,可以根据具体情况,采用单一方法,也可以采用多种方法组合。

    在RTU的四遥操作方面,由于PLC的电平以及功率容量同操作设备不可能正好一致,加上有电气隔离的要求,因此,增加辅助的电位转换、功率放大、电气隔离等模块和器件。

    对于遥控,当PLC收到开关指令时,输出点到内部电源的通路被接通或关断,如果直接用输出点的输出电流去操作开关设备,则功率根本不够。因此,可把PLC的输出点作为一个小功率继电器的激磁电源,以控制该继电器的常开或常闭触点的开合,再由该继电器去控制配电网的配电开关的操作电源,使配电开关动作,线路或配电设备被投切。

    对于遥信,则是将被测开关的辅助触点两端引线接到PLC的输入点和地,当配电开关动作时,辅助触点相应开闭,PLC的相应输入点与地之间被断开或短接,从而在PLC内部获得一个高电平或低电平。

    对于遥测,经互感器出来的信号,落在PLC的A/D转换模块的测量范围之内,才能接入到相应模块的输入端。此外,在选择PLC的A/D模块时,还要考虑采样周期问题。周期太长,将无法获得数值。

    PLC可以实现遥调功能,但因电网中应用很少,这里不予详述。

    3.2 软件实现方面

    在PLC软件方面,由于PLC以循环扫描和中断两种方式来执行程序,因此为了完成所有RTU功能,PLC软件应包括:循环扫描执行的主程序;通信程序(接收和发送报文);收到报文分析程序;上发报文产生程序;输入点电平中断扫描程序;操作执行程序(遥控、遥信、遥测等)。

    在上述程序模块的编制中,应考虑以下问题:

    a)PLC的主CPU的速度是否足够快?如何编制出执行时间短的程序?

    b)PLC和监控的通信要利用一套复杂的通信规约,PLC的程序容量能否容下所有程序?如何编制出短小精干的程序?

    c)PLC是通过循环扫描输入点的内存映像以输入点的输入状态的,在配电开关动作时,相应辅助触点往往存在短暂的抖动。抖动的机械频率虽然很高,但相对于PLC的程序扫描执行的频率却是很低的,因此这种抖动会在PLC的内存映像中反映为多次不相干的开关动作,如何在程序上这种开关动作的象?

    实践证明,采用恰当的编程技巧,以上各种问题都可以得到圆满解决。

    4 结论

    实现我国中低压配电网自动化,是提高供电质量、用电性和提高电力企业自身水平的需要。利用PLC来实现中低压配电网的RTU功能,具有简单、、易用等特点,是一个比较有应用前景的实现方案。


     本文以三菱PLC为例介绍了模拟量控制,并结合变频调速基本原理及特点,阐述了如何通过PLC模拟量控制来实现对变频器的速度调节。 

    1、引言

    近年来可编程序控制器(PLC)以及变频调速技术日益发展,性能价格比日益提高,并在机械、冶金、制造、化工、纺织等领域得以普及和应用。为满足温度、速度、流量等工艺变量的控制要求,常常要对这些模拟量进行控制,PLC模拟量控制模块的使用也日益广泛。

    通常情况下,变频器的速度调节可采用键盘调节或电位器调节方式,但是,在速度要求根据工艺而变化时,仅利用上述两种方式则不能满足生产控制要求,因此,我们须利用PLC灵活编程及控制的功能,实现速度因工艺而变化,从而保证产品的合格率。

    2、变频器简介

    交流电动机的转速n公式为:

    

    式中:f—频率;

    p—对数;

    s—转差率(0~3%或0~6%)。

    由转速公式可见,改变三相异步电动机电源频率,可以改变旋转磁通势的同步转速,达到调速的目的。额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。因此变频调速方式,比改变对数p和转差率s两个参数简单得多。同时还具有很好的性价比、操作方便、机械特性较硬、静差率小、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。

    3、PLC模拟量控制在变频调速的应用

    PLC包括许多的特殊功能模块,而模拟量模块则是其中的一种。它包括数模转换模块和模数转换模块。例如数模转换模块可将一定的数字量转换成对应的模拟量(电压或电流)输出,这种转换具有较高的精度。

    在设计一个控制系统或对一个已有的设备进行改造时,常常会需要对电机的速度进行控制,利用PLC的模拟量控制模块的输出来对变频器实现速度控制则是一个经济而又简便的方法。

    下面以三菱FX2N系列PLC为例进行说明。同时选择FX2N-2DA模拟量模块作为对变频器进行速度控制的控制信号输出。如图1所示,控制系统采用具有两路模拟量输出的模块对两个变频器进行速度控制


    在程序中:

    1)当M67、M68常闭触点以及Y002常开触点闭合时,通道1数字到模拟的转换开始执行;当M62、M557常闭触点以及Y003常开触点闭合时,通道2数字到模拟的转换开始执行。

    2)通道1

    将保存个数字速度信号的D998赋予辅助继电器(M400~M415);

    将数字速度信号的低8位(M400~M407)赋予BFM的16#;

    使BFM#17的b2=1;

    使BFM#17的b2由1→0,保持低8位数据;

    将数字速度信号的高4位赋予BFM的16#;

    使BFM#17的b1=1;

    使BFM#17的b1由1→0,执行通道1的速度信号D/A转换。

    3)通道2

    将保存二个数字速度信号的D988赋予辅助继电器(M300~M315);

    将数字速度信号的低8位(M300~M307)赋予BFM的16#;

    使BFM#17的b2=1;

    使BFM#17的b2由1→0,保持低8位数据;

    将数字速度信号的高4位赋予BFM的16#;

    使BFM#17的b0=1;

    使BFM#17的b0由1→0,执行通道2的速度信号D/A转换。

    4)程序中的K0为该数模转换模块的位置地址,在本控制系统中只用了一块模块,因此为K0,如由于工艺要求控制系统还要再增加一块模块,则新增模块在编程时只要将K0改为K1即可。

    (5)变频器主要参数的设置

    根据控制要求,设置变频器的运行模式为外部运行模式,运行频率为外部运行频率设定方式,Pr.79=2;模拟频率输入电压信号为0~5V,所以,Pr.73=0;其余参数根据电机功率、额定电压、负载等情况进行设定。

    3.2注意事项

    (1)FX2N-2DA采用电压输出时,应将IOUT与COM短路;

    (2)速度控制信号应选用屏蔽线,配线安装时应与动力线分开。

    4、结束语

    上述控制在实际使用过程中运行良好,很好的将PLC易于编程与变频器结合起来,当然不同的可编程序控制器的编程和硬件配置方法也不同,比如罗克韦尔PLC在增加D/A模块时,只要在编程环境下的硬件配置中添加该模块即可。总之,充分利用PLC模拟量输出功能可以控制变频器从而控制设备的速度,满足生产的需要。


软件设计 
      计时器:利用系统的特殊寄存器标志位SM0.5作为计时脉冲,接通一次(或断开一次)为1秒,用计数器累计时间,满60向前进位。 
      时间累计:实时的小时计是次的累计时间加本次的工作时间。H=h0+h1。 
      时间存储:用存储的方式存储时间数据到EEPROM存储器。 
      存储周期:存储周期长,EEPR 
       OM存储器使用的时间长,但计时精度低;存储,计时精度高,但EEPROM存储器使用的时间短。这是一个矛盾的统一,设计时要根据系统的实际情况确定合适的存储周期,一般设计为3-5分钟。进行一次存储的操作,扫描时间会增加15-20ms。 
      小时计编辑功能。考虑到CPU有可能损坏的原因,换CPU后小时计的数据会清零,所以,小时计要有编辑的功能才完善,当换CPU后,通过界面可以把以前的工作数据输入到系统并存储,在这项操作时,为了使编辑的数据能够成功存储到存储区,在数据编辑完后,让CPU再运行一个大于存储周期的时间。当然,为了使工作数据的严谨性,小时计的编辑一定要密码进入。 
      存储地址换。为了小时计的实时性和准确性,存储周期不能设计得太长,一般设计为3-5分钟。EEPROM存储器操作的次数为10万次,那么一个EEPROM存储器计时时间为100000×3/60=5000小时,一般机器的工作寿命是大于这个时间。解决这个问题的办法是在计时次数过100000次时,换存储地址。为了存储地址换的方便,小时计的寻址方式采用间接寻址。 
     存储次数存储。为了小时计存储地址换的需要,存储次数也要与小时计一样进行存储,并到100000次后换地址。 
    地址换的次数存储。为了小时计存储地址换的需要,地址换的次数也要与小时计一样进行存储,由于次数不多,所以,不要换地址。 


误差分析 
      小计时产生误差的原因有两方面,一个是计时误差,另一个是存储误差。 
      计时误差:本小时计的计时器是用系统特殊寄存器标志位SM0.5,它的状态变化周期是500ms,如果程序运行时捕捉不到状态的变化就产生误差。通过长期的监控实验,这个计时误差很小,1小时的误差不到1秒,可以忽略不计。 
      存储误差:机器在关机时,后一次存储还没来得及执行,产生存储误差。这个误差是一个负差,计时时间比实际的工作时间表小。每次关机的大误差是一个存储周期的时间3分钟。 
      总结 
      经过500台机器三年时间的现场施工运行,小时计工作稳定,没有出现任何故障。大的计时时间已达8000小时。 
      小时计计时范围宽,可达10万小时以上,可满足机器终身的计时要求。 
      时间数据存在EEPROM上,、。 
      小时计数据可以密码进入进行编辑,了CPU损坏的后顾之忧。 
      可以节省一个电磁机械式的小时计,节约了一定的生产成本。 
      的缺陷是存在一个存储误差,这个问题是可以通过程序的改进使误差减到小


http://zhangqueena.b2b168.com

产品推荐