产品描述
西门子模块6ES7214-1AD23-0XB8一级代理
1996年5月我厂扩建2号回转窑700t/d熟料生产线,生料均化库选用一座Φ15m×30m的混合室库,其充气控制的初步设计方案是:选用空气分配器。在建设过程中,通过实际考察,对PLC+电磁阀控制和空气分配器方案进行比较:
1)空气分配器控制充气的时间是固定的,生产中不能根据工况的具体条件进行改变,均化的效果很难保证。而采用电磁阀控制,电磁阀的动作时间能用PLC程序任意调节,并且根据不同的情况用程序可以实现多种控制方式,使生料均化的效果达到。
2)3台空气分配器的价格共计12.5万元,而20只电磁阀PLC的价格只有7.4万元。因此,1997年5月我厂决定采用PLC+电磁阀控制方案,并且修改设计、安装和调试全部由本厂自行承担。1997年12月生料均化控制系统投入运行一年多,控制设备运行正常,均化效果良好。
1 混合室库均化原理
混合室均化库主要包括:贮存库、混合室、库分配器、库内充气系统和库侧卸料装置。其中库内充气系统包括:环形区卸料充气槽、混合室搅拌充气槽和隧道区输送充气槽,生料送入库分配器,呈流态化均匀地分配到输送斜槽中,通过斜槽下料口进入贮存库形成料层。库底环形充气槽分成四个区,由一台罗茨风机供气,每个区包括三个充气单元。通过电磁阀控制单个充气单元的循环充气,分块切割料层,卸入混合室。混合室充气槽也分成四个区,由两台罗茨风机供气。通过电磁阀控制,以“一区强其余三区弱”的方式,轮换充气搅拌混合室内的生料,形成一定高度的流态化料层,后由隧道区上卸料口卸出。
2 PLC控制电气设计
2.1 硬件设计
为满足PLC控制与S7400PCS系统连接及设备控制要求,设置了S1自动/手动/机旁切换和S2中控/本控切换。当S1在自动位置时,S2可以选择中控计算机起/停操作或本控PLC控制柜起/停操作。当S1在手动位置时,可由PLC控制柜上的按钮来控制设备开、停。当S1在机旁位置时,可由机旁控制箱上的按钮来控制设备开、停。选用日本三菱公司的PLC:FX2-32MR扩展FX-16EYR,对4台罗茨风机和20只电磁阀进行控制。
2.2 软件设计
程序设计采用梯形图语言。根据控制原理,设计程序共分4个部分:
1)外环区顺序控制部分。
2)内环区“一强三弱”控制部分。
3)罗茨风机电机控制部分。
4)方式切换和报警检测部分。
为适应生产工况的变化,程序中外环区和内环区的时间可随时调整并有记忆功能。均化周期为55min。
3 PLC系统安装调试
电气设计完毕后即可进行控制系统的安装、调试。在控制柜中安装PLC,连接电源及输入、输出控制线路,输入控制程序进行调试。采用模拟调试,即切断输出电源,模拟各种输入信号并对所有输出信号进行测试,看程序各个部分的功能是否符合控制过程的要求,用以考察PLC控制程序的完整性和性。然后接通PLC输出电源,进行空载联动试车,后进行带负荷联动试车。
4 使用效果
1)PLC控制系统投入运行后,出库生料CaCO3的指标全部合格,均化系数可达5.4,系统运行良好。
2)每个充气单元的时间参数可根据工艺的要求随时调整,且有记忆功能,不受停电等因素的影响,修改参数方便。对各区充气单元充气顺序的不同组合,可实现多种均化方式。还可控制环形区的卸料速度,使混合室内的生料充分搅拌保持一定的流态化料层高度,保证了均化效果,满足了工艺的要求。
3)控制功能软件化简化了控制设备,节省了设备投资,同时增加了设备运行的性,减少了维修工作量,降低了维修费用。系统切换灵活,操作简单方便,岗位工人容易掌握。
1 引言
副井提升机信号及综合保护系统,是副井提升系统的重要组成部分。该系统工作性能的优劣,直接影响到提升机的运行。某煤矿副井提升机分为两套提升绞车,一套为双罐笼提升-双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业;另一套为带平衡锤的单罐笼提升—双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业。原信号系统中的井口闭锁信号及打点信号由于器件的老化等原因,动作迟缓或误动作。同时,可编程序控制器的高速发展和成熟应用,也为副井提升信号系统的改造提供了良好的前提条件。因此,从满足现场需要和操作方便灵活的角度出发,应用可编程控制器对其进行改造。
2 三菱FX_2N可编程控制器
三菱FX_2N系列可编程控制器是小型化,高速度,的产品,是FX系列中档次的小型程序装置。除输入出16~25点的立用途外,还可以适用于在多个基本组件间的连接,模拟控制,定位控制等特殊用途,是一套可以满足多样化广泛需要的PLC。它具有如下特点:
l 系统配置既固定又灵活
在基本单元上连接扩展单元或扩展模块,可进行16--256点的灵活输入输出组合。
l 备有可自由选择,丰富的品种
可选用16/32/48/64/80/128点的主机,可以采用小8点的扩展模块进行扩展。
可根据电源及输出形式,自由选择。
l 令人放心的
程序容量:内置800步RAM(可输入注释)可使用存储盒,大可扩充至16k步。
l 编程简单
本系统采用三菱的FX2N系列PLC实现上下井口的各种操作。上井口为FX_2N128MR,下井口为FX_2N80MR,车房为FX_2N48MR除紧停信号单外的各种操作及信号的处理均由可编程控制器完成
3 系统构成系统框图如图1所示,由车房显示系统、上井口信号操作系统和下井口信号操作系统等三部分组成。
3.1 车房显示系统
车房显示系统主要完成提升过程中的各种信号显示,包括提人、提物、急停、换层、检修等的汉字显示,上、快下、慢上、慢下、停车等的汉字和数字显示,三次提升信号所对应的数字记忆,提升钩数的累计显示等等。对上、快下、慢上、慢下、停车的五种信号同时具有与信号数字相对应的音响信号,如打点信号为4,则对应有四次音响信号。在紧急停车时具有上井口、下井口、车房的全线音响报警信号。
各种与绞车控制回路闭锁的信号集中到车房显示系统的控制柜中,再分别接入各控制回路,便于维护和检修。
1 引言
巨化股份公司合成氨厂主要生产碳氨、尿素、、等产品。在各产品工艺流程中,要求提供大量的制冷量,合成氨厂利用气氨、进行能量转换,通过冷冻冰机供应大量的制冷量。考虑到合成氨厂节能改造总体规划和冷冻量需求,结合冷冻岗位增产节能、新改造要求,针对原有的老工艺活塞式压缩机损耗高、打量小,运行效率低、电气设备过于繁琐等问题进行技改工作。原有的BTD-ICC型活塞式冰机采用继电器控制,存在控制回路接线复杂繁琐,损坏率高,机械传动部件多,操作麻烦,故障频繁,维修不便等问题。因此合成氨厂决定以制冷量100万大卡/小时,功耗450kW的螺杆冰机新原活塞式冰机。
在电气控制回路中采用PLC控制,由于PLC具有性高,抗干扰能力强;控制程序可变,具有很好的柔性;编程简单,使用方便;功能完善;扩充方便,组合灵活;体积小、重量轻等优点,本次设计运用在实践中了预计的效果。
2 工艺流程介绍
冷冻冰机的工作过程是依据物理转换:(压力×体积)/温度=常数(即P1V1/T1= P2V2/T2)使气氨转为的物理工艺过程。所以气氨的压力、温度是工艺控制的重要参数。
生产中将压力2kg/m3的气氨通过系统的气氨总管进入进口处的氨分离器,分离出雾滴,滤去雾滴的气氨流过系统管进入压缩机组的吸气过滤器,再通过过滤器中的过滤网滤去气氨夹带的小杂物(其中吸气过滤器设有温度计指示吸气温度,并由一截止阀连接吸气压力表来指示吸气压力)。干净的气氨进入螺杆压缩机进行压缩升压(即气压由0.3Mpa上升至1.57MPa),压缩后的气体至排气口排出。在压缩机运转中,油泵向压缩机内喷入大约占体积流量0.5~1%的润滑油,这部分润滑油起着冷却、密封、润滑的作用,此时要求油喷入的压力大于压缩机内气氨的压力,保证润滑油顺利喷入,这里的油气压差检测点为重要参数。这些润滑油随排入油分离器,进行油分离,油分离器中装有一阀,作用是当分离器内的压力过大,则通过阀放空。此后系统分为气路过程和油路过程。
从气路过程来看:经过油分离的以温度为60~70℃、1.35~1.40MPa的压力进入冷凝器冷凝成,进入收集器;从油路过程来看:在油分离器中分离出的油经过油冷却器,冷却后的油经过逆止阀(只能单方向流通)进入到油粗过滤器,滤去铁屑等大颗粒杂质后到喷油油泵进口,由油泵升压后,再经油精过滤器进一步过滤后回流到喷油总管进入压缩机。油泵并接了附线阀来调节油泵压力,油精过滤器接有压力表(正常时压力值应较小≤0.07MPa,压力值较大时说明过滤器中滤网被堵,需清理),其基本工艺流程框图如图1所示:
图1 基本工艺流程框图
由于压缩机主机前后轴瓦因长期运行发热,需加油进行冷却、润滑。为此,增设2台稀油站油泵从油箱吸油经滤油器、油冷却器向轴瓦喷油。一般压力足够时,由一台油泵供油,另一台作备用机;当油泵压力不够时,则启动两台泵同时供油,要求喷入轴瓦的油压一般为0.15MPa。
3 PLC控制
可编程序控制器是以微处理器为基础,综合了计算机技术与自动控制技术为一体的工业控制产品,是在硬接线逻辑控制技术和计算机技术的基础上发展起来的。通常把PLC认为是由等效的继电器、定时器、计数器等元件组成的装置。PLC不同于继电器控制要接许多真正的硬件继电器,它由一些“软继电器”组成,避免了因元件磨损维修,及一系列繁杂的接线工作。
(1) 主要特点
l 性高、抗干扰能力强;
l 控制程序可变,具有很好的柔性;
l 编程简单、使用方便;
l 功能完善;
l 扩充方便,组合灵活;
l 减少了控制系统设计及施工的工作量;
l 体积小、重量轻,是“机电一体化”特有的产品。
从电气仪表角度出发,采用的接口,可灵活利用PLC控制、现场总线控制系统(FCS)或集散系统(DCS)实现工艺参数的显示和控制。就本次改造规模、投资价格、工艺控制点而言,我们采用可编程控制器来实现电气指标显示和跳闸、报警。
(2) PLC选型
PLC选型主要是根据所需功能和容量进行选择,并考虑维护的方便性,备件的通用性,是否易于扩展,有无特殊功能要求等。通过比较,我们选用三菱微型可编程控制器的FXON系列。FXON系列是将众多功能凝聚在小型机壳内的微型可编程控制器。
与F1/F2系列相比,FXON系列安装面积只有F1/F2系列的41%,体积只有37%,并在控制器内备有模拟电位器与RUN/STOP开关等方便功能。通过扩展单元、扩展模块与基本的连接,可自由地选择使用输入输出点数。FXON系列继承了原有系列的固定搭配和灵活性。
(3) PLC控制系统的设计
根据工艺提出的条件及控制要求,具体设计思路如下:螺杆冰机有1台循环油泵,运行时,油压的高低通过副线阀来调节。2台稀油泵,油压正常时,1台运行,1台备用并可自动切换。油压低时,2台稀油泵同时启动;当油压差低时,延时6s跳车。另外,排气温度高,油温度高,北轴承温度高,南轴承温度高,排气压力高,油精滤器压差高,都将引起跳车。但在稀油站油压低,油气压差低,直流电源失压,循环油泵过载,1#、2#稀油泵过载时不跳车,而只发报警信号。要实现上述功能,中间继电器需要数十只,而且接线非常复杂,检修其困难,性差,而采用PLC后接线相当简单,而且性大大提高。其梯形图如图2所示。
1 引言
随着时代的发展,社会经济环境的整体提升,作为中国支柱产业之一的房地产业进入了跨越式发展的新阶段。在这个进程当中,作为建筑物附属设备的电梯也有不可估量的发展空间。目前在电梯中所应用的交流双速或可控硅调压调速控制方式里逻辑部件均由继电器、选层器完成。但随着时间的推移其触头就会磨损、插接口会严重氧化造成接触不良,缺少设备维护时甚至会出现困人、冲、乱层、蹾底等现象,所有这些都不利于电梯的维修和运行。但现有的电梯系统其机械部分性能良好,所以用变频器和PLC改造原有的控制系统即可以满足客户对电梯的服务质量的要求又可以节约资金避免不必要的重复投资。
2 电梯驱动系统介绍[1]
电梯的电力驱动系统对电梯的起动加速、稳速运行、制动减速起着决定性作用。驱动系统的优劣直接影响电梯的起动、制动、加减速度、平层精度、乘座的舒适感等指标。
由于目前电器电子元件的高速发展,使得变频变压技术逐步成熟,因此使用变频变压(VVVF)调速系统控制的电梯也投入使用。自1984年日本三菱电机公司台变频变压控制的电梯问世以来,这种系统驱动的电梯其额定速度已越来越高,而利用矢量变换控制的变频变压系统的电梯的额定速度可达14m/s。它们的调速性能都已达到了直流电动机驱动电梯的水平,并具有驱动控制设备体积小、重量轻、、节省能源等优点,成为当前新的电梯驱动系统。
3 控制系统介绍
控制系统主要由PLC、变频器及旋转编码器组成。可编程控制器(PLC)负责处理各种信号的逻辑关系,从而向变频器发出起、停等信号,同时变频器也将工作状态信号送给PLC,形成双向联络关系,它是系统的。变频器实现电机的调速。本文所选用的安川VS-616G5通用变频器可实现平稳操作和控制,使电动机达到理想输出。为满足电梯的要求,变频器又要通过与电动机同轴连接的旋转编码器和PG卡,完成速度及反馈,形成闭环系统。旋转编码器与电动机同轴连接,对电动机进行测速。旋转编码器输出A、B两相脉冲,旋转编码器根据A、B脉冲的相序,可判断电动机转动方向,并可根据A、B脉冲的频率测得电动机的转速。旋转编码器将此脉冲输出给PG卡, PG卡再将此反馈信号送给变频器内部,以便进行运算调节。所以旋转编码器和PG卡实现了闭环运行。
3.1 硬件系统组成
控制系统包括信号采集和PLC控制两部分
(1) VS-616G5变频器具有自学习功能,在使用矢量控制时,变频器能自动设定电动机铭牌范围的电动机参数。由此从变频器电动机到通用电动机都可以进行矢量控制运行,电动机可大限度地发挥作用。VS-616G5可使用PID控制功能实现简单的追踪控制,使用脉冲发生器等速度器时,不管负载大小变化都可使其速度保持一致,保了电梯零速制动抱闸的要求。
(2) 旋转编码器(PG)[2]的选择。
本文根据电梯平层精度要求选择PG。根据GB1058/T-1997电梯技术条件中的要求,运行速度为0.5m/s调速电梯的平层精度为±15mm以内。而平层精度与钢丝绳的松紧度,平层干簧管的位移,PLC的输入脉冲数有关。者为机械因素,而PLC的输入脉冲来自于脉冲监视输出。考虑PLC的自身频率,为保证输入脉冲的正确性,设定PG脉冲监视输出分频比F1-06功能码为16,既PG输出脉冲的1/16作为PLC的输入脉冲。为尽可能在PG参数上来保证平层的精度,以1mm误差计算。
齿轮箱减速比K为61:2,曳引机直径D为0.65m,采用半绕式2:1绕法,N=2,电机每转一圈电梯上下行程:
L=3.14×D×K×1000/N(mm) (1)
代入式(1)求得L=33.5mm,
PG参数=33.5×16=536p/rev。根据PG解析度的分类,选用解析度为600的旋转编码器。本文采用增量式圆光栅编码器, 它将测得的转速脉冲反馈给变频器,形成闭环控制。
图1中TA1为变频器的速度控制卡的脉冲输入部分,接收来自旋转编码器的脉冲;TA2为速度控制卡的脉冲输出部分,向PLC输出脉冲。
(3) 由于电梯是载人的起重设备,要求性系数特别大,为地满足乘客的舒适感,使用VS-616G5的带PG矢量控制,将测速脉冲反馈给变频器,提高控制精度;为配合脉冲记数和平层精度,选用三菱公司FX2N系列可编程控制器PLC,其X0-X1端子可采取高速脉冲,满足了系统记数,达到准确平层的要求。
由电力电网送来的380V动力电源变为可控的直流电,经变频器转变为可调的频率可变的变频变压三相正弦交流电,驱动电动机平稳运行。
当电梯检修时,是点动运行方式,PLC向变频器发出方向和检修运行信号,装置按预先编好的速度指令向电动机输送点动频率(10Hz)的交流电,作上、下慢速运行。
当电梯正常运行时,PLC向变频器发出快速命令和方向信号,系统按预先编入的频率指令沿理想曲线上升至满速(45Hz)运行。当需要减速时,PLC断开高速指令,输出按理想曲线下降至停止,在降程中,由于系统的惯性作用,将动能通过能量回馈装置消耗在制动电阻上,因此曳引电动机不会发热,可以不用强迫冷却风机。变频器内部带电流反馈和速度反馈。电梯的速度通过脉冲编码器反馈回变频器,当实际速度或给定速度时,变频器会自动调节输出电压(电流)和频率,使两者相等,从而达到理想的运行状态。
1 引言
物流控制系统集现代物流技术、仓储技术、自动化技术于一体,是CIMS中的重要环节,在国外已经得到较广泛的应用,该技术也正在逐渐地应用于我国许多行业中。在美国、德国和日本,逐渐成为机械制造业中大的分枝之一。整个系统的主要设备有:全自动堆垛机、四自由度机械手、立体仓库、辊道输送机。
2 硬件组成
本系统共采用3台辊道输送机,其传动采用交流变频调速系统(分别由西门子420系列交流变频器控制)。每条辊道的前后皆装有光电传感器,其作用是确认控制对象(以小实心物块代替)的所在位置。当有物体通过时,传感器所连接的继电器瞬间收到脉冲信号,从而确认其位置。皮带设计为既可正转也可逆转,速度也分为高速及低速两档,在辊道中间我们还接入了各种传感器作为自动识别信息元件,如条码读入器、铁/非铁识别传感器、颜色识别传感器等。在物体传送过程中,物体的质地直接在铁/非铁识别传感器上显示,颜色识别也是直接显示,而读入的条码将输入至计算机或PLC中,作为物体区别于其他物体的代码存入物流信息系统。在此设计中,采用VB编写一段程序以实现条码信息与PC相连接。其中变频器是整个辊道控制中重要的环节。
2.1 变频器的控制方式及参数设定
变频器MICROMASTER420 是用于控制三相交流电动机速度的变频器,具有很高的运行性和功能的多样性,其脉冲宽度调制的开关频率是可选的,因而降低了电动机运行的噪声,而完善的保护功能为变频器和电动机提供了良好的保护护特性。
性能特性:
l 磁通电流控制FCC改善了动态响应和电动机的控制特性
l 快速电流限制功能实现正常状态下的无跳闸运行
l 内置的直流注入制动
l 复合制动功能改善了制动特性 l 多点V/f 特性
l 加速/减速斜坡特性具有可编程的平滑功能
l 具有比例积分PI控制功能的闭环控制
其安装图如图1所示。
图1 系统连线图
(1) 用基本操作板BOP进行调试
利用基本操作面板BOP(如图2所示)可以改变变频器的各个参数,BOP具有7段显示的五位数字,可以显示参数的序号和数值报警和故障信息以及设定值和实际值参数的信息,不能用BOP存储。
图2 操作面板BOP外形
表1表示由BOP操作时的工厂缺省设置值。
表1 BOP操作时的工厂缺省设置值|
参数 说明 缺省值
P0100 运行方式欧洲/北美 50 Hz kW 60Hz hp
P0307 功率(电动机额定值) kW Hp
P0310 电动机的额定频率 50 Hz (60Hz)
P0311 电动机的额定速度 1395(1680)rpm [决定于变量]
P1082 大电动机频率 50 Hz(60Hz)
控制方式(P1300)
MICROMASTER420变频器的所有控制方式都是基于V/f控制特性下面各种不同的控制关系适用于各种不同的应用对象:
l 线性V/f 控制 P1300=0,可用于可变转矩和恒定转矩的负载例如带式运输机和正排量泵类。
l 带磁通电流控制FCC的线性V/f控制P1300=1,这一控制方式可用于提高电动机的效率和改善其动态响应特性。
l 抛物线平方V/f控制P1300=2,这一方式可用于可变转矩负载例如风机和水泵。
l 多点V/f控制P1300=3
(2) PLC控制系统
除了用面板控制外,也可以采用用PLC直接编程进行对辊道启停、正反转、及皮带转速的控制。用PLC控制辊道的接线图如图3所示。
图3 PLC与辊道的接线图
作者采用OMRON公司生产的C200HE型PLC,在这项设计中采用一个ID212直流输入单元模块,一个OD212晶体管输出单元模块和两个D/A模拟量输出模块。模拟输入信号源采用输入电压:0至10V,分别通过D/A模块的输出端接到变频器的3、4端子上控制辊道输送带的转速。具体软件编程见以下部分。
(3) 光电传感器
光电传感器是外部触发开关或者说是经过夹袭经过辐射来感应的开关,具体的说,光电传感器受激后由一透光元件变成不透光元件。它不但性能优越,而且非常容易安装,设定/调整, 操作和维护。它包括微小的电子元件,在简单的高质量监控应用场合, 能够通过它的模拟输出很快地刷新数据提交给PLC处理。当有物体通过时,利用光的反射性质产生信号通过控制柜送到PLC的输入模块,通过上位机编程来控制货物的运行。
3 软件部分
3.1 货物进出的控制流程
介绍一下要完成的进出货物控制的流程:当辊道1上的进货侧光电开关有信号的时候,自动开启辊道电源,选择自动手动开关,启动辊道1运行(选择正/反转,选择高/低速)。货物经过条码扫描传感器(选择辊道2时经过金属/非金属识别传感器和颜色识别器)时,将条码值(或金属/非金属识别信号,颜色识别信号)读入PLC,通过DP网络分别送到机械手控制﹑堆垛机控制PLC中,机械手和堆垛机根据条码信号(或金属/非金属识别信号,颜色识别信号)运行,完成货物的入库识别(或金属/非金属识别信号,颜色识别信号)定位操作。
下面以一个辊道为例介绍一下软件编程,表2是辊道1输送机部分高速运转情况下的I/O(输入/输出)表,其它辊道以及低速运转的控制与之相同。
1 引言
我国拥有300万平方公里的海域、近二万多公里长的海岸线以及众多岛屿,是一个海洋大国。沿海各省不仅是我国经济发达地区,而且在近海蕴藏着丰富的石油和气资源,对通讯的需求日益增加;另外,原来铺设的海底通信电缆,由于电缆通信容量小,抗干扰性差,老化现象严重,在大多数情况下使用海底光缆才能解决岛屿的通信问题。早在1986年,我单位就生产出国内条海底光缆。此后,海缆的结构不断变化,设备制造工艺也在不断的新。我单位研制的海底光缆生产线也采用了不少国内外技术,其中PC和西门子S7系列PLC在海底光缆护套生产线电气主控系统上的应用就是一个主要方面。
2 海底光缆护套生产线
海底光缆护套生产线主要用途是海底光缆用光纤松套不锈钢管护套的大长度生产,该生产线主要有Φ2500地轨龙门行走式主动放线架、主动放线张力控制装置、SJ30卧式挤出机(挤热熔胶)、SJ90挤出机、2m移动冷水冷却水槽及水箱、8m热水冷却水槽及水箱、12m温水冷却水槽及水箱、30m冷水冷却水槽、吹干装置、履带式牵引机、火花试验机、测径仪、收线张力同步器、Φ3150地轨龙门行走式收排线架和相应的电气控制系统等组成(如图1所示)。整条生产线的长度为83m。
3 生产线电气控制系统结构
海底光缆护套生产线电气控制系统是一个较大的控制系统,整个系统主要控制对象为:地轨龙门的放线,SJ30的加热和护套挤出,SJ90的加热和外护套挤出,牵引同步,地轨龙门的收排线,水槽温度的控制,张力的控制,外径的控制等。系统控制点数的分类情况与统计见表1。
由于控制点数多,生产线较长,加之采用占地面积较小、承重能力较高的地轨龙门行走式主动收放线架,如果采用单PLC控制系统,不仅系统复杂,不适应于生产线的易安装、易维护和低故障率的要求,而且性不能保证。我们经过综合分析,决定采用了分布式的PROFIBUS-DP现场总线网。
PROFIBUS是近年来上为流行的现场总线,也是目前率快的一种现场总线(传输率可达12M波特),它以其特的技术特点、严格的认证规范、开放的标准、众多厂商的支持,已成为重要的现场总线标准,在很多领域内有广泛地应用。正是基于PROFIBUS现场总线技术上的成熟和开放性,以及在实际应用后的经济效果,因此我们在海底光缆护套生产线控制系统中选用了MPI+DP的总线控制方式。
如图2所示,整个控制系统由1台上位机、1台Profibus-DP主站和2台Profibus-DP从站及其他控制设备组成。我们之所以在生产线中选择使用西门子公司的S7系列PLC,是因为它具有高速、多功能、系统化、网络化、结构简单、安装方便、系统组织灵活、性高、维护方便等特点。PLC的每一个I/O出现故障时,只需要调换有故障的模块,而不需长时间的停产进行设备维修,特别适合于我们当前竞争日益激烈的光缆市场。网络化和通讯强化通讯能力也是该PLC的一个重要特点。
产品推荐