6ES7314-6BH04-0AB0千万库存
  • 6ES7314-6BH04-0AB0千万库存
  • 6ES7314-6BH04-0AB0千万库存
  • 6ES7314-6BH04-0AB0千万库存

产品描述

产品规格模块式.包装说明全新

6ES7314-6BH04-0AB0千万库存


1、系统概述
CARGOPRO(CARGO CONTROL SYSTEM)系统主要包括:液位遥测系统、阀门遥控系统、立高位及高高位报警系统和大舱进水报警系统这四个子系统组成,可以对全船的货控系统进行检测。
        我们采用GE Fanuc 90-30、VersaMax Micro等系列的PLC作为系统的控制单元,VersaMax Remote I/O作为远程站进行信号采集,Genius Bus、Mod Bus、Profibus等通用总线协议作为内部通信协议,并通过TCP/IP网络协议与工控软件iFix通信,实现人机对话。
 
2、系统解决方案
整套CARGOPRO系统的系统图如图1所示:

整套 CARGOPRO 系统的系统图如图 1所示:

图1 CARGOPRO系统图
2.1 液位遥测系统
液位遥测系统采用分散采集,集中控制的设计理念,对相应舱室的液位,液货舱的温度以及四角吃水等进行检测与报警。由于信号种类多,分布广,在采集时尤其注意,因此所有的信号都通过安装在各个采集箱中的GE VersaMax Remote I/O模块进行,保证所采集信号的准确性。GE VersaMax Remote I/O模块通过GE的Genius Bus总线协议与安装在货控台的PLC主站通信,将所采集的信号发送到PLC的CPU模块。经过CPU处理后将控制信号经Genius Bus发送到GE VersaMax Remote I/O模块,实现远程控制。
本系统上位机部分包括一台工控机、一台交换机以及打印机和软件。工控机通过TCP/IP协议与PLC主站通信,实现软件HMI/SA iFix与PLC之间的信息交换。操作者通过iFix软件可以实现对所有测量点的实时监测以及对报警信息的处理。
2.2 立高位及高高位报警系统
该系统通过采集立的报警信号,对液货舱、污水舱、压载水舱等舱室的高液位及高高液位信号进行报警。采用立的VersaMax Micro系列PLC作为控制器,QuickPanel View系列的触摸屏作为HMI,构成了一个相对立的控制系统,实现相应报警信号的显示和控制。
作为HMI的触摸屏与PLC控制器之间通过Mod Bus总线协议通信,所有报警信号的显示以及操作员对系统的操作在一个触摸屏上实现,使得整个系统为精简。
2.3 大舱进水报警系统
系统利用压力式液位测量原理,将压力信号转换成4-20mA电流信号,送至货控台上的VersaMax Micro系列PLC控制站,PLC控制站与QuickPanel View系列的触摸屏通过TCP/IP通信,实现报警信号的现实与控制。整套系统可以实现立的液位显示,报警显示及控制。
2.4 阀门遥控系统
阀门遥控系统由货控台GE Fanuc 90-30系列PLC控制主站、电磁阀箱VersaMax Remote I/O PLC采制站、阀门遥控工控机、液压动力泵站、电磁阀箱(包括应急阀块)、液动阀门、手摇泵、应急手摇泵组成。阀门遥控装置采用电-液型驱动装置来控制电磁阀的动作以达到遥控操纵货油及压载舱管路阀门的打开和关闭。阀门的开闭操作及阀位指示都在货控台上阀门遥控显示屏上。
在货控台的 PLC 控制主站处可对液动遥控阀进行开关操作。开关阀的开关指示,红色指示阀门关闭,指示为阀门打开;开度阀具有开度指示及控制。电磁阀箱 PLC 控制站通过 Genius Bus与货控台 PLC 主站连接,根据货控台 PLC控制站的操作要求,控制相应的电磁阀,通过电磁阀的瞬间通电换向并锁位功能,控制油路进出方向,达到开关阀门的目的;所有遥控阀的阀位指示及开度控制信号均送到电磁阀箱 PLC 控制站,通过 Genius Bus发送至货控台 PLC 控制站接收。
上位机部分包括一台工控机、一台交换机以及打印机和软件。工控机通过 TCP/IP 协议与 PLC 主站通信,实现软件 HMI/SA iFix 与 PLC 之间的信息交换,实现阀门的控制及状态的显示及报警历史与查询。
3、系统特点
  为了尽可能的保护系统的性和稳定性,我们采用的控制和信号采集模块是GE的PLC; 利用分散采集,集中控制的原则,使得各种信号的采集与控制准确、方便;兼容多种通用的总线协议,如:Genius Bus,Mod Bus等,大的增加了系统的可扩展性;同时运用模块化设计,将系统划分为不同功能的模块,使其立,便于修改和扩展,这样既能满足根据客户的特殊需要,又能实现个性化的组合;多种人机界面,如:IPC、触摸屏、MIMIC板等,确保了操作人员能方便,快捷地信息并实现控制。
4、结束语
CARGOPRO系统通过高的性和稳定性和友好的人机交互界面在多艘船上得到了应用,并通过了多家船级社的船检

在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现舱中是的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比接触器—继电器控制系统。

2 设备与工艺要求

本文主要针对的是船舶辅助燃油锅炉,其蒸发量一般为0.45-2.5t/h,蒸汽压力在0.3-0.7Mpa左右,但只要简单修改PLC程序就可以适用不同型号的船舶锅炉。船舶锅炉自动控制一般有以下几个环节:蒸汽压力自动控制,燃烧程序的自动控制,锅炉水位自动控制,保护与报警。

系统的全自动起动、停炉和故障事件处理,按照要求在PLC中编制用户程序,实现:给水、扫气、点火、燃烧等过程的全自动起、停控制。锅炉定期定时保养维护的自动提示和期不维护的系统自动闭锁。为配合燃烧,PLC在系统的起停运行中,根据控制要求自动起停风机电机和开闭风门完成扫气工序,并根据燃烧情况,控制风门的开闭大小。此外,风机电机故障、炉内压力限联锁、燃烧发生故障的联锁控制和报警处理,报警联锁等控制处理等也由PLC用户程序实现。

2.1 水位控制

采用水位计对水位进行检测,根据控制需要将3个水位(下限水位、下下限水位、上限水位)的3个开关量信号接入PLC,经PLC控制水泵电机,实现合适给水量的控制、低水位联锁、报警处理给水水泵电机故障时的联锁控制等,使系统全自动平稳地运行。

2.2 蒸汽压力控制

蒸汽压力通过压力传感器测量实现。水位正常时,如蒸汽压力在0.4-0.46Mpa时锅炉正常燃烧;当负荷减少时,蒸汽压力上升到0.46Mpa时锅炉停止燃烧;如故障蒸汽压力仍上升至0.49Mpa时,切断电源并发出报警;当蒸汽压力下降到0.4Mpa以下时锅炉重新点火燃烧。

采用压力传感器测量当前蒸汽压力,通过压力开关,信号接入PLC的两点开关量输入,或者用压力传感器测量通过变送器将信号接入PLC的一路模拟量输入,实现两级燃烧(大、小火)控制和压力上限保护及实时监视。

2.3 燃烧程序自动控制

燃烧系统的自动控制就是蒸汽压力的自动控制。汽压是燃烧自动控制的被控参数。对锅炉发出起动信号后,自动起动油泵和风机,并把风门调到大而不向炉膛油,用压缩空气大风量吹扫,即“予扫风”,以防止点火时发生“冷爆”。预扫气结束后自动把风门关到小位置,打开点火喷油电磁阀,喷入少量燃油;同时接通点火变压器进行点火。点火成功后,自动断开点火变压器,燃油电磁阀正常打开,进入正常燃烧。

2.4 自动保护和报警

按照要求在PLC编制中实现过水位保护、高水位保护、点火失败报警、燃烧熄火报警等。

3 系统设计

3.1 PLC选型及I/O分配

根据以上控制要求,船用辅锅炉控制系统采用FX2N-32MRPLC,它是日本三菱公司的产品,具有运行速度快,功能强,提供的I/O点数为16/16,除实际使用外,有足够的余量供系统以后扩展。模拟块采用FX2N-4AD和FX2N-4DA。提供4路输入和输出。通信模块采用FX-232AWC。

本系统PLC的I/O分配表如表1。

为了节能,锅炉控制系统中的给水、燃烧控制部分能采用变频器,那么整个锅炉的控制水平(如温度、压力、水位的控制精度)将可得到较大的提高,并且其节能效益是十分明显的,这点在很多的锅炉系统,特别是较大容量的锅炉控制系统中己得到证实,其明显的节能效益使得由于使用变频器带来的控制系统成本提高在短期内就可得到回收,所以我们设计的控制器在这方面作了改进,以适应不同的要求



按照船舶锅炉操作规程,每次开炉点火前先打到自动控制位置。检测水位是否正常,正常则检测油温和油压是否正常,正常则进入点火程序。锅炉点火燃烧后,当蒸汽压力达到正常供汽时(0.46MPa)。供水系统通过PLC判断水位是否在上限与下限范围内,若在此范围内则水泵进入恒压供水状态,并不断检测锅炉水位。当水位到达上,水泵停止,并继续检测水位;如水位上上,输出报警,请求排水。如到水位上,重新起动另一台水泵进行供水,以使水泵交替使用。如运行中检测到水位水位下,则两只水泵同时运行;当水位升至下,关闭一台水泵,加另一台水泵继续在工频状态下供水。如水泵工频运行水位仍继续下降并水位下下,PLC报警并控制锅炉停鼓风压火,直至水位下下,才解除鼓风停机恢复正常工作,从而完成供水联锁控制。若上述供水系统切换到手动方式,也由PLC进行联锁控制,以保证供水正常,锅炉运行。


图2 系统软件图

3.3 PLC控制的实践试验

由于船用辅锅炉燃烧控制中变量较多,所以控制电器用量较大, 为探索研究新技术应用,所以采用了可编程序控制器实现。考虑增大输出功率,故用小型中间继电器作为输出形式,以储备功率和隔离中小功率设备间的电联系。

在实践中,PLC输入回路设置了人工与自动控制方式的选择,在人工操作时, 各种功率元件的起动、停止及锅炉燃烧按钮仍然存在着。也保留设备运行报警等各环节。在自动选择时,设有各种压力和水位控制的各检测输入量。为调整方便,附有各人工模拟开关量输入,以备设备自检的需要。在船舶实际运行工况中,有主机排气的废气等设备的附加受热面,所以设有废气开启阀控件作为联接需要。

4 结束语

采用FX2N-32MRPLC对船舶锅炉控制系统进行改造,经试运行,未出现过误动作,在系统性方面了良好的效果,改善船员劳动强度,提高生产效率,并且节能效益明显,为船舶机舱无人化具有重要的实用与经济效益


摘要:介绍了采用PLC可编程控制器,EM231输入模块等硬件组成的系统控制某型航空电源车0~70 V电路。通过使用PID等运算指令,该系统能控制某型航空电源车工作,使某型航空电源车按要求输出电流、电压。通过试验达到设计要求。0 引言   某型航空电源车是某型飞机起动而设计的一种多功能综合型电源车。采用了PLC-EM23l组合控制技术、FSLW双流无刷电机,模拟某型飞机发动机启动过程,增加了直流O~70 V起动电源。经过使用,其电源品质和性满足某型飞起的启动要求。1 某型航空电源车O~70 V控制原理   某型电源车0~70 V是从3~4 V左右逐渐增大到70 V左右的直流电源。其控制方式是在双流发电机直流电压励磁调节的基础上,采用PLC可编程控制技术,通过发电机进行采样,由软件控制来实现,其控制原理图见图1。0~70 V输出是通过控制接触器对飞机供电,并和28.5 V输出互锁。通过可编程器输出的PWM信号控制IGBT调整管的导通时间,以此来控制励磁电流的大小,改变发电机的输出电压。同时通过输出采样电压的采样分析判断,对PWM的输出进行补偿和时间调整,以保证0~70 V电压的输出能够满足某型飞机起动特性要求。    工作过程为:由飞机起动系统向地面电源设备发出“升压控制”信号,通过地面电源设备的O~70 V励磁控制电路,按照设计要求自动转换发动机励磁方式,使发电机端电压从其剩余电压逐渐上升到70 V左右。起动升压状态如下:阶段,发电机以并励为主,发电机输出从剩磁电压3 V左右上升到14 V左右,电流从零猛增到1900 A左右;二阶段,发电机由并励转为串励状态,串励后发电机电压从14 V左右上升到38 V左右,起动电流从1900 A左右下降到1200 A左右;三阶段,飞机发动机起动过程的后阶段,在这一阶段发电机工作在复励状态,发电机端电压从38 V上升到70 V左右。


2 PLC在直流O~70 V启动电源中的设计 2.1 硬件设计   采用继电器的控制电路中,发电机励磁方式的两次转换是由两个继电器吸合来实现控制的,对继电器吸合电压的准确性要求较高,吸合电压由分压电阻采样发电机输出电压,由电位器来控制,随着分立元件的长时间使用,性能参数等发生改变,都会使继电器吸合电压发生改变;另外采用继电器作为转换控制器件,可导致发电机在升压阶段中电压的每一个转折点处,电压、电流都不是平滑改变的,这将降低用电设备的使用寿命。

采用PLC可编程控制器控制电路(见图2),可以平稳控制,使发电机输出电压、电流无变化,延长用电设备使用寿命。西门子S7-200系列可编程控制器,其中处理单元采用CPU224,模拟量输入模块采用EM231,硬件电路简化示意见图2。西门子S7-200系列可编程控制器使用CPU224,CPU224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,大扩展至168路数字量I/O点或35路模拟量I/O点,13 k字节程序和数据存储空间,6个立的30kHz高速计数器,2路立的20 kHz高速脉冲输出,具有PID控制器,1个RS485通讯口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。是具有较强控制能力的控制器。    CPU224的IO.O输入端口检测到飞机起动信号时,通过电阻分压和电流传感器对发电机的输出端电压和输出电流进行采样,采样值进入PLC模拟量输入模块EM231,由处理单元CPU224内软件控制,对地面起动电源发电机输出电压和回路电流进行分析判断,比照飞机发动机各阶段所需的电压和电流起动波形,根据判断结果实时在其QO.O端口输出各起动阶段需要的PWM信号来控制大功率MOS管,以此来控制地面起动电源发电机励磁电流的大小,从而改变发电机的输出电压,以保输出的0~70 V电压严格满足飞机启动特性的要求。2.2 软件设计   在软件设计中,我们采用了增量式PID控制算法,其具体算法如下:     △P(k)=Kp[E(k)-E(k-1)]+KiE(k)+Kd[E(k)-2E(k-1)+E(k-2)]其中:P(k):为K次采样时调节器输出,E(k):为K次采样时的偏差值,Kp、Ki、Kd:PID比例系数。通过采样电压的变化,采用实时控制,闭环调节励磁电流,用PID调节规律,不断修正PID比例系数,按照匹配参数进行输出脉冲宽度控制,使发电机输出电压既满足0~70 V电压逐步升高的起动规律,又保证了各阶段时间节点之间电压的稳定性,使飞机起动电压和转速稳定上升。2.3 软件控制过程   电压传感器将O~70 V电压转换为0~5 V的直流信号传输给PLC的A+端;电流传感器将0~2500 A电流转换为0~5 V直流信号传输给PLC的B+端;PLC实时采样,计算出△I/t、△V/t的变化值。

(1)采样时间开环,电压、电流双闭环控制方式调整电压输出过程,参照某型飞机的起动过程中时间与电压的对应关系而设置,即:0~3 s前,电压上升至1.5~7 V;3~20 s前,电压上升至7~19 V;20~30 s前,电压上升至19~35 V。

(2)根据电压、电流的变化,非线性分阶段对输出电压进行调整,即根据电流的变化△I和△I/AT电流变化率的控制参数的选取,通过软件模糊调节器来控制PWM大小及继电器工作的次序。PLC实时采样,计算出△I/△T、△U/△T的变化值。根据控制要求,确定时间对应变化关系。采用模糊智能控制方式方可得到有效控制的目的。

①模糊关系    ②模糊矩阵   ③模糊变换   根据A=(X1,X2,X3,X4,X5);B=(V1,V2,V3),求得B=A·R。

④模糊决策   若1.5~2 s电压6~8 V,执行R=(X1·U1)U(X1·U1);若4~20 s电压18.5~19.5 V,执行R=(X2·U2)U(X2·U2);若20~40s电压19.5~35 V,执行R=(X3·U3)U(X3·U3)。电压变化各元素隶属度见表2。    对应量的模糊表:    根据模糊关系和模糊表,改变PWM控制输出占空比,使得励磁电流通过模糊决策算法,根据模糊表进行控制。根据实时采样值达到的偏差值进行推理后,逐步修正输出因子的控制值,从而改变占空比,来达到改变励磁电流的目的。再根据电流、电压、时间的隶属关系,进行再一步的修正,终实现输出控制稳定电压O~70 V的目的。2.4 实验结果   试验波形见图4,通过试验可以看出用PLC对发电机进行自动控制,满足某型飞机起动时的特性。3 结束语   PLC可编程控制器在某型航空电源车O~70 V中的应用满足了某型飞机起动要求。采用数控方式,使起动时间节点与飞机上定时机构动作时间一致,电压变化平滑,飞机转速稳步上升,起动瞬时起动电流小,提高了飞机发动机使用寿命。PLC可编程控制器具有的高性、编程简单易用等特性,使得其在工业自动化控制领域的应用越来越广泛。

柴油发电机常作为立电站和应急电源应用广泛。本文介绍了:利用西门子可编程序控制器(PLC),实现市电电源与柴油发电机供电的防并联自动切换供电。详细论述了系统的组成结构,利用简单的控制线路,实现复杂的柴油机组与市电切换供电系统的自动控制。
关键词:PLC 供电 柴油发电机组

柴油发电机组是自备电站交流供电设备的一种类型,是一种小型立的发电设备,以内燃机作动力,驱动同步交流发电机而发电。柴油发电机组又称移动电站,是一种备用电源,当外部电网发生供电紧张、故障或检修暂停供电时,可通过启动柴油发电机组供电,以维持正常供电,这在发生临时供电、连续生产时突然断电以及消防等方面发挥着重要作用。

可编程序控制器(Programmable Logic Controller),简称PLC。PLC 的部分是微处理器,不仅具有逻辑控制功能,而且还具有运算、数据处理和数据传送等功能,是具有计算机功能的工业控制装置。可编程序控制器紧凑的设计、良好的扩展性、低廉的价格、强大的指令以及较高的性和简便的维护近乎的满足了自动控制要求。现使用西门子 S7-200 可编程控制器实现柴油发电机组与市电切换的自动控制。可编程序控制器的使用不但省略了许多繁琐的中间控制环节,还大大提高了性和性,达到了理想的效果。

1 系统的组成

基于PLC 的柴油发电机组与市电切换系统,由柴油发电机组和西门子可编程序逻辑控制器组成。通过此控制系统能实现:当电网正常时,负载由电网供电;当电网不正常时,控制系统立刻起动柴油发电机组,实现柴油机组输出对负载供电。当电网恢复正常后,系统恢复电网供电,并关闭柴油机组。通过此系统能确保负载的正常输出。可编程序控制器(PLC)选用西门子S7200 型CPU222 AC/DC/ RLY,共有8 点输入,6 点输出。可以满足系统控制要求。

1 . 1 柴油机启动与停机

合上接地开关SA1,整个系统开始工作,当可编程控制器通过三相电压保护继电器,检测到市电不正常时,立即起动柴油发电机组。柴油发电机组的启动分成以下两个阶段。① PLC 输出点Q0.1 输出,使柴油机进入运行状态,并将输出Q0.0 闭合使KA1 得电,启动马达M 运转,带动柴油机运转,当柴油机启动成功后,PLC 输出点Q0.0 输出点立即断开,KA1 失电,启动马达与柴油机飞轮分离。②当柴油机启动成功后进入怠速运行30s 后,PLC 输出点Q0.2 闭合,则柴油机进行全速运行,电子调速器驱动执行器,将柴油机油门加大,柴油机进入全速运行状态[1]。

柴油发电机组的停机也可以分成以下两个阶段。①在确定柴油机组对外供电开关已经断开,即停止对负载供电后,PLC 输出点Q0.2 断开,则柴油机进行怠速运行,电子调速器驱动执行器,将柴油机油门减小,柴油机进入怠速运行状态。② 30s 后,PLC 输出点Q0.1 断开,使柴油机进入停止状态。

1 . 2 柴油机组与市电切换供电控制

过载及短路保护断路器QF1 及QF2,在平时状态下为断开,在系统开启状态时,闭合断路开关。市电通过接触器KM1 向负载供电。机组通过接触器KM2 向负载供电。两个接触器通过联络柜进行防并联机械互锁。通过市电上的三相电压保护继电器,来检测市电是否正常。当市电正常并保持稳定时,三相保护继电器会给PLC 发出一个市电正常指示信号,PLC 检测到市电正常后,通过控制输出将机组供电接触器KM2 断开,闭合市电供电接触器KM1。此时,电站通过市电向负载供电。

当市电不正常时,三相保护继电器会给P L C 发出一个市电不正常指示信号,PLC 检测到市电不正常后,通过PLC 启动柴油机,使其全速运行后,控制输出将市电供电接触器KM1 断开,闭合机组供电接触器KM2。此时,电站通过机组向负载供电。

1.3 软件设计

PLC 由处理单元CPU,存贮器、输入、输出单元、电源和编程器等组成。PLC是采用循环扫描的工作方式,即每一次状态变化需要一个扫描周期。PLC 循环扫描时间一般为几毫秒至几十毫秒,整个过程分为内部处理,通信,输入处理,执行程序,输出处理几部分。

PLC 程序运行是从起始地址0000 开始到后一条地址(即END 指令),做反复式巡回扫描,严格按梯形图、逻辑图逻辑行顺序和逻辑行逻辑元素的排列自上而下,从左到右逐字逐句处理程序。这样,继电器控制系统很难解决的结点竞争及延时继电器不的现象就不会产生,从而保证了控制系统的性。

S7-200 可编程序控制器有3 种编程方法,即梯形图(LAD)、语句表(STL)和功能图块(FBD)。梯形图比较直观,编程、调试都很方便;语句表编程速度慢,调试起来较繁琐; 功能图块可以查看到象普通逻辑门图形的逻辑盒指令但是相对复杂,使用较少。用语句表编程的手持编程器的性价比,用户可根据习惯进行编程语言的选择[2]。

2 系统注意事项

① PLC 安装的应避免太阳光直接照射,保证有足够的散热空间和通风条件,避免安装在干扰严重高温、高湿度有粉尘、不清洁以及有腐蚀气体的环境中。在此例中,要将PLC 安装在有减振措施的控制屏内。

② 不要将输入、输出线同用一根电缆,同时动力电缆和控制电缆要分开铺设,避免干扰。

③ 电源连接:PLC 通常用的是单相交流电源。接线时,要分清接线端子上“N”端“零线”和“接地”端。PLC 的交流电源线应单从机进入控制柜中,不能与其他直流信号线、模拟信号线捆在一起走线,以减少对其他控制线路的干扰。为了抑制加在电源及输入端、输出端的干扰,应给PLC 接上地线,接地点应柴油发电机组的接地点分开,平常要注意检查PLC 的接地是否良好。

④控制PLC 的工作环境(0℃~50℃为宜),必要时要采用强迫风冷冷却方式,可以有效地提高它的工作效率和寿命[3]。

4 结语

西门子S7-200PLC 是性价比很高的PLC 控制器,在本例柴油机与市电切换供电的控制系统中,解决了原先继电器控制复杂、故障几率较高的难题,同时使电控元件之间的接线十分简洁,控制的性大为提高。无论从设计,加工和应用上都有表现其技术的优势,值得大力推广[4]。



http://zhangqueena.b2b168.com

产品推荐