西门子6ES7314-6BH04-0AB0千万库存
  • 西门子6ES7314-6BH04-0AB0千万库存
  • 西门子6ES7314-6BH04-0AB0千万库存
  • 西门子6ES7314-6BH04-0AB0千万库存

产品描述

产品规格模块式包装说明全新

西门子6ES7314-6BH04-0AB0千万库存

1、引言

啤酒生产过程分为麦芽制造、麦芽汁制造、前发酵、后发酵、过滤、包装等几道工序。啤酒灌装、压盖机部分属于包装工序。啤酒经膜过滤后由管路送入回转酒缸,再经酒阀进入瓶子中,压盖后获得瓶装啤酒。啤酒灌装、压盖机的工作效率和自动化程度的高低直接影响啤酒的日产量。

为了满足我国啤酒行业日益扩大生产规模的需求和啤酒现代化灌装机械高速灌装的要求,国内各啤酒生产厂家都在积寻求或改造本单位的啤酒灌装生产设备,使其成为具有良好的使用性能,的技术水平及高生产效率、运行稳妥、维护的啤酒现代化灌装机。

2、啤酒灌装、压盖机工作原理和控制部分构成

液体灌装机按灌装原理可分为常压灌装机、压力灌装机和真空灌装机。啤酒灌装、压盖机采用压力灌装方法,是在大气压力下进行灌装,贮液缸内的压力瓶中的压力,啤酒液体靠压差流入瓶内。

目前国内外实现灌装工艺路线基本上是:利用回转酒缸产生的旋动,使安放在酒缸槽位上的空瓶通过机械机构将固定在酒缸上部的欲抽真空阀打开,对已封好的瓶子进行抽真空处理,拨转外操作阀杆,打开气阀,对瓶内充填CO2气体,抽真空凸轮继续打开真空阀,将瓶内空气与CO2混合气体抽出,气阀再次打开,对瓶内充填CO2气体,灌装阀内的液阀在瓶内压力接近背压气体压力时打开,酒液顺瓶壁注入瓶内,通过气动或电动控制灌装阀实现啤酒的灌装。

当今的啤酒灌装、压盖机的控制系统主要由光电开关位置检测部分、走瓶带、酒缸转速的变频调速部分、主控由可编程控制器、触摸屏等组成。灌装、压盖机的机械结构装置与PLC可编程控制、变频无级调速、人机界面等现代自动控制技术手段完整的结合,形成机电一体化。

3、控制部分改造方案

国内很多啤酒厂家现使用的灌装、压盖机的控制系统的自动化程度参差不齐;所有手动按钮和工艺开关都设置在一个操作箱的面板上,PLC控制器大都为日本OMRON公司或三菱公司的早期产品,设备连锁控制、保护设置少,加之啤酒灌装的现场环境恶劣,潮湿度大,使开关等接触触点锈蚀严重,系统的信号检测部分故障率较高,造成设备控制系统运行的性低,设备正常运行等现象。

以实际改造的丹东鸭绿江啤酒有限公司的灌装、压盖机的控制系统为例,介绍改造方法,阐明改造这类设备的控制思想和思路;根据现场的实际工艺条件,重新编写了PLC的运行程序。针对啤酒灌装、压盖机控制系统的实际状况,并根据现场的实际工艺条件,重新设计了设备的PLC控制系统。这种改造方法和思路同样可以应用与其他液体介质灌装设备的改造。

3.1系统硬件配置

使用日本三菱公司的FX2N128MRPLC替换原系统使用的2台OMRON公司的C60PPLC,原系统的PLC由于是老型号产品,和计算机联机需要配置特殊的通讯转换器,系统需要增加外部I/O输入点时,扩展模块备件较难寻。FX2N128MRPLC是集成128点I/O的箱体式控制器,具有运算速度快,指令丰富、性能价格比高、联机编程简单、扩展方便等优点,是三菱FX系列中功能的小型控制器。

(1)采用三菱公司的900系列的970GOT人机触摸屏替换原系统使用的面板按钮并监控显示设备的运行工作参数。970GOTHMI为高亮度的16色显,通过汇流连接和FX2N128MRPLC的CPU直接连接,实现快速回应。具有许多维护功能,如列表式编辑功能、梯形图监控(故障查找)功能、系统监控功能等用来查找故障和维护PLC系统。

(2)灌装、压盖机的变频器在改造中没有换,现场检测信号的手段仍然采用开关式检测,因检测开关长期工作在湿度很大的场合,因此选择电容式的接近开关,根据PLCI/O端子的接线方式,选择PNP型的接近开关。

3.2系统程序设计

PLC控制器的程序设计和是围绕着酒缸的旋转速度控制和酒缸上60个瓶位相关位置的检测移位、破瓶、空瓶瓶位相关位置的检测移位和相关灌装阀等的控制。其中的瓶位移位检测程序中,采用了三菱PLC位左移指令,驱动执行条件输入每一次由OFF-ON变化时,执行N2位移动,N2为移动的位数。
(1)瓶位移位子程序
413LDX055;机器计数脉冲测量检测输入点
414PLSM49;主电机转速测量输入点取上升沿微分后的位M49
416PLFM301;主电机转速测量输入点取下降沿微分后的位M301
418LDIM590;进瓶个数检测
419ANIX005;连锁保护点
420ANIX006;紧急停车保护
421OUTM50;进瓶瓶位是否有瓶检测
422LDM49;主电机转速测量输入点
423SFTLM50M500K60K1
瓶位移位检测

采用PLC位左移指令,这条指令是整个子控制程序的之一,主电机和瓶位检测开关同步检测移动的酒瓶,主电机每转一周,正好对应酒缸转过一个瓶位,PLC内部单元内对应这60个瓶位的单元为M500~M559,单元个数用个字母K设置为K60,每次变化一位用二个字母K设置为K1,M50反应了瓶位的空、缺位置,并将检测到的这个位置以电机转速的频率移位下去,在内部相应的单元内置“1”或“0”,控制相应的阀门和搅拌瓶盖的电机的开与停。系统在连续检测90个空瓶位后,停止搅拌瓶盖的电机的运行,检测瓶位的个数可以根据用户的要求任意设定。
432LDX052

出瓶位

回转酒缸通过压力往瓶内背压装酒的过程中,空瓶在背压后,可能由于瓶子本身裂纹等原因导致突然爆瓶,这就需要出爆瓶瓶子的位置,在这个瓶位的位置进行打开吹扫电磁阀,喷出压缩空气,将瓶位上的碎瓶片吹离位置,在连续吹扫几个瓶位后,在打开喷射电磁阀,喷射出高压水注,在对破瓶位置周围瓶位连续喷射几个瓶位。
(2)实现爆瓶检测、控制的步进控制
482LDX055;机器计数脉冲测量检测输入点
483PLSM49;主电机转速测量输入点取上升沿微分后的位M49
485PLFM309;主电机转速测量输入点取下降沿微分后的位M309
486LDIM70;破瓶位置检测
487ANIM071;连续破瓶位置检测
488ANIX052;进瓶位置
489SFTLM52M600K20K1

破瓶检测和瓶位检测开关同步检测移动的破瓶,主电机每转一周,正好对应酒缸转过一个瓶位,PLC内部单元内对应这20个破瓶位的单元为M600~M619,单元个数用个字母K设置为K20,每次变化一位用二个字母K设置为K1,M52反应了破瓶的位置,并将检测到的这个位置以电机转速的频率移位下去,在内部相应的单元内置“1”或“0”,控制相应的喷射和吹扫电磁阀开与停。连续喷射和吹扫电磁阀的开听、停时间可以根据工艺要求任意设定。
系统自动化运行的就是控制进出瓶盖的同步跟踪,既准确电机转速开关、破瓶开关和进瓶检测开关三个条件。

(3)970GOT人机触摸屏操作终端机的软件采用三菱公司的GTWORKS软件包,其中GTDesigner是一个用与整个GOT9000系列的绘图套装软件。该软件包操作简单,事先可在个人计算机上组态并调试,完毕后下载至人机操作终端机。同时,因为人机界面又具有触摸屏的作用,将常用的开关设在显示屏上,方便操作。还可并以增加一些功能,如设置报警信息等。

4、改造后控制系统功能

系统正常运行时,机器为自动控制,根据进出瓶带上瓶的满缺,按设定速度或慢速运行,进瓶档瓶,无瓶不下盖,爆瓶自动冲洗,灌装位置自动背压,下盖输盖系统的自动开停和保护等动作的协调联锁。原来所有按钮的操作改造后都在触摸屏上进行。

5、控制系统检测状态的监控功能

进瓶检测开关和破瓶检测开关通过检测每个压瓶部分上面的小铁片的位置,产生光电脉冲输出,再有PLC采集,由于每个压瓶部分上面的小铁片的位置是活动的,在机器运行一段时间后,压瓶部分上面的小铁片和检测开关的位置发生位移,造成检测开关误判断,如没瓶判断为有瓶,爆瓶漏检、误检等造成输出失误,使PLC产生误动作,造成如背压、爆瓶吹、洗、瓶盖搅拌系统控制失灵等故障现象。

在改造前的日常生产过程中,碰到这种现象时,操作工只能将各个功能开关或按扭打到手动控制档位,使机器设备工作在无监控状态下,机器失去自动控制功能。造成了很大的生产原料如气、水、酒的浪费。只能在生产的间歇,才能由维修钳工和电工根据检测开关上的小发光二管的亮和灭通过调整位移距离只有5~8mm的检测开关的安装位置,来修正检测开关和小铁片的间隙。这种检测手段非常落后,调整后的效果反应致后,不能及时反应调整结果。

针对这种检测状况,结合改造后的灌装、压盖机控制系统的配置,新增了这部分检测功能,并集成在人机触摸屏中,完成瓶位检测。

在人机触摸屏的界面分页显示屏上,可以分别时时动态显示60个瓶位的状态和爆瓶时的瓶位状态,有瓶、无瓶、爆瓶、背压开关等检测开关、搅拌电机等电磁阀的开关状态都以不同颜色来显示,非常直观。

在需要修正检测开关和小铁片的位置时,可以在正常生产的条件下,不停机,由维修人员只要根据显示屏上的瓶位状态,就可以在线调整,并马上看到调整后的效果。在日常维修中,也可以用它作为状态监控设备,观察输出设备的运转状况。
增加这套系统功能的是为保证灌状压盖机的自动化控制系统正常运行而专门设计的。

6、结束语

改造后的控制系统大大地简化了复杂的机械结构,经现场运行情况和控制效果检验,系统的自动化程度达到了设计要求,大大减少了操作人员的劳动强度,使啤酒灌状的日产量比过去提高30%以上,故障率大大减低。体现了现代设备的自动控制技术。是在消化、吸收当今工业控制的技术的基础上加以、研制而成的目前国内技术的灌装控制系统。


一、工程概述:


在我国电子行业及规范产品行业都需要,喷码,出货扫描及包装工艺,其大部分厂家还处人工作业,人工作业面临的不仅仅是效率问题还有扫描链接重扫出错而无法从良品中找到出错码制的产品。因此使用全自动流水线在大大提率的同时也提高生产质量。下面就来介绍UniMAT产品在整个自动化线上的应用。

二、工艺介绍及系统要求

1.工艺:喷码机喷码—扫描扫描条码—PLC识别条码信息—存储—传送上位机—出货扫描—自动装箱

2.硬件部分:多米诺喷码机、可进行二维码扫描扫描、SIEMENS CPU224、UniMAT扩展模块:UN221-1BL22 (1)、UN222-1BL22(3)、UN232-0HB22(2)、CP243-1 IT、变频器、工控机及包装机结构,对射光纤及电磁阀 等等;

3.喷码码制为34进制,喷码设备通过光电反射传感器感知产品,把喷码信息传送喷头,喷头通过高电压产生电弧,墨汁告诉喷出形成二维码制;

4.对条码的识别率高,速度,可自动各种规格和大小的条码;

5.条码扫描具备网络通讯功能,可将一条产线的多套扫描器扫到的条码信息通过网络传送给产线数据采集电脑,统一进行数据收集;

6.系统提供漏扫报警,并可接手持条码扫描设备补扫条码;

7.提供条码自动识别功能,当条码出现时,可自动进行扫描记录,不用人为干预;

8.系统适应性广,针对不同类型条码、不同安装方式和安装位置,要能自动适应或经过简单调整适应;

9.提供计算机上微机自动条码记录与管理软件,将扫描到的信息根据时间和类型存储,供生产管理系统进行跟踪和管理;

10.提供网络功能,传输数据到产品数据库内;

11.完成出货扫描进入包装设备,包装效率问题。

三、系统配置与功能实现

1.条码扫描原理

该系统在物件运送的辊道上安装条码扫描器,当物件通过时自动识别物件上的条码标记,从而判断应采取的动作。系统根据读到的条码信息,按事先的约定进行处理,包括物件要存放的位置、是否放行、非正常情况的报警等、并和PLC、上位计算机进行数据交换。

物件的条码由条码扫描器读入并通过通讯转换送入PLC的通讯口,我们采用的PLC是S7-200系列的226 PLC。它是西门子公司生产的性能价格比很高的可编程控制器,已广泛应用于工业控制的各个领域。

PLC采用自由通讯口方式读取条码的信息,主要用到3个寄存器SMB2、SMB3、SMB30。通讯接收字符缓冲器SMB2用于存放在自由口通讯方式下接收到的当前字符,它是一个暂存寄存器,一般应在下一步取走其中的内容。通讯校验结果寄存器SMB3,在作自由口通讯时,PLC的通讯接口按由SMB30规定的奇偶校验方式对所接受到的信号作校验。若检测到错误,PLC自动把SMB3.0置1,根据此标志位,可决定当前信息的取舍,同时还可在出错的情况下,将此错误信息发给对方,要求重发。控制字寄存器SMB30用于存储通讯方式控制字,由用户写入,属于可读写的特殊标志位寄存器,其格式如下:

上位PC机与PLC之间通过一个RS232/485转换器连接,上位PC机的监控程序采用北京亚控公司的组态王(Kingview)完成。组态王是国内使用较多的工控平台,具有良好的人机界面和网络功能。在组态环境下,设计人员对PLC进行参数、状态、条码设定;运行环境以人机界面的形式对条码信息监控,对PLC发出控制命令,对有关数据存储报表,同时利用Web功能使系统具有在线监控功能,即在上位机授权的情况下在任何一台联网的计算机上用标准的浏览器可远程监控。限于篇幅,监控程序不再详述。

(1) 条码自动扫描器:采用工业级激光条码扫描器,条码适应性广,漏扫率低,带有丰富的接口功能,是扫描系统的设备;

(2) 光电开关:安装在PCB 板进出扫描区域的两端,用于界定条码扫描器的有效范围,过有效范围后认为扫描过程结束;

(3) 报置:当条码在扫描范围内没有被识别,触发报置,提示产线人员补扫;

(4) 手持条码扫描器:自动扫描无法扫描时用手持设备补扫条码;

(5) 产线联动控制器:和条码自动扫描器建立联系,出现漏扫时,自动停止产线工作,等待补扫成功后再允许产线工作;

(6) 总线通讯网络和数据采集计算机:产线根据工位一般配置4-8 个条码自动扫描器,这些扫描器通过CAN 总线连接,终连接到产线计算机上,进行扫描数据采集;

(7) 条码数据记录与管理软件:一方面通过总线网络和产线的各台条码扫描器通讯,实时收集新的条码信息,存储在数据库中;另一方面将这些信息定时发送给企业生产监控管理系统,用于全厂级的生产管理;

(8) 相关安装部件:为保证条码扫描设备的正常工作、换条码时调整方便,设计了条码扫描安装部件,将上述的各设备组合在一起,保证系统稳定正常工作。

四、使用效果分析

该条码自动扫描流水线系统自投运以来,已在某大型电子厂安装50 余条产线,经过2 年的连续工作,条码识别率高、漏扫率低,运行稳定、调整维护方便,充分适应产品换频繁、条码类型多样、条码位置不固定等各种情况。用户普遍反映,该系统可以满足生产需要。


 空压机系统是水电站的设备, 其工作过程并不复杂, 但启动和停车过程有严格的要求。随着电子技术、 软件技术、 控制技术的发展,PLC(可编程逻辑控制器)也发展, 性能优越,与原继电器的控制电路相比具有较大优势。PLC具有高性、 丰富的I/O接 口模块、 模块化结构、编程简单易学、安装维护方便等特点。随着水电站自动化水平的不断提高, 有必要对空压机工作过程采用 PLC全自动控制, 并在远程操作室设置监控和报置, 以实现现场无人值守和远程监控、 报警。  

 1、控制系统的总体要求 
    水电站空压机采用 P L C自动控制系统应满足如下要求 : 
    (1)控制系统电源为交直流在线式切换,以保证 PLC数据处理和控制在异常情况时( 电源切换) 能进行工作。 
    (2)高低压气机 PLC控制屏,以压力反馈作为判据实现现地 PLC自动启停空压机。 
    (3)控制系统应配有I/O模块、处理模块、通信模块、电源模块、模拟量模块等运行所需设备,全部模块均为固态插入式标准化结构组件,应符合工业控制级以上标准。 
    (4)满足电厂现场运行条件,具有高稳定性和抗干扰性能。

  
 2、控制系统硬件设计 
    2、1 系统方案
    根据电站空气压缩设备的技术要求,设计的控制系统结构如图 l 所示。


    2、2 控制系统的硬件配置
    (1)TSX   3721   CPU模块。具有实时时钟,带 2 0 K字 R AM、1 6 K字备份F l a s h   RO M, 允许增加应用存储器容量,并可连接通讯模块,I/O点数大可达248个。自带一个显示模块, 可将控制、诊断和维护 PLC及其模块所需的所有数据加以归类总结和显示, 提供了一个简单的人机界面。 
    (2)TSXAEZ 一 8 0 2模拟量模块。8个多范围电流通道, 每个输入可选择 0 ~2 0 mA 或4 - 2 0 mA的输入范围。模块使用稳态多路技术扫描输入通道(普通或快速),以数值12位A/D转换。除了上述功能外,PLC处理器还可进行输入溢 出监控、测量值过滤。 
    (3)TSXDMZ - 2 8 DT开关量模块。16路开关量输入,12 路开关量输出,供电电源 24   VDC。 
    (4)传感器。温度传感器提供 4 ~20 mA电流信号、 量程范围为 0 ~120 %。压力传感器采用MPM/MDM580系列电子式压力传感器,供电电源24 VDC,提供输出4 ~2 0 mA电流信号, 量程范围为 0 ~10   MP a 、 0 ~1 .0   MP a 。 
    根据以上的模块要求, PLC硬件配置如图 2所示。 

   2、3 控制软件的流程框 图 
    PLC程序控制图见图3 。

 

 3、P L C控制系统软件设计 
    3、1 控制策略
    (1)如图 1所示的气罐压力 P1、 P2、 P3、 P4,PLC控制系统按照压力采集信号所处的压力区间, 自动启动主备空压机。
    (2)两空压机互为热备用。 
    (3)每台空压机累计工作 30  rain , 启动排污阀 15  S。 
    (4)所有的启停空压机及异常信号送入中控室 。 
    (5)可在控制屏上选择手动、自动、远控三种控制方式。 
    3、2 PLC和中控 室通讯数据表
    PLC和中控室通讯采用 MB+网络接口, 表1列出了部分通讯数据表。


  
 4、应用 
    本文介绍的 PLC空压机控制系统已应用于Mollsadra 水电站。Mo l l s a d r a水电站位于伊朗共和国法尔斯省 ( F a r s ) 境内的 Ko r 河主要支流 Tang-e-Boragh河上。空压机控制系统包括两台高压压缩空气系统和两台低压压缩空气系统,均采用一主一备工作方式。水电站空压机系统主要是为水电站调速器油压装置、 工业及制动设备提供用气 。 
    在此系统中, 高压空压机的额定排气量0.822/mi n 、 排气压力 7 .0   MP a ; 低 压空压机 的额 定排气量 2 . 8   m。 / mi n 、 排气压力 0 . 8   MP a ; 额定容积均 为 2  m。 。在 设 计 中,P  一 6.3  MP a 、P2= = = 6.4   MPa、 P3— 6.5  M Pa、P4— 6.8  M Pa、P5 —6.9   MPa、 T一 1 00℃ 。
    经过现场调试验收, 此设备已在现场运行 1  a 多, 运行 , 对水电站的稳定运行起到了重要作用。

  
 5、结语 
    a .P L C空压机控制系统已成功应用于 Mo l l —s a d r a 水电站, 运行、 智能化程度高, 良好的实时调节可以克服由人为因素造成的调节滞后等不利因素, 操作简单、 可实现无人值守。
    b .在系统实施过程中, 还可引入故障检测和故障诊断的处理程序, 能够提高系统的智能化程度, 有利于进一步改善 自控系统的有效性和性。 通过优化调度策略、 软件连锁保护等 自动控制功能模式的应用, 有望将自动化水平提升到高层次, 可为确定空压机设备状态检修点提供依据, 并由此获得大的效益。

水电站的有功调节通常是通过调速器实现的,但当水轮机组并入电网运行时,对于单台发电机来说转速反馈几乎不起作用。近年来,随着自动发电控制(AGC)的需要,有功功率在控制系统中的调节品质已成为当前电力系统自动化领域的问题。

    1 系统组成

    本系统中控制的两台水轮发电机型号为SFW2500-10/1730、6.3kV/286A。本系统采用分层分布式布局,配置如图1所示。主要由2个机组监控屏、发电机保护屏、公用监控屏、主编线路保护屏和电量屏构成。通讯采用高速以太网与上级调度、操作员工作站进行通讯。其中公用监控屏由可编程控制器(由三菱FX2N-80MR和2个FX0N-16EX扩展模块组成)、自动准同期装置、触摸屏、电力测控仪和逆变电源组成,在公用监控屏中实现对发电机的有功调节。

    2控制要求

    在电力系统中,频率与电压是电能的2个主要质量指标,电力系统中的频率变化的主要原因是由于有功功率不平衡引起的。系统的负荷经常发生变化,要保持系统的频率为额定值,就使发送的功率不断跟随着负荷的变动,时刻保持整个系统有功功率的平衡。否则,系统的频率就会大起大落,保证不了电能的质量,甚至会造成事故与损失。

    当负荷吸取的有功功率下降时,频率增高;当负荷吸取的有功功率增高时,频率降低,即负荷调节效应。由于负荷调节效应的存在,当电力系统中因功率平衡破坏而引起频率变化时,负荷功率随之的变化引起补偿作用。如系统中因有功功率缺额而引起频率下降时,相应的负荷功率也随之减小,能补偿一些有功功率缺额,有可能使系统稳定在一个较低的频率上运行。如果没有负荷调节效应,当出现有功功率缺额系统频率下降时,功率缺额无法得到补偿,就不会达到新的有功功率平衡,频率会一直下降,直到系统瓦解为止。

    频率和有功功率自动调节的方法主要有:
    (1) 利用机组调速器的调节特性进行调频;
    (2) 根据频率瞬时偏差,按比例分配负荷,构成虚有差调节频率和负荷的方法;
    (3) 按频率积分偏差调节频率,满足“等微增率”原则分配负荷;
    (4) 按给定负荷曲线调节有功功率(本文所介绍的是按给定负荷曲线调节有功功率)。

    电站的调节系统应该使总功率等于负荷曲线给定的功率。而机组之间则按“等微增率”原则经济分配负荷。如果系统频率偏差不过调频电站所能补偿的范围,则调功电站的调节系统对频率偏差不应作出任何响应。如果系统运行工况发生了变化,出现了较大的频率偏差则调频电站无力补偿偏差值,那么调功电站的自动调节装置应该作用于各台机组的调速器,使之改变各台机组的有功出力来帮助恢复系统频率。

    示出功率与频率的关系曲线。在死区±Δfmax范围内,频率偏差信号Δf不起作用,此时电站的实际功率 与给定的总功率PG之间的偏差ΔP产生调节作用。

    PG为电站负荷曲线给定装置的,使由各台机组有功功率测量元件测到的有功信号相加后得到的。当时,两台机组的调节作用只受有功偏差ΔP的影响,而与频率偏差Δf无关,此时调节特性方程。

    3 系统的硬件设计

    根据系统的控制要求配置硬件如下:

    ·控制器:三菱FX2N-80MR和两个FX0N-16EX扩展模块组成;
    ·人机界面:触摸屏;
    ·其它设备:2个DC24V继电器、功率表以及其它的辅助器件。

    4 系统软件设计

    本系统确保整个系统频率的稳定和电网的稳定供电。

    当系统需要进行有功调节时,系统的软件或是手动发出信号开始调节,此时采集1个实时有功数据此数据与设定值(即目标功率值)进行比较并进行数据处理算出需要调节的时间,然后发出信号使调节继电器动所开始调节。如未达到则有可能是系统内部有故障。为了避免使程序进入死循环,则调节四次仍未能达到要求就自动中止程序)。如图4所示,当M10接到触发信号后瞬时接通使D300采到的瞬时有功功率数据与D301(设定值)进行比较。当D300 >D301时输出信号M300使PLC的Y001输出并使调节继电器动作进行调节。



http://zhangqueena.b2b168.com

产品推荐