6ES7214-1AD23-0XB8质保
  • 6ES7214-1AD23-0XB8质保
  • 6ES7214-1AD23-0XB8质保
  • 6ES7214-1AD23-0XB8质保

产品描述

产品规格模块式包装说明全新

6ES7214-1AD23-0XB8质保


正因为可编程序控制器具有可贵的特点(如控制程序可变,具有良好的柔性;采用面向过程的语言,编程方便;功能完善;扩展方便,配置灵活;系统构成简单,安装调试方便;性高等),才成为CNC装置不可缺少的组成部分。可编程序控制器应用于数控机床中有两种型式,即内装型PLC和立型PLC。

    内装型PLC的特点是:

(1)其性能指标由所属的CNC装置的性能规格确定。它的硬件和软件被作为CNC装置的基本功能统一设计,具有结构紧凑、适配性强等优点。

(2)它有与CNC共用微处理器和具有微处理器两种类型。前者利用CNC微处理器的余力来完成PLC的功能,I/O点数较少;后者由于有立的微处理器,多用于顺序程序复杂及动作速度要求快的场合。

(3)它与CNC其他电路同装在一个机箱内,共用一个电源和地线。

(4)它的硬件电路可与CNC其他电路制作在同一块印刷电路板上,也可以单制成一块附加印刷电路板。

(5)它对外没有单配置的I/0接口电路,而是使用CNC装置本身的I/0接口电路。

(6)采用内装型PLC,扩大了CNC内部直接处理的窗口通信功能,可以采用梯形图编辑和传送控制功能,且造价低,提高了CNC的性能/价格比。

立型PLC的特点是:

(1)可根据数控机床对控制功能的要求灵活选购或自行开发。

(2)有自己的I/O接口电路,PLC与CNC装置、PLC与机床侧的连接都通过I/0接口电路连接。PLC本身采用模块化结构,装在插板式笼箱内,I/O点数可通过I/O模块或插板的增减灵活配置。

(3)可以扩大CNC的控制功能,可以形成两个以上的附加轴控制。

(4)在性能/价格比上不如内装型PLC.

1、化和网络化

目前的PLC已经出了逻辑控制功能这一范畴。随着半导体技术、大规模集成电路技术和通讯技术的发展,以前的PLC只做单机控制,现在很多大型的PLC和传统的PLC融合,不仅能处理逻辑,还能做过程控制,也能实现数据采集等功能。因此,今后的PLC将会向大型分布式、网络化、化的方向发展。

2、运动控制和分散控制

PLC初是从逻辑控制发展到过程控制,这是传统的PLC控制方式。现在,PLC正在走向运动控制和以工业总线技术为基础的分散控制,运动控制和分散控制是PLC技术发展的主要方向。

3、编程软件的“易用性”

如今大量用户针对不同的控制系统厂商使用不同的软件套件,譬如PLC、HMI、Drive、Servo等。将来用户只用一个软件套件或软件框架,其主要优势是能够一次性处理所有的变量和参数化,不需要进行复杂的映射或协调工作。用户可以一次性定义相关变量,然后可以同时在PLC、HMI和Drive中应用该参数。这种“易用性”的概念还要考虑到工程技术人员的经验丰富程度,经验不太丰富的技术人员可以利用bbbbbbs鼠标操作和运行预先定义好的功能块轻松完成编程。而经验丰富和受过良好教育的技术人员如果希望详细优化解决方案,可以利用C语言或BASIC语言等来编写应用程序。

4、开放性

PLC制造商已经开始关注到基于工业制技术所带来的强大冲击。在应用方面,很难进一步区分PLC控制系统和工业制系统之间的差异,因为这两者均采用了同样类型的微处理器和内存芯片。工业PC的控制系统,除了在灵活性方比传统PLC具有截然不同的优势外,还具有能够缩短系统投放到市场的周期,降低系统投资费用,提高从工厂底层到企业办公自动化的数据信息流动效率等优点。可以相信,PLC技术将继续向开放式控制系统方向发展。

5、总结

PLC从工业领域已经扩展到商业、农业、民用、智能建筑等领域。PLC不仅可以用于代替继电器控制的开关量逻辑控制,也可以用于模拟量闭环过程控制、数据处理、通信联网和运动控制等场合。在国民经济的快速发展过程中起着越来越重要的作用。随着微处理器、网络通信、人机界面技术的发展,工业自动化技术日新月异,未来PLC将朝着集成化、网络化、智能化、开放化、易用性的方向发展。PLC技术虽然面临着来自其他自动化控制系统的挑战,但同时也在吸收它们的优点,互相融合,不断,在今后的国民经济各领域将得到广泛运用。


可编程序控制器是八十年代发展起来的新一代控制装置,由于它结构简单,编程方便,性能优越,被广泛的应用在工业控制的各个领域。在工业控制环节有些生产还是处于粉尘、油渍、蒸汽较多的环境。恶劣的工作环境将对电气控制系统产生不利的影响,所以要求电气控制系统有良好的性能以及很强的抗干扰性。因此plc在工业中起着重要的作用。

在铝材挤压技术中,27MN卧式单动短行程前上料铝挤压机采用卧式三梁四柱预应力组合框架结构,短行程前上料正向挤压方式,油泵直接驱动,配置世界的机电液控制元件和系统,以及配套齐全的机械化辅助设备,采用PLC与计算机两级控制,使压机的速度、位置和压力得到的控制,所采用的主要技术集中体现了当代挤压机的发展趋势和技术水平.适宜生产制造、利于操作维护,提高生产效率、降低使用成本。

一、系统配置:

本系统采用西门子S7-300系列CPU、OYES-300系列IO模块、OYES-300系列通信IM153模块等。通过profibus-DP网络实现主站和从站之间的通讯;控制室上位机与现场主机之间通过MPI网络通讯,对生产过程中的压力、温度、速度、功率和时间等参数进行实时监控。

数字量输入模块直接同电气发讯元件即按钮、限位开关、压力继电器等连接。数字量输出模块直接控制电磁阀、控制继电器、指示灯等。模拟量输入模块直接同压力传感器、速度给定电位器等相连。模拟量输出模块直接给比例阀放大器信号。

二、程序设计:

本系统采用STEP7组态编程,根据铝挤压机控制有压力控制、位置控制、速度控制、模拟等温控制、挤压筒温度控制等控制系统,分别为每部分控制编写相应的FC(功能Function)、FB(功能块FunctionBlock)、DB(数据块DataBlock)等。

三、工艺流程:

铝挤压机生产工艺流程。启动控制泵,启动控制泵后才有控制油可以控制其他动作,当延时加载后如果压力继电器不发讯,表明有故障停止,如发讯,顺序启动主泵,此时如果压机不在各自原始位,手动调整至原始位,操作挤压桶闭合,如果根据拉线式编码器测定到了减速位,减速后到了锁紧位锁紧,如果不到锁紧位,压机停止等待到位再动作,如到位供锭器供锭,到位后才可供锭器供垫,到位后穿孔针前进,接着穿孔针到挑垫位置,挑垫片位到位后挤压杆前进同时穿孔针停止,到供垫器下降位后供垫器下降或到供锭器退回位后供锭器退回,此时判断供垫器下降到位了没有,没有则挤压杆停,有则判断供锭器是否退回到位,到位后如果可以穿孔了,则穿孔针前进,充液阀关闭到位后,挤压,结束后突破挤压,完成后开始正常挤压,编码器取值到终端减速位后停止挤压;如未到,开始终端挤压,到了挤压结束位后主侧缸卸压,到达设定压力值后停止,如压力值还高继续卸压。当挤压桶卸压完成后穿孔针退回,到位后挤压筒松开脱料,脱料到位,充液阀打开到位,挤压杆退回,到位,挤压桶松开到剪切位,垫片上升到位,主剪打垫,到打垫位,垫片下降,到下位,主剪剪切,同时垫片回送,垫片润滑。主剪到下位后主剪上升,穿孔针润滑装置下降,穿孔针前进到位,润滑完毕后穿孔针退回,穿孔针润滑装置返回,结束一个周期。

四、结论

铝挤压机PLC控制系统实现了设备的连锁启停、回路调节、报警等一系列功能。该控制系统运行至今,铝型材表面及内部质量都满足工艺要求。实践证明,该系统设计合理,不但提高了铝型材质量和产量,还提高了挤压机作业率,同时也改善了工作环境,减轻了劳动强度,为生产提供了强有力的技术。对于当前越来越庞大和复杂的自动化控制系统是一种非常好的解决方案。


目前,在我国冶金行业中,大多数三相电弧冶炼电炉是靠人工凋整电弧电流进行控制的。由于电弧炉的非线性、大滞后、强耦合、时变及随机干扰较强等难点,以及工人的经验不同,冶炼的效果分散性很大,导致产品质量下降,在冶炼的不同阶段,控制效果很难一致,系统容易振荡,增加电消耗,严重时会引起断电现象,不能保证三相电流的平衡输入,产品质量不稳定,或者采用的控制器为BOOL型控制模式,输出为通断信号,电的升降速度为恒值,不能根据电弧电流的变化趋势调整电的升降速度,容易引起系统振荡,使调增大,调节过程加长,影响产品质量,增加能耗,导致电上下频繁动作,容易引起断电现象,并缩短传动机构的使用寿命。为了解决以上问题,应用自适应控制理论,采用可编程控制器(PLC)为控制部件,实现了电弧炉电升降的自动准确控制,有效地减少了电短路、断弧和振荡现象。

1电弧炉电自动系统控制策略

1.1电弧炉的冶炼过程工艺特点

电弧炉的冶炼过程为间歇式操作,每炉次主要分为引弧加料期和熔化期。前者的特点是电弧不稳定,电流波动大,易发生断弧、过电流跳闸和断电事故;后者的特点是弧温较低,炉料比电阻较高,电弧光埋在未熔化的炉料中,电流随冶炼的进行逐渐趋于平稳,如果控制的三相电非平衡满负荷送电,可能使炉料不能熔化而延长冶炼时问,增大功耗。

1.2控制方案

依据经典控制理论,只有建立了被控对象的数学模型,再按照系统工艺所要求的静态指标和动态指标设计校正环节的参数,才能满足工艺要求。但由于电弧炉具有多变量、非线性、大滞后、强耦合、数学模型参数的不确定性和系统工作点的剧烈变化等特点,其实质是一个多输入、多输出、非线性、强耦合的对象,显然经典控制对此无能为力,甚至用现代控制理论也不能地解决问题,因为系统的特征所决定的数学模型难以建立,因此难以实现对被控量的控制。通过对电弧炉在冶炼过程中特点的了解,以及对被控对象特性的分析得知,电调节系统是一个位置控制系统,调节对象是弧长,但由于弧长没有合适的检测设备,只能通过检测电弧炉主电路的电弧电流间接地反映弧长的大小,也就是通过控制电流来控制弧长。

当控制对象的特性或参数随着环境的变化或运行时间的加长而大幅度变化时,常规的反馈控制难以完成优良的控制,而采用自适应控制的控制方案比较合理。由电弧炉的功率特性曲线得知,不同的电弧电流对应相同的电弧功率,当弧流过有利的调节电流时,输入炉内的功率并未因电流的增加而增大,反而线路的电耗增大,效率降低。在熔炼时,将某一熔炼过程中有利的调节电流作为电弧电流的额定值,再用自适应控制来调整相关参数。

具体方法如下:当系统开始运行时,是点弧程序。其控制思路是:合高压开关,冶炼开始,三相电自动下降,在任一相电接触到导电炉料时,该相电自动停止下降,直至另一电起弧后相电自动起弧,这时系统自动转入熔炼程序,点弧程序结束。

横坐标表示电弧电流值,纵坐标表示PLC的输出控制信号(-10~10V),在工区电弧电流远远小于弧流额定值,PLC输出的控制电压为Umin,电以大的设定速度下降,该区也称为下降饱和速度区。在Ⅱ区电弧电流小于弧流额定值,电以速度线性减小下降,改变该区的宽度就可以改变直线的斜率,也就调节了灵敏度,该区也称为电下降速度调节区。在Ⅲ区电弧电流等于或近似等于弧流额定值,PLC输出的控制电压为0,电保持静止不动,该区也称为非调节区或死区。在Ⅳ区电弧电流大于弧流额定值,电以速度线性增加上升,改变该区的宽度就可以改变直线的斜率,也就调节了灵敏度,该区也称为电上升速度调节区。在V区电弧电流远远大于弧流额定值,PLC输出的控制电压为Umax,电以大的设定速度上升,该区也称为上升饱和速度区。在非调节区与相邻两区的边界点,PLC输出的控制电压为±Up,Up为液压伺服阀功率放大板的输入门槛电压值,0~Up的电压不能使液压阀有任何动作。

在上述调节期间如果出现弧光窜动、电流振荡,甚至短路或断弧时,再按照一定的程序去调整死区宽度,调整灵敏度和饱和临界值,这样反复几次,直到参数为止。

对输入PLC的信号进行处理后,输出可调的速度控制信号以控制电动作,使每相电都能依据流过自身的电流而以相应的速度上升、下降或停止,在保证系统稳定性的同时,又提高了系统的快速性,使电炉的冶炼电流始终处于状态。

2工艺实践

由该控制策略组建的自适应控制系统已在某钢厂调试通过,并能正常运行。运行结果表明,该系统控制精度高,性高,动态响应速度快,弧流控制稳定。提高了电升降调节的快速性,可以保电平稳调节。

2.1系统硬件

主要部分简介如下:

PLC选用西门子公司的S7-300PLC作控制器。用于向上和上位机通讯,接受上位机的命令,并将工业现场的工况如实向上位机传送。将弧流、弧压数值、限位开关、继电器、电弧炉变压器的各种保护电磁阀的状态、断路器的分合闸等信息送给工控机。向下接受各种模拟量和开关量信号。同时控制三相伺服阀、液压缸系统和各种现场设备。

上位机选用工业控制计算机,通过工控软件WINCC实现与下位机的对话,通过现场总线Profibus网对系统进行实时监控。

电流采集单元:由于电弧炉变压器的二次侧电流高达数万安培,因此将电流互感器安装在一次侧。电流单元的采集板将到的相电流转换成0~的信号,再转换成4~20mA的电流信号,接到PLC的AI模块中。同时将电压互感器检测到的信号,一方面给显示电路,一方面给PLC的AI模块。

伺服阀、液压缸系统是电升降控制系统的执行装置,由电液伺服阀、液压缸、背压阀、换向阀等组成。该系统的液压力为9MPa。

2.2软件流程

3结语

系统采用性高,抗干扰能力强的S7-300PLC作控制器。在此给出了采用灵敏度自适应控制的控制方案,对电弧炉的电进行自动控制,克服了外界环境对电控制的影响。该系统已在某炼钢厂运行。达到了降低电炉电耗,减轻工人劳动强度,提高产品质量的目的


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg



说实话,好几年没用过PLC了;今看到一个以前的试验程序,看起来蛮“拗口”的,参见附图1。程序原用GX Developer编制,FX2N;现移植为用台达WPLSoft 2.12编制,ES2。
    该段程序的要求是:实现Y1~Y5的顺序移位,并可任意取消某位或某几位;也就是,若取消Y2,则Y1接通之后,满足条件后Y1断开、Y3接通,而不是Y2接通。
    这可能是,当时为编制某程序而作的准备,应当是程序中要求有类似的功能(原程序未保留)。比如,五个加工工位,每次仅允许一个加工,若某工位未准备好,则跳过该工位。
    该程序的方法,似不太顺畅——要实现该功能,还可以如何编制程序呢?
按此在新窗口浏览图片
 
    重新阅读该段程序后,得出其编程思路是:若取消某位,则移位到该位为1时,再使之移一位。
    为便于描述,用梯形图左母线旁的步序号为“行号”(行块号)。
    附,对附图1程序的:
    0行:接通一次X0,T0延时1秒接通,即使X0信号抖动,也不会多次给出信号;这是防外部触点抖动的另一种思路。T0接通一次,M31~M36左移一位。
    8行:给出移位的初始信号M10。
    10行:当M31接通后,复位复位M10。
    14行:移位指令,实现M31~M36的每次一位移位;此处M1无作用。
    25行:下一个循环时,使M31置位,即M31与M36同时接通。
    27行:复位M31,此时M32已接通,仍是实现M31与M36同时接通。
    33~53行:产生D10的移位信号。
    58行:D10赋初值。
    64行:实现D10的移位。
    75~114行:若取消某位,则该位被移除。
    比如,取消Y2(使Y1接通直接转到Y3接通),则这时使X2接通;
    设先有Y1接通(M31等接通),此时来一个移位信号后,有M32接通,执行38行、产生M62信号(M62脉冲接通),于64行D10移一位;这时D10的各位为 0000 0000 0000 0100;
    由于M62接通、又X2接通,故执行到88行时,D10再移一位,结果为 0000 0000 0000 1000;执行后续程序,使M93接通,Y3接通。
    127行:若为取消5位,则将D10赋初值。
    138行:当D10移位至b6位以上接通时,则D10赋初值。
    148行:将D10的值,送至K2M90(M90~M105),以达控制目的。
    154~166行:实现Y1~Y5的控制目的。
    169行:程序结束。
    该程序仅是给出一种思路,不是实用程序;程序移植后(并将138行与127行指令位置作了交换),也未进行试验。
    比如,粗看起来,当取消某位,D10进行“额外”的移位后,则M31~M36并没有进行相应的移位;可能的方法,是将D10的内容,再返回到M31~M36。


一、PLC控制系统故障的宏观诊断
故障的宏观诊断就是根据经验,参照发生故障的环境和现象来确定故障的部位和原因。PLC控制系统的故障宏观诊断方法如下:
■是否为使用不当引起的故障,如属于这类故障,则根据使用情况可初步判断出故障类型、发生部位。常见的使用不当包括供电电源故障、端子接线故障、模板安装故障、现场操作故障等。
■如果不是使用故障,则可能是偶然性故障或系统运行时间较长所引发的故障。对于这类故障可按PLC的故障分布,依次检查、判断故障。检查与实际过程相连的传感器、检测开关、执行机构和负载是否有故障:然后检查PLC的I/O模板是否有故障:后检查PLC的CPU是否有故障。
■在检查PLC本身故障时,可参考PLC的CPU模板和电源模板上的指示灯。
■采取上述步骤还检查不出故障部位和原因,则可能是系统设计错误,此时要重新检查系统设计,包括硬件设计和软件设计。
二、PLC控制系统的故障自诊断
故障自诊断是系统可维修性设计的重要方面,是提高系统性考虑的重要问题。自诊断主要采用软件方法判断故障部分和原因。不同控制系统自诊断的内容不同。PLC有很强的自诊断能力,当PLC出现自身故障或外围设备故障,都可用PLC上具有的诊断指示功能的发光二管的亮、灭来查找。
1、总体诊断
根据总体检查流程图找出故障点的大方向,逐渐细化,以找出具体故障,如图2所示。
 
2、电源故障诊断
电源灯不亮,需对供电系统进行诊断.如果电源灯不亮,检查是否有电,如果有电,则下一步就检查电源电压是否合适,不合适就调整电压,若电源电压合适,则下一步就是检查熔丝是否烧坏,如果烧坏就换熔丝检查电源,如果没有烧坏,下一步就是检查接线是否有误,若接线无误,则应换电源部件.
3、运行故障诊断
电源正常,运行指示灯不亮,说明系统已因某种异常而终止了正常运行。检查流程如图3所示.
 
图3 运行故障诊断流程图
4、输入输出故障诊断
输人输出是PLC与外部设备进行信息交流的通道,其是否正常工作,除了和输入输出单元有关外,还与联接配线、接线端子、保险丝等元件状态有关。
出现输入故障时,检查LED电源指示器是否响应现场元件(如按钮、行程开关等)。如果输入器件被激励(即现场元件已动作),而指示器不亮,则下一步就应检查输入端子的端电压是否达到正确的电压值。若电压值正确,则可替换输入模块。若一个LED逻辑指示器变暗,而且根据编程器件监视器、处理器未识别输入,则输入模块可能存在故障。如果替换的模块并未解决问题且连接正确,则可能是I/O机架或通信电缆出了问题。
出现输出故障时,应察看输出设备是否响应LED状态指示器。若输出触点通电,模块指示器变亮,输出设备不响应。那么,应检查保险丝或替换模块。若保险丝完好,替换的模块未能解决问题,则应检查现场接线。若根据编程设备监视器显示一个输出器被命令接通,但指示器关闭,则应替换模块。
在诊断输入/输出故障时,方法是区分究竟是模块自身的问题,还是现场连接上的问题。如果有电源指示器和逻辑指示器,模块故障易于发现。通常,先是换模块,或测量输入或输出端子板两端电压测量值正确,模块不响应,则应换模块。(//www./版权所有)若换后仍无效,则可能是现场连接出问题了。输出设备截止,输出端间电压达到某一预定值,就表明现场连线有误。若输出器受激励,且LED指示器不亮,则应替换模块。如果不能从I/O模块中查出问题,则应检查模块接插件是否接触不良或未对准。后,检查接插件端子有无断线,模块端子上有无虚焊点。
5、指示诊断
LED状态指示器能提供许多关于现场设备、连接和I/O模块的信息。大部分输入/输出模块至少有一个指示器。输入模块常设电源指示器,输出模块则常设一个逻辑指示器。
对于输入模块,电源LED显示表明输入设备处于受激励状态,模块中有一信号存在。该指示器单使用不能表明模块的故障。逻辑LED显示表明输入信号已被输入电路的逻辑部分识别 

。如果逻辑和电源指示器不能同时显示,则表明模块不能正确地将输入信号传递给处理器。输出模块的逻辑指示器显示时,表明模块的逻辑电路已识别出从处理器来的命令并接通。除了逻辑指示器外,一些输出模块还有一只保险丝熔断指示器或电源指示器,或二者兼有。保险丝熔断指示器只表明输出电路中的保护性保险丝的状态;输出电源指示器显示时,表明电源已加在负载上。像输入模块的电源指示器和逻辑指示器一样,如果不能同时显示,表明输出模块就有故障了。

  PLC抗干扰软件措施:
一、延时确认
对于开关量输入,可采用软件延时20ms,对同一信号作两次或两次以上读入,结果一致才确认输入有效。
二、封锁干扰
某些干扰是可以预知的,如可编程序控制器的输出命令使执行机构(如大功率电动机、电磁铁)动作,常常会伴随产生火花。电弧等干扰信号,它们产生地干扰信号可能使可编程序控制器接收错误的信息。在容易产生这些干扰的时间内,可用软件可编程序控制器的某些输入信号,在干扰易发期过去后,再取消封锁。
三、软件滤波
对于模拟信号可以采取软件滤波措施,目前的大型PLC编程大都支持SFC、结构化文本编程方式,这可以很方便的编制比较复杂的程序,完成相应的功能。
四、故障的检测与诊断
可编程序控制器的性很高,本身有完善的自诊断功能,可编程序控制器如出现故障,借助自诊断程序可以方便的找到故障的部位与部件,换后就可以恢复正常工作。
大量的工程实践表明,可编程序控制器外部的输入、输出元件,如限位开关、电磁阀、接触器等的故障率远远可编程序控制器本身的故障率,而这些元件出现故障后,可编程序控制器一般不能觉察出来,不会自动停机,可能使故障扩大,直至强电保护装置动作后停机,有时甚至会造成设备和人身事故。停机后,查找故障也要花费很多时间。为了及时发现故障,在没有酿成事故之前使可编程序控制器自动停机和报警,也为了方便查找故障,提高维修效率,可以使用梯形图程序实现故障的自诊断和自处理。
现代的可编程序控制器拥有大量的软件资源,如FX2N 系列可编程序控制器有几千点辅助继电器、几百点定时器和计数器,有相当大的裕量。可以这些资源利用起来,用于故障检测。
1、时检测
机械设备在各自工步的动作所需的时间一般是不变的,即使变化也不会太大,因此可以以这些时间为参考,在可编程序控制器发出输出信号,相应的外部执行机构开始动作时启动一个定时器定时,定时器的设定值比正常情况下该动作的持续时间长20%左右。例如设某执行机构(如电动机)在正常情况下运行10s后,它驱动的部件使限位开关动作,发出动作结束信号。若该执行的动作时间过12s(即对应定时器的设定时间),可编程序控制器还没有接收到动作结束信号,定时器延时接通的常开触点发出故障信号,该信号停止正常的循环程序,起动报警和故障显示程序,使操作人员和维修人员能顺速判别故障的种类,及时采取排除故障的措施。
2、逻辑错误检测
在系统正常运行时,可编程序控制器的输入、输出信号和内部的信号(如辅助继电器的状态)相互之间存在着确定的关系,如出现异常的逻辑信号,则说明出现了故障。因此,可以编制一些常见故障的异常逻辑关系,一旦异常逻辑关系为ON状态,就应该按故障处理。例如某机械运动过程中先后有两个限位开关动作,这两个信号不会同时为ON状态,若它们同时为ON,说明至少有一个限位开关被卡死,应停机进行处理。在梯形图中,用这两个限位开关对应的输入继电器的常开触点串联,来驱动一个表示限位开关故障的辅助继电器。在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,可编程控制器(PLC)已成为解决的有效的工具之一。PLC控制系统设计时应注意以下几点。
一、 可编程序控制器(PLC)及编程器的选购:
目前市场上的PLC产品众多,除国产以外,国外的有:日本OMRON、MITSUBISHI、FUJI、IDEC、HITACHI、松下,德国的西门子,韩国的LG等,如何选购PLC产品呢?
1. 系统应确定系统用PLC单机控制还是用PLC形成网络,由此计算输入、输出(I/O)点数,并且在选购PLC时要在实际需要点数的基础上预留10%的余量。
2. 确定负载类型根据PLC输出端所带负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出还是晶体管输出,或是晶闸管输出。不同的负载选用不同的输出方式对系统的稳定运行是很重要的。
3. 存储容量与指令的执行速度是PLC选型的重要指标,一般存储量越大、速度越快的PLC价格就越高,尽管国外各厂家产品大体相同,但也有一定区别。
4. "COM"点的选择,
不同的PLC产品,其"COM"点的数量是不一样的,有的一个"COM"点带8个输出点,有的带4个输出点,也有带1个或2个输出点。当负载的种类多且电流大时,采用一个"COM"点带1-2个输出点的产品,当负载种类少数量多时,采用一个"COM"点带4-8个输出点产品。 PLC
5. 因为各生产厂家的开发软件不同,系统地兼容性也是选购时的,目前还没有发现兼容的产品,应根据系统合理选用PLC产品。
6. 编程器的选购:
PLC编程可采取三种方式:一是用一般的手持式编程器,它只能用厂家规定的语句表中的语句编程。正中方式易于现场调试并且体积低,但它的效率低适应机种类型少,比较适用于系统容量小、用量少的系统中。二是图形编程器编程,这种方式采用图形方式编程,方便直观,一般电气人员短期就可以应用自如,但编程器价格较高。三是用IBM及其兼容个人计算机+PLC软件包编程,这种方式是效率的一种方式,也是常用的一种方式,但大部分软件包价格昂贵。
7.尽量选用大公司的产品,因为其产品质量,且技术支持好,一般售后服务也较好,有利于以后产品的扩展与软、硬件升级。
二、输入、输出回路的设计
1.电源回路
PLC供电一般为AC85-240V(也有DC24V),适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等)
2.PLC上DC24V电源的使用
各公司PLC产品上一般都有DC24V电源,但该电源容量小,为几十毫安至几百毫安,用其带负载时应注意容量,同时做好防短路措施(因为该电源的过载或短路将影响PLC的运行)。 PLC资料网
3.外部DC24V电源
若输入回路有DC24V供电的接近开关、光电开关等,而PLC上的DC24V电源容量不够时,要从外部提供DC24V电源;但该电源的"一"端不要与PLC的DC24V电源的"一"以及"COM"端相连,否则会影响PLC的运行。
4.输入的灵敏度
各生产厂家对PLC的输入电压和电流都有规定,当输入元件的输入电流大于PLC的大输入电流或有漏电流时,就会有误动作,降低灵敏度。所以应适用弱电流输入并对漏电流采取防护措施,并且选用输入为供漏型输入的PLC。
两线式传感器(光电开关、无触点开关)有LED的限位开关时,输入漏电流会产生错误输入或灯亮,对策为连接泄放电阻降低输入阻抗,阻值由图1中公式推导:

晶体管或双向可控硅输出时,若接到一个较大冲击电流的设备上,就考虑保护晶体管和可控硅。晶体管和可控硅可以经受额定电流10倍的冲击电流,如果出,可按图2、图3之一来减少它:

5. 对感性负载处理
在输入、输出端接感性负载时,要在负载两端并联一个冲击抑制器或二管,二管的阴与电压㈩侧连接。

6. 外部互锁与接地 
利用PLC控制电机正反转等正、反动作时,为避免PC的异常动作引起事故及机械损坏,应在外部组成一个连锁回路。

接地:端子是大地接地端子。用防止感应电的接地线(截面积2mm2以上的电线)采用三种接地方式(接地电阻100Ω以下)。
LG是噪音滤波器中性端子,若因噪音大而产生误动作,或为了防止电击,把LG与短接,采用三种接地方式。接地线的长度在20m以内为宜。
接地线与其它设备共用或与建筑物的金属结构连接会适得其反,受到恶劣影响。

7. PLC外部驱动电路
对于PLC输出不能直接带动负载的情况下,在外部采用驱动电路,可以用固态继电器或晶闸管电路驱动,同时应采用保护电路和浪涌吸收电路。
另外PLC的输入输出布线也有一定要求,请参照各公司的使用说明书。
三、 扩展模块的选用
对于小的系统,如80点以内的系统,一般不需要扩展;当系统较大时,就要扩展。不同公司的产品,对系统总点数及扩展模块数量都有限制,当扩展仍不能满足需要时,可采用网络结构。同时,有些厂家产品的个别指令不支持扩展模块,因此,在进行软件编程时要注意。当采用温度等模拟模块时,各厂家也有一些规定,请参阅相关技术手册。 PLC
四、 PLC的网络设计
当用PLC进行网络设计时,其难度比PLC单机控制大得多,应选用自己比较熟悉的机型,对其基本指令和功能指令有较深入的了解,并且指令的执行速度和用户程序存储容量也应仔细了解。否则不能适应实时要求,造成系统崩溃。另外对通信接口,通信协议、数据传送速度等也要考虑。
后还要向PLC的厂家寻求网络设计和软件支持及详细技术资料,至于选用几层工作站,依照系统大小而定。
五、 软件编制
在编制软件前,应熟悉所选用的PLC产品说明书,待熟悉后再编程。若采用图形编程器或软件包编程,则可直接编程,若用手持编程器编程,应先画出梯形图,然后编程,这样可以减少出错,速度也快,编成完成后先空运转,待各个动作正常后,再在设备上调试。



http://zhangqueena.b2b168.com

产品推荐