7
西门子模块6ES7340-1CH02-0AE0支持验货
信号线引入的干扰
由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时会将I/O模块损坏,造成系统故障。抑制信号线引入的干扰可采取如下措施:
(1)抑制输入信号干扰。
输入信号的线间干扰(差模干扰)通过输入模块的滤波可以使其衰减,而输入信号线与大地间的共模干扰在PLC内部回路产生较大的电位差,是引起PLC误动作的主要原因,可通过良好的接地加以抑制。在输入端有感性负载时,为了防止电路信号突变而产生感应电动势损坏模块,对交流输入,可在负载两端并联电容C和电阻R,对直流输入,可并联续流二管V。见图1。
图1 感性负载时输入端抗干扰措施
其中R、C的选择,负载容量小于10 VA时,R可选120 Ω,C可选0.1 μF;负载容量在10 VA以上时,R宜选47 Ω,C宜选0.47 μF。
(2)抑制输入感应电动势。
由于输入信号线间、输入信号线和其他线之间存在寄生电容,通过电耦合会产生感应电动势。为抑制感应电动势,一般尽量采用直流输入。对于交流输入,可在输入端并联浪涌吸收器。如果配线距离长、电流大,也可用继电器加以转换。
(3)抑制输出信号干扰。
PLC系统的开关量输出有继电器、晶体管、晶闸管3种输出形式。具体选择要根据负载要求来决定。如对于交流负载,在开关时产生干扰较大的场合,可使用双向晶闸管输出。对于直流负载,通常是在线圈两端并联二管V,二管应尽可能靠近负载,其反向耐压应是负载电压的4倍以上。二管的动作有一定的延时,如果需要快速断开,则采用建议并联稳压管。对于交流负载,应在线圈两端并联RC浪涌吸收电路,且RC愈靠近负载,抗干扰效果愈好。见图2。
图2 感性负载时输出端抗干扰措施
(4)线缆选型与敷设的抗干扰。
开关量信号一般对电缆无特殊要求,可选用一般的电缆;当数字脉冲信号频率较高时,应选用屏蔽电缆传输;模拟量信号是连续变化的信号,容易受干扰,要选用屏蔽线或带防护的双绞线。当模拟量信号离PLC距离较远时,应尽量采用电流传输方式;通信电缆的信号频率很高,应选择PLC生产厂家提供的电缆。交流输入、输出信号与直流输入、输出应分别使用各自的电缆;PLC的输入、输出线要与动力线分开,距离在200 mm以上,应减小动力线与信号线平行敷设的长度,特别是变频器到电动机的电缆一定要远离信号电缆。在变频器到电动机之间应增加交流电抗器,电抗器应装在距离变频器近的地方。
可编程控制器(PLC)是专为工业控制设计的,具有性高、功能全、价格的优点;但在实际应用中,因工业现场情况复杂,PLC常常受到恶劣的电磁干扰。为了有效地提高PLC控制系统的抗干扰性能力,对常见的干扰提出以下解决措施和方法。
1 空间辐射干扰
主要指雷电、雷达、周围的高频感应加热设备等产生的空间辐射电干扰。对此类干扰,一般无法对于扰源进行抑制,只能切断或减弱电磁干扰的传播途径。在室外应用PLC或有传输线经过室外时,由雷击引起的浪涌使PLC或其他自动化设备损坏的情况比较常见。在实践中,可以采用等电位联结、屏蔽、保护隔离、合理布线和装设防雷装置等措施,进行的防雷保护。其中简便、经济的措施是装设防雷装置。防雷装置能处理雷电浪涌电流的承受和泄放能力,同时限制被保护设备雷电过电压幅值,有效地对PLC及其相关设备起到保护作用。防雷装置应依据分级保护原则,根据不同的电源制式及现场情况进行选型,使过电压降低到对设备无害的量值。其工作电压以安装在此电路中所有部件的额定电压为准,剩余电压则根据此电路中所有部件的耐压强度确定。
2 电源的干扰
由电源引入的干扰在工业现场较为常见。控制系统一般由电网电源供电,电网的波动、大功率用电设备启停、交直流传动装置引起的谐波等,都通过输电线路传到电源原边。电源干扰主要来自两个方面:一是通过PLC系统的供电电源直接串入,如CPU电源、I/O模块电源等;二是通过变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。
抑制电源干扰一般可采取如下措施:
①PLC电源通常采用隔离电源。但因其结构及制造工艺等因素使其隔离效果并不理想,故在PLC电源输入端使用隔离变压器,其初级绕组和次级绕组分别加屏蔽层,并将屏蔽层接地,对抑制电网干扰信号有较好效果。同时,二次侧接线使用双绞线,能有效减少电源线问干扰。
②使用滤波器。滤波器具有较强的抗干扰能力,同时可防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。在干扰严重场合,常常同时使用隔离变压器和滤波器。需要注意的是,应先把滤波器接入电源,然后再使用隔离变压器。
③采用分离供电方式。将PLC、I/O设备及其他装置分别由各自的具有隔离功能的变压器供电,并与主回路电源分开。需要注意的是,如果系统中含有扩展单元,则其通电与断电与基本单元同时进行;如做不到,应确保MOS电源先通电后断电。
④对于变送器和与PLC系统具有直接电气连接的仪表供电,应选择分布电容小、隔离效果好的配电器,以减小对PLC系统的干扰。
⑤有条件的情况下或重要的PLC控制系统中,应配置在线UPS供电,UPS供电既可提高电源的供电性,还具有较强的隔离性能。
1、引言工业无线遥控系统可以将操作者或者机器的控制指令进行数字化处理后,由发射系统传给远方的接收系统,再经解码转换为控制指令实现对各种机械设备的控制,同时要求在强磁场,强电场及无线电信号复杂环境下的工业环境抗干扰能力。工业无线电技术是现代数字通信技术与传统无线电通信相结合的综合技术系统。
在实际工业现场中尤其是移动型设备与成套装备,如果采用无线遥控系统,操作人员只需要携带轻巧的发射系统,自由走动并选择()视觉位置进行操作,了以往由于视线不清,环境恶劣或指挥不当等因素造成的事故隐患,保证了操作,各项操作可由一个人承担,他人指挥,节省了人力资源,操作人员立判断,操作的准确性,连贯性比以往得到显著提高,从而大幅度提高了生产效率。
2、系统设计
无线遥控系统构成可分成发射系统和接受系统,我们把发射系统做成发射端,接收系统做成接收端,通过无线数传模块进行数据的传输通信。
把现场控制的各种按钮和摇杆设计在遥控系统的发射端上,这样远程操作发射端就可以控制现场设备的运行,按下发射端控制面板上的操作按钮,单片机检测到后就启动相应串口发射程序,由无线数传模块发射数据,接收端控制现场设备运行,由无线数传模块,plc和现场设备组成,当无线数传模块接收到发射端传来的数据后,使用自由端口方式通信,就可以启动相应的plc控制程序,控制现场设备的运行动作。
2.1 单片机发射端设计
发射端总体设计我们采用如图1所示的结构。
图1 发射端硬件构成图
单片机模块采用的是xc164单片机,xc164单片机是英飞凌16位微控制器产品,其优异的结构,的指令集,以及不断扩充新的产品线,使其广泛应用于汽车电子,工业控制和信息技术领域,该系列单片机具有丰富的接口模式,如14通道10位ad变换器,同步/异步串行通道usart,高速同步串行通道spi,can模块,79个io引脚等,并可与各种设备组成通讯网络。同时,该系列单片机适应于恶劣的工业环境,工业温度可在-40~125℃。针对我们的的功能,同时,使该遥控器具有工作性能稳定和易于进行功能扩展的优点。考虑到工业应用的现场环境。
项目设计是采用如下方式:例如,当按下开关按钮(如启动,停止等,不同的控制系统有不同的功能按钮)时,单片机检测到其端口电位变化后,启动其相应的程序,然后通过串口向无线数传模块发送相应的数据。如单片机按钮输入程序处理编程可采用图2所示程序流程图。
图2 无线发射程序流程图
2.2 plc自由口接收端设计
接收端总体设计采用如下图3所示结构。
图3 接收端硬件构成图
现场运行设备采用plc控制,编写plc程序可以控制设备的各种运行方式,采用西门子的s7-200具有一个或两个rs-485标准接口,因此可以直接采用无线数传模块与plc的rs-485接口连接,接收端模块接收到数据后,plc启动相应的中断程序,开始进行运行相应的控制程序。
s7-200系列plc的通讯端口支持多种通讯协议,此处可以采用的有两种。一种是西门子的ppi主-从协议,利用这种协议主站可以直接对从站,即控制系统中的plc, 发出指令,控制从站的各端口及功能。这种方式plc的编程简单,不需要对原有从站程序进行修改。但是ppi协议不是一个公开的协议,在文献4中提到了一种通过串口侦听ppi协议从而利用主站编程控制从站的方式。另外一种通讯模式是自由口模式,利用自定义的plc程序控制s7-200 cpu的通讯端口,使用用户自己定义的通讯协议来实现与外界的通讯。这种模式支持ascii和二进制协议。自由口模式使用简单、灵活,但需要对plc进行专门的编程。因为无线遥控所需数据量不大,通过比较,选择了自由口通讯模式,以ascii码的形式在手持操作器和plc之间传递命令和反馈信息。在plc内编写了专门的无线控制程序,实现无线控制状态下的数据通信及对机械手的控制。我们采用s7-200的自由口通信,使用自由口通信用户可以自定义的通信协议与所用的智能设备通信。
2.3 PLC输出负载的抗干扰处理PLC输出模板采用继电器输出型时,所带的电感性负载的大小,会影响到模板内继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。重要的一点,PLC的输出负载可能产生干扰,因此要采取措施加以控制,若负载为直流电感性负载,则在负载两端加续流二管保护,若负载为交流点刚性负载,则在负载两端加阻容吸收电路,见图1。一般选择D为1 A,R为100 Q,C为0.47 pF。
图1 阻容吸收电路不意图
2.4 正确选择接地点,完善接地系统
良好的接地是保证PLC工作的一个重要条件,可避免偶然发生的电压冲击危害。接地的目的一般有两个:一是为了,二是为了抑制干扰。完善的接地是PLC控制系统抗电磁干扰的重要措施之一。
PLC控制系统的地线包括系统地、屏蔽地、保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点之间存在地电位差,从而引起地环路电流,影响系统正常工作。比如电缆屏蔽层单点接地,如果电缆屏蔽层两端都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将大。此外,接地线、屏蔽层和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会感应出电流,通过屏蔽层与芯线之间的耦合.信号回路受到干扰。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等的电位分布,影响PLC内模拟电路和逻辑电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机等故障。模拟地电位的分布将使测量精度下降,会引起对信号测控的严重失真和误动作。
1)地或电源接地。将电源线接地端和柜体连线接地做为接地。若电源漏电或柜体带电,可以从接地端导入地下。
2)系统接地。系统接地即PLC控制器为了与所控的各个设备同电位而接地。接地电阻值不得大于4 Q,通常需将PI,C设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。
3)信号与屏蔽接地。一般要求信号线有的参考地,屏蔽电缆遇到可能产生传导干扰的场合,也要在就地或者控制室接地,防止形成“地环路”。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应互相连接好,并经绝缘处理,选择适当的接地处单点接地。
2.5 对变频器干扰的抑制
变频器干扰处理一般有以下几种方式:
1)加隔离变压器,主要针对来自电源的传导干扰,可将绝大部分的传导干扰阻隔在隔离变压器之前;2)使用滤波器,滤波器具有较强的抗干扰能力,可防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能;3)使用输出电抗器,在变频器和电动机之间增加交流电抗器主要是为了减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。
3 矿井提升系统干扰问题及解决办法
我矿在2007年投产了一套1 900 kw交一交变频提升系统,针对现场出现的问题采取了以下的抗干扰措施:1)把功率部分与控制部分分别安装在两层,使得功率柜对PLC以及变频控制部分的电磁干扰减至;2)PI,C系统及变频控制系统用的交流控制电源均通过UPS供电,使得高压电网侧的干扰信号不会通过电源直接传入控制系统;3)为了接地并减少接地电阻,在保证接地电阻小于1 Q的基础上,选用双根95 mm2电缆作为接地电缆;4)对于触发脉冲、电压检测信号、电流信号、测速编码器信号等关键线路,采取单敷设电缆,屏蔽层双端单接地的措施。
4 结论
这套系统在调试初期,由于干扰问题给调试带来了一定的影响。使得接入PLC系统的位置检测信号、连锁信号出现差错。重新处理了接地与屏蔽之后,干扰的问题没有再出现。PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能使PLC控制系统正常工作。
0 引言
在工业控制领域,如何利用有限的资源实现对主要生产环节准确、稳定的控制,并对工业现场实施有效的监控,使生产和监控的结合起来,提高生产效率,是广大企业和从事工控行业的技术人员一直普遍关心的问题。而自动化水平的高低也成为衡量企业生产力的重要因素。
PLC作为一种专门为在工业环境下应用而设计的数字运算操作装置,以其性高、抗干扰能力强、适用性强、功能完善等优点在工业过程中得到了广泛的应用,并以其高的性价比奠定了它在现代工业中的地位。触摸屏是计算机技术和监控技术发展的产物,作为数据采集与过程控制的软件,它们是自动控制系统监控层一级的软件平台和开发环境,具有灵活的组态方式,为用户提供快速构建工业自动控制系统监控的功能。
电镀系统作为涂装企业的关键生产环节,对整个生产过程的影响具有举足轻重的作用,本文提出的基于触摸屏和PLC的电镀控制系统的设计,克服了原控制系统准确度低、稳定性差、生产效率低的缺点,提高了企业的生产效率和自动化水平。
1 系统的总体设计
龙门镀铜电镀自动生产线是电气器件等外表电镀的一种自动生产设备。生产环节包括三个基本阶段:镀前处理、电镀过程和镀后处理。整个镀铜电镀过程主要经过热浸除蜡、水洗、弱腐蚀、除垢、沉锌、预镀碱铜、碱铜、酸活化、焦铜、回收、水洗、防变色等。经过电镀的器件可以提高其使用寿命,具有性高和抗干扰能力强等特点,在电气工业控制中得到了广泛应用。
生产线为自动线,生产时由行车根据工艺及生产线状态自动移送工件,完成工件的电镀处理。行车主要执行挂钩的上升/下降运动,行车的前进/后退等4个动作,一辆行车分别装有2个三相异步电动机,并由变频器来控制电机运作。为了实现自动功能,主要采用三菱FX2N系列的PLC作为控制,同时采用三菱系列的触摸屏GOT1100作为上位机来执行动作操作,触摸屏产生人机界面和生产数据的监测及储存功能,和PLC构成实际的控制设备。
2 PLC控制系统
控制系统的设计以GX DEVELOP 8软件为平台,开发控制系统的程序。其编程方便,不但支持通常的逻辑、算术、位等,还直接支持子程序、跳转、文件和PID等指令和大量寄存器,并且有方便的注释功能(和程序在一起)。
2.1 软件设计
控制系统的控制对象是三台行车,对行车的运行动作进行控制,系统的被控量为电机的速度和正反转,执行机构为变频器,所以控制相对比较复杂。
结构化程序设计是编程中常用的并且是有效的方法,其思想就是采用子程序,将程序之间的耦合降低。采用这样的方式,也可以解决语句机械重复的问题。在这个程7芋就可以充分利用PLC编程时允许使用子程序的便利,采用结构化的编程思想,将行车挂钩的上下运动,及行车左右行走等分别编制子程序。自动程序采用的动作序列的思想,整个循环就是一个动作的序列,只要依次执行每个动作就可以完成自动所需要的动作。具体的每个动作则靠调用相应的子程序完成,避免程序机械重复的问题。主程序主要负责所有子程序的调度,判断在不同的情况下去执行相应的程序
2.2 编程中的几个细节处理
为了适应PLC编程的特点,在编程中对相关细节主要采取了以下几点措施:
(1)互锁处理
对于在运行中不容许同时出现的情况在程序上通过标志位进行互锁处理,这包括如下:挂钩的上和下;行车进和退;挂钩动作和行车动作;任何错误和动作输出;手动和自动。
(2)动作和故障的处理
动作子程序放在每个循环的结尾,这样在所有的情况都正常的情况下才输出实际的指挥行车动作的信号,只要有一个环节不正常,通过设置故障标志,动作子程序不输出实际的动作,这样确保行车的。
(3)手动和自动的转换
手动和自动的转换是该程序的一个难点。自动工作时随时可以切换到手动。但是手动切换到自动需要满足下面的条件才可以:三部行车都处在循环的初始状态,包括行车的位置和挂钩的位置;或者自动到一半时转手动,然后没有如何手动的动作后才转到自动。在其他情况下强行将手动切换到自动将作为可恢复性错误处理,发出报警声提醒操作者,并等待操作者切换到手动。
3 触摸屏软件的开发
3.1 软件的总体设计
该控制系统软件采用三菱公司开发的GOT系列的10寸触摸屏将用于现场控制的PLC控制系统和上位机监控系统连接起来。其次,从变量定义和I/O设备的管理人手,利用GOT多样化的绘图工具、强大的脚本语言处理能力和丰富的命令语言函数开发出生动、友好的主监控界面,以及含盖报警系统、行车操作,辅助控制等功能齐全的子监控界面。
经过开发的监控系统实时现场执行机构的操作模拟与监控,历史报警的查询等功能。其中还设有权限要求,要求操作时先要输入密码,以防非操作者的错误操作,以保证。
3.2 行车监控界面设计
作为整个软件的主要部分,行车监控界面的设计形象地反映了该行车在整个系统运行过程,并且可以通过对变量的正确调用,使主要行车的运行状态按操作人员的需要在系统运行时准确、生动地展现出来。管理人员可根据需要使行车处于手动或自动状态,甚至可以根据需求设定行车运行的目标槽位,通过行车监控界面图5报警界面上的按钮,管理人员还可以方便地进入操作,进而系统运行的详细信息。
3.3 辅助设备操作界面
为了实现系统的自动化,一些辅助设备如风机、移动小车、废水喷淋泵等的执行通过PLC来控制,然而其辅助设备的操作信号则通过触摸屏控制在该辅助设备的操作子界面里面,充分利用GT DESIGN软件提供的内部软元件,减少了PLC的输入点,从而减少了成本,又增加了可操作性。
3.4 报警系统界面
按照系统的设计要求,当行车行走提升、行走热继电器等过热,或者行车行走提升出要求范围时,要求监控系统能够做出及时、有效的报警。鉴于此在开发报警系统时,该设计建立了系统的报警注释,将用户创建的注释作为报警信息显示。然后通过报跟注释链接,与此同时与PLC中的寄存器链接从而储存。操作人员可通过上移,下移,检查等操作来查找以前出现的报警历史记录。
4 结语
该设计已经投入到企业的生产过程中,从现场的状况和产品的质量来看系统运行稳定,行车运行路线和辅助设备在理想的范围内,管理人员能够通过触摸屏及时、准确地了解生产现场的状况,并可以根据生产要求及时做出调整。该设计不仅改善了系统的稳定性和准确度,而且在很大程度上提高了企业的生产效率和自动化水平。



无负压供水系统用于生活用水的二次增压。所谓为无负压是指在水泵工作时对**管网的给水压力不产生压降,这就需要真空抑制技术、稳流补偿技术、预压平衡补偿技术、能量储存释放技术、变频调速技术和智能控制技术等多种技术共同作用来实现。智能控制器目前有基于单片机的控制器和基于PLC的智能控制器。PLC以其灵活和的特点越来越多地应用在无负压供水系统中。和利时公司的LM系列PLC以其强大的数据处理能力、优化的PID技术以及无负压供水系统标准的应用程序,在无负压供水设备中越来越多的应用。
关键词 无负压供水;和利时LM系列PLC;控制系统标准程序
1 引言
无负压供水是在变频恒压供水的基础上发展起来的,它的之处在于将系统直接与自来水管网串联对接,而不用建立水池和设置水箱,供给用户的水在一个密封的环境中,避免了饮用水在供水过程中的二次污染。这种供水方式实现了无池供水与变频恒压供水的结合,能够达到比其它供水方式环保节能的效果。此外在供水过程中,充分利用自来水原有的压力,因此可节电50%以上。不仅如此,无负压供水系统结合真空抑制、稳流补偿、预压平衡补偿、能量储存释放、变频调速和智能控制等技术,在供水的同时不,会对**管网产生压降,从而保证了**管网的正常运行。
2 无负压供水工艺概述
无负压供水控制系统的概念就是通过变频器控制水泵的运行频率,达到节能供水的效果,同时系统还加入了**管网保护功能、水泵保护功能以及故障处理等功能。为了节约成本,目前人们大多采用一个变频器控制多个水泵的变频运行方式,也就是我们常说的一拖二、一拖三或一拖四等控制系统。采用这种方式,变频器轮流控制各个水泵变频运行。
水泵的运行方式有两种,一种是变频运行,一种是工频运行。水泵的运行方式由控制器根据用户用水量的多少自动控制。系统启动后,水泵变频运行,当用水量增加时,变频水泵转换为工频运行,并启动下一台水泵变频运行。用水量减少后,工频水泵退出运行,水泵的投切过程如此循环反复。
在用水量很少,或没有用水时,为了节能与延长水泵的使用寿命,水泵还可以进入休眠状态。当用水量增加时,水泵会自动从休眠状态中被唤醒。当一台水泵长时间运行时,为了使各个水泵均衡运行,系统会自动选择运行时间短的水泵运行。当有水泵出现故障时,系统会自动跳过该水泵,不会影响其他水泵的投切过程。
3 无负压供水控制系统结构设计
在传统的无负压供水设备中,控制器大多采用单片机设计,这种控制器一般都不允许用户对其内部的程序进行修改。如果想增加一些功能,则找控制器的供应商帮助完成。这就导致了系统的灵活性较差,而且这种控制器一般都没有经过性测试,在性方面可能存在或多或少的问题。
采用PLC作为控制单元,在性上得到了保证,其开放的编程环境也使系统开发和维护加方便。不仅如此,和利时还为无负压供水设备提供了标准的例程,用户可以直接使用这个例程搭建无负压供水控制系统,或者可以根据需要对例程进行简单的修改,这样大大提高了系统的建立效率以及系统的开放性。
本次设计针对1拖3无负压供水控制系统。系统主要由PLC、变频器、离心泵、压力传感器、水位传感器、缺相保护器、故障报等组成。PLC负责三个水泵的投切控制算法,根据管网出口的设定压力动态调节变频器的输出频率,以及实现倒泵、休眠、故障处理、无负压补偿等功能。本系统采用和利时LM系列PLC作为系统控制器,并且通过LM系列PLC自带的RS232接口连接现场的触摸屏HT6720T,触摸屏程序具有系统参数设置、显示系统运行状态、查询系统报警等功能。为了便于用户查询控制系统的运行状况以及设置出口压力等参数,这里还用LM系列PLC自带的RS485接口连接了一个短信数传模块,用户可以通过手机随时查询水泵的运行状况以及设定管网的出口压力。无负压供水控制系统结构如图1所示。
3-1 无负压供水控制系统结构图
4 无负压供水控制系统软件设计
无负压供水控制系统操作界面由触摸屏HT6720T制作。操作界面主要可以完成无负压供水控制系统运行工况的监视、系统运行参数设置、实时报警显示、历史报警显示等功能。触摸屏工况界面如图3所示,可以查看各个水泵的运行状态以及进水压力、目标压力和出水压力等几个重要的输出参数。
图4和图5是参数设置界面,可以进行系统参数的设置。所设置的参数均为掉电保持。LM系列PLC中掉电保持区的数据为保持,可以避免因停电导致系统设定参数丢失的后顾之忧。图6为触摸屏报警查询画面,可以查询实时报警和历史报警信息。
图3 触摸屏工况界面
5 系统的特点
基于LM系列PLC的无负压供水系统具有如下特点:
性
性是无负压供水系统的关键。与传统的单片机控制器相比,LM系列PLC在稳定性、抗干扰性以及恶劣条件下的工作性能都要胜一筹。LM系列PLC的输入和输出点都是与现场隔离的,这为系统的提供了硬件基础。系统所提供的增量PID运算功能块使系统能够根据用户的用水量调节给水泵的工作频率,使给水压力以较快的速度稳定在设定值,这也在功能上保证了系统的稳定运行。
易用性
LM系列PLC体积小、集成化程度高、运算速度快、逻辑控制容量大,还可以进行在线调试和离线调试,有强大的视图功能,可以大大降低编程调试的工作量,缩短调试的周期。灵活的编程功能,可以给未来的系统升级带来大方便。系统采用7英寸TFT触摸屏,整个系统的运行状况一目了然,各项控制参数也可以根据不同工况进行调整,并可以生成实时报警与历史报警列表。同时,还利用LM系列PLC自带的RS485接口连接短信数传模块,用户可以直接通过手机随时查询系统的运行工况,并可以进行管网出口压力等参数的设置。
功能性
本系统是在LM系列PLC的无负压供水标准程序的基础上建立的,实现的功能包括了水泵的自动投切功能、休眠倒泵功能、水泵级判断功能、优化的故障处理功能、多时段设定功能、低水位自动保护功能、无负压功能、短信通讯功能以及PLC锁定功能等。整个系统的搭建过程几乎没有对标准程序进行修改,在实现了强大功能的基础上,方便快速地完成了控制系统的搭建。