6ES7221-1BH22-0XA8全年质保
  • 6ES7221-1BH22-0XA8全年质保
  • 6ES7221-1BH22-0XA8全年质保
  • 6ES7221-1BH22-0XA8全年质保

产品描述

产品规格模块式包装说明全新

6ES7221-1BH22-0XA8全年质保


对于奥越信PLC扩展模块数字量模拟量的应该用已经十分广泛,其模块功能也十分完善,下面主要对其模块进行详细介绍。

1、  奥越信PLC对模拟量的处理:

在工业控制中,某些输入量(例如压力、温度、流量、转数等)是模拟量,某些执行机构(例如电动调节阀和变频器等)要求奥越信PLC输出模拟量信号,而PLC的CPU大部分点只能处理数字量。模拟量被传感器和变送器转换为标准量程的电流或电压,例如4~20MA,1~5V,0~10V,PLC用A/D转换器将他们转换成数字量。带正负号的电流或电压在A/D转换后用二进制补码标识。

D/A转换器将PLC中的数字量转换为模拟量电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是实现A/D转换(模拟量输入)和(D/A)转换(模拟量输出)。奥越信模块与S7-200/300兼容的模拟量扩转模块很多,例如:OYES 221数字量输入模块;OYES 222数字量输出模块;OYES 223数字量输入输出模块;OYES 23X系列模拟量输入模块;OYES 23X系列模拟量输出模块;OYES 231温度控制模块;OYES 277 PROFIBUS-DP扩展从站通信模块等。A/D转换器和D/A转换器的二进制位数反映了它们的分辨率,位数多,分辨率越高,模拟量输入/出模块的转换时间越长。

2、  奥越信PLC将模拟量输入的输出值转换为实际的物理量:

转换时应考虑变送器的输入/输出量程和模拟量输入模块的量程,找出被测物理量与D转换后的数字值之间的比例关系。(例题如下)

例题:某发电机的电压互感器的电压比为10KV/100KV(线电压),电流互感器的电流比为1000A/,PLC控制功率变送器的额定输入电压和额定输入电流分别为AC100V和,额定输出电压为DC±5V奥越信模块输入信号转换为数字-3200~+3200。设转换后得到的数字为N,试求以KW为单位的有功功率值?

解:设计功率变送器时已考虑功率因数对功率计算的影响,因此在推导转换公式时,可以按功率因数1来处理。根据互感器额定值计算的一次回路的有功功率值为


本文主要分析了PLC数字量输入模块(DI模块)和传感器仪表的几种常见的接口电路形式,针对DI模块内部输入电路和传感器输出接口电部的不同结构,给出了其相互连接时的接线方法,确保在以后的工程设计中仪表选型和现场施工接线的正确性。
    1 引言
    在工程设计和现场施工中,常会遇到各种各样的仪表接线的问题,只有理解了仪表传感器的内部接线方式,以及PLC内部电路结构,才能正确的选型,保证所选仪表与厂家的PLC的正确接线。因此,就对PLC输入输出模块内部的输入输出电路和常用仪表输出接口有一个比较清楚系统的了解。
    为了防止外界线路产生的干扰引起PLC的非正常工作,甚至对PLC内部元器件造成损坏,PLC数字量输入模块(简称DI模块)的输入接口电路常采用光电耦合元件来隔离输入信号与内部电路之间的联系。输入端的信号驱动光电耦合器内部发光二管,发光二管发光,光敏三管导通,即可将外部输入信号地传输至处理器。
各厂商PLC DI模块公共端的接口电路,有光电耦合器正共点与负共点之分,而各种仪器仪表的输出电路,有干接点、有源输出、高电平和低电平输出之分,因此,我们在选配外部仪表传感器时,需要对所选PLC DI模块的输出电路,以及传感器仪表输出电路的结构进行区分和了解,才能正确的选型,以保证后期现场施工时与PLC厂家DI模块的正确接线。
    2  PLC  DI模块按输入类型分类
    PLC DI模块的输入接口电路,按外接电源类别,可分为直流和交流输入电路;按输入公共端电流的流向分,可分为源输入和漏输入电路;按光耦发光二管公共端的连接方式可分为共阳和共阴输入电路。
    3 按外接电源的类型分类
    3.1  直流输入电路


    图1为直流输入电路(只画出了一路输入电路),直流输入电路的输入电压一般为DC24V。直流输入电路要求外部输入信号为无源的干接点(直流电源由PLC柜内部提供)或直流有源的无触点开关接点,当外部输入接点信号闭合时,输入端与直流电源正接通,电流通过电阻R1,光电耦合器内部LED,VD1(接口指示)到COM端形成回路;光敏三管饱和导通,该导通信号传送至处理器,从而CPU 认为该路有信号输入。当外部输入元件与直流电源正断开时,光耦中的发光二管熄灭,光敏三管截止,CPU 认为该路没有信号输入。直流电源可以由PLC柜内部提供,也可以是外接直流电源。(//www./版权所有)
    3.2  交流输入电路


    如图2为交流输入电路,交流输入端的输入电压一般为120V 或230V。电路要求外部输入信号的接点为无源干接点信号或交流有源的无触点开关接点信号。它与直流输入电路的区别在于:光电耦合器前增加了一级降压电路和整流桥电路。交流电流经电阻R的限流和电容C的滤波(滤去电源中的直流部分),再经过桥式整流,变成降压后的直流电流,后续的电路原理与直流输入电路一致。从图中可以看出,由于交流输入电路中增加了限流、隔离和整流三个环节,输入信号的延迟时间要比直流输入电路长,这是其不足之处。但由于其输入端是高电压,其输入信号的性比直流输入电路高。交流输入电路一般多用于油雾、粉尘等恶劣环境中,对响应性要求不高的场合,而直流输入方式用于环境较好,电磁干扰不严重,对响应时间要求较高的场合。
    4 按流入公共端电流的流向分类
    PLC DI模块内部将所有输入电路(光电耦合器)的一端连接到公共端(COM或M),各输入电路的另一端接到其对应的输入端,也称此结构为单端共点输入。这种做法可以减少输入端子。
    电流从DI模块的输入端流出,流入电源负,即为拉电流(Sink Current)或漏型输入;电流由电源正流入公共端,电源正与公共端相连,即共阳;传感器为低电平有效。
    电流由电源正流入DI模块输入端,即为灌电流(Source Current)或灌型输入;电流由公共端流入电源负,电源负与公共端相连,即共阴;传感器为高电平有效。
    4.1  漏型拉电流输入电路
    漏型拉电流输入电路如图3所示,此时,电流从输入端流出,流入直流电源的负,由直流电源的正流入PLC公共端(COM端或M端)。


    4.2  源型灌电流输入电路
    源型输入电路如图1所示,此时,电流的流向正好和漏型的电路相反。电流从直流电源正流入DI模块的输入端,并由公共端流入直流电源的负。
    4.3 切换型输入电路
    为了适应各地区的使用习惯,有些厂家PLC DI模块的内部公共端子是采用S/S端子,此端子可以与电源的24V+(正)或24V-(负)相连,结合外部仪表接线的变化,使DI模块的输入电路既可以是漏型输入电路,也可以是源型输入电路。较采用公共端(COM端或M端)的DI模块灵活。S/S端子的发展是为了适用日系与欧系PLC混合使用的工控场合,起到通用的作用,S/S端子也称之 SINK/SRCE可切换型。其电路形式如图4所示。作为源输入时,公共端接电源的负;作为漏输入时,公共端接电源的正。这样,可以根据现场的需要来接线,给接线工作带来大的灵活。 通过选择可以将基本单元的所有输入设置为漏型输入或是源型输入,但不能混合使用。


    漏型拉电流输入电路、源型灌电流输入电路以及切换型输入电路,均为直流输入电路。
    5 传感器开关量信号的内部电路及其与PLC输入电路的连接
    在工程设计过程中,常会遇到各种各样的输出为开关量信号的仪表,如:压力开关、流量开关、物位开关、温度开关、阀门状态反馈、电机的运行状态、故障状态等。这些传感器的输出电路的样式多种多样。因此,需要对它们充分了解,才能保证与所选的PLC的DI模块进行匹配接线。
    5.1无源干接点
    阀门等的限位开关、行程开关、电机远程/就地按钮开关、拉线开关、跑偏开关、电机运行状态的继电器触点等,属于无源干接点信号,不存在电源的性因素,比较简单,接线容易,可应用于以上各种类型的DI输入模块。


    5.2有源两线制传感器
    有源两线传感器(如接近开关等),分直流与交流,直流两线制开关分二管性保护图5与桥整流性保护图6,前者在接PLC时需要注意性,后者就不需要注意性。
    直流两线制开关量仪表与漏型拉电流PLC DI模块的接线如图7所示:


    直流两线制开关量仪表与源型灌电流PLC DI模块的接线如图8所示:


    交流两线制开关量仪表与源型灌电流PLC的接线如图9所示:


    5.3 有源三线传感器
    传感器的输出信号,除了像行程开关、继电器触点等一些干接点信号外,一些传感器还提供NPN和PNP集电开路输出信号。其实质就是利用三管的饱和和截止,输出两种状态,即高电平和低电平信号,属于开关型传感器。PNP与NPN型传感器的输出信号是截然相反的。对于不同厂商的PLC DI模块输入电路,选用NPN还是PNP型输出的传感器,有时会感到无所适从。下面主要介绍一下这两种输出类型的传感器与PLC DI模块输入电路的接线。


以下介绍PLC的故障多发点:

1、类故障点(也是故障多的地点)在继电器、接触器

如生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,然后发热变形直至不能使用。所以减少此类故障应尽量选用继电器,改善元器件使用环境,减少换的频率,以减少其对系统运行的影响。     

2、二类故障多发点在阀门或闸板这一类的设备上。

因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,因此在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。     

3、三类故障点可能发生在开关、限位置、保护和现场操作上的一些元件或设备上。

其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。     

4、四类故障点可能发生在PLC系统中的子设备。

这类设备如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。所以在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。     

5、五类故障点是传感器和仪表。

这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。     

6、六类故障主要是电源、地线和信号线的噪声(干扰)。

问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。

尽管PLC是专门在现场使用的控制装置,在设计制造时已采取了很多措施,使它对工业环境比较适应,但是为了确保整个系统稳定,还是应当尽量使PLC有良好的工作环境条件, 并采取必要的抗干扰措施。

202207281244519172844.jpg202202231632210850864.jpg202202231632201798164.jpg

PLC在运行状态时,执行一个扫描操作所需要的时间为一个周期,这个是PLC的重要指标之一,其值为0.5~100ms。
扫描周期T=(输入—点时间*输入端子数)+(指令执行速度*指令的条数)+(输出一点的时间*输出端子书)+故障诊断时间+通讯时间
从上式可看出,扫描周期已经决定了:
1.CPU执行执行的速度
2.执行每条指令所占用的时间
3.程序中指令条数的多少
指令执行所需的时间和用户程序的长短、指令的种类和CPU执行速度是有很大关系,一般来说,一个扫描的过程中,故障诊断时间,通信时间,输入采样和输出刷新所占的时间较少,执行的时间是占了绝大部分。
PLC的响应时间是指PLC外部输出信号的改变时刻起止由它控制的有关外部输出信号变化的时刻之间的间隔,称为带后时间,这个是由输入电路时间常数,输出电路的时间常数,用户语句的安排和指令的使用,plc的循环扫描方式及PLC对I/O的刷新方式等部分组成。这个现象称为I/O延迟时间相应。
由于PLC的这种周期循环少苗工作方式,决定了相应时间的长短与收到输入信号的时刻有关。相应时间就分为短和长。
(1)短的相应时间
如果在一个扫描周期刚结束之前收到一个输入信号,在下一个扫描周期之前输入采样阶段,这个信号也就被采样,是输入新,这个响应时间短。
(2)长相应时间
如果收到的是一个输入信号经输入延迟后,刚好了I/O刷新的时间,在该周期内输入信号就被视为无效,就要等下一个扫描周期才会被读入,这个时间是长的了。


引言:随着塑料加工行业在我国的发展,注塑成型设备的自动化程度也越来越高。为了提高生产效率,现代化的注塑机都配置了机械手。机械手能够模人体上肢的部分功能,可以对其进行自动控制使其安装预定要求输送制品或操持工具进行生产操作的自动化生产设备。本文介绍用奥越信PLC控制的注塑机机械手,利用PLC灵活控制的特点,行走部分配置滑线导轨,采用斜齿轮齿条传动和变频调速控制。

1、机械手的组成

注塑机械手的组成一般由执行系统、驱动系统、控制系统、位置检测系统等组成。执行和驱动系统主要是为了完成机械手手臂的正常功能而设计,通过液压动力来驱动机械部件的运转达到取物放物的功能。控制系统则是注塑机械手的,通过对驱动系统进行控制,使执行系统按照预定的工艺进行操作。位置检测装置主要用于控制机械手的运动位置,并随时执行机构的实际位置反馈给控制系统,与设定的位置进行比较,再通过控制系统进行调整,以达到所需的精度控制。

3、控制要求

一个标准的工作循环包含了上图所示13个基本动作。对于不同的情况,机械手的工作方式需要有多种选择以应对工作要求的变化。根据机械手的现场实际工作情况,程序考虑以下几种功能:1)自动运行和手动运行两种基本工作模式;2)程序还提供回原点的功能;3)为了便于机械手动作的单步调试,程序提供单步运行的功能;4)为了配合注塑机工作的某些特殊需要,程序提供单周期运行的功能。

4、控制系统

本设计采用了奥越信224CCPU(自带14DI/10DO)为主控,对注塑机械手进行编程控制,基本单元、外接特殊单元和特殊模块的数量多不过7个。采用PLC控制的大特点就是体积小,功能强,响应速度快,性高。不需要对硬件环境做大的改变,随时可依生产工艺的不同要求而修改,并具有可扩展性。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


编码器的信号输出
编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出。
1. 并行输出:
编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题:
1、是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。
2、所有接口确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。
3、传输距离不能远,一般在一两米,对于复杂环境,有隔离。
4、对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。
2. 串行SSI输出:
串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。
由于编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出。
SSI接口(RS422模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,的位置值由编码器与时钟脉冲同步输出至接收设备。由接收设备发出时钟信号触发,编码器从高位(MSB)开始输出与时钟信号同步的串行信号.
串行输出连接线少,传输距离远,对于编码器的保护和性就大大提高了。
一般高位数的编码器都是用串行输出的。
3. 现场总线型输出
现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址, 用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。总线型编码器信号遵循RS485的物理格式,其信号的编排方式称为通讯规约,目前全世界有多个通讯规约,各有优点,还未统一,编码器常用的通讯规约有如下几种:
PROFIBUS-DP; CAN; DeviceNet; Interbus等
总线型编码器可以节省连接线缆、接收设备接口,传输距离远,在多个编码器集中控制的情况下还可以大大节省成本。
4.变送一体型输出

连接编码器的电气二次设备:
连接编码器的设备可以是可编程控制器PLC、上位机,也可以是显示信号转换仪表,由仪表再输出信号给PLC或上位机。
1.直接进入PLC或上位机:
编码器如果是并行输出的,可以直接连接PLC或上位机的输入输出接点I/O,其信号数学格式应该是格雷码。编码器有多少位就要占用PLC的多少位接点,如果是24伏推挽式输出,高电平有效为1,低电平为0;如果是集电开路NPN输出,则连接的接点也是NPN型的,其低电平有效,低电平为1。
2.编码器如果是串行输出的,由于通讯协议的限制,后接电气设备有对应的接口。
例如SSI串行,可连接西门子的S7-300系列的PLC,有SM338等模块,或S7-400的FM451等模块,对于其他的PLC,往往没有模块或有模块也很贵。
3.编码器如是总线型输出,接受设备需配的总线模块,例如PROFIBUS-DP。
但是,如选择总线型输出编码器,在编码器与接收设备PLC中间,就无法加入其他显示仪表,如需现场显示,就要从PLC 再转出信号给与信号匹配的显示仪表。

对于众多的PLC初学者而言,大家都会深深的记住师傅的一句话:急停按钮常闭点接入PLC。没错的,但是有的时候大家在调试设备的时候会发现如果将急停按钮旋开设备不会有输出,拍急停之后就正常了,这与我们的期望恰好相反,这是为什么呢?
急停按钮常闭点接如是在特定情况下的,即急停点作为复位信号接入PLC相关指令的时候是常闭点接入。例如西门子指令当中的RS触发器指令,我们常常使用急停点作为复位信号之一。大家可以考虑一下,硬件按钮的红色端(就是常闭点)接入了PLC的DI,在PLC的梯形图当中我们也用的常闭点。那么我们在系统上电的时候PLC的急停DI点就会得电,那么对于梯形图逻辑而言常闭点就会断开,这样我们就隔离了复位信号。当我们需要急停的时候,拍急停按钮,物理上的常闭点就会打开,梯形图逻辑上打开的常闭点就会重新闭合,这样我们就将复位信号接入了相关指令。这样说来可能比较复杂,总结起来就是当逻辑上的急停点需要从逻辑母线接入PLC的时候我们在逻辑上采用常闭点(这也只是大多数情况,具体问题具体分析)。
那么还有一种情况就是物理上的急停按钮常闭点接入PLC的DI点,梯形图逻辑上的急停点采用常开点接入。这种情况常用于屏蔽信号。试思考一下,当物理上的常闭点接入PLC的DI时,系统上电之后DI得电,逻辑上的常开点就应该闭合,这样信号流就可以通过相关逻辑行。当我们需要急停动作时候,拍急停按钮分断相关电路,物理上的急停点失电,逻辑上的敞开点就维持常开,这样我们就分断了相关信号,可以屏蔽掉急停点之后的信号流。也就是说当我们在逻辑行当中需要使用急停按钮或其他分断类按钮的时候逻辑上需要常开点接入PLC(这也只是大多数情况,具体问题具体分析)。
这就是急停按钮的两种接法(包括其他分断类或复位类按钮),有的朋友会问急停按钮物理上的常开点为什么不用?这就涉及到保护类器件的使用方法了。保护类器件例如急停按钮,停止按钮,限位传感器等都是对系统起保护作用的。这类器件一旦发生问题就会对系统造成不利影响。大家试思考一下,以急停按钮为例,他一旦发生故障,那么他的常闭点断开容易些还是常开点闭合容易些呢?当然是前者,所以此类器件一旦故障就会使系统停止,这样就可以提醒工程师进行相关检查。对于限位传感器等器件一旦发生故障也会使常闭点断开,同样可以提醒PLC工程师检修。




http://zhangqueena.b2b168.com

产品推荐