产品描述
西门子6ES7322-1BL00-0AA0千万库存
1 引言
蒸汽发生器(Steam Generator, SG)是核岛内的三大设备之一,核电厂功率损失中有80%是由其损坏引起的。核电厂运行期间二回路系统材料的腐蚀产物进入SG二次侧,蒸发、浓集沉积在传热管、管板和支撑板上及支撑板与传热管隙缝之间,形成硬状泥渣,严重影响了SG的传热管的完整性、传热效率和SG的水位控制,得到有效的去除。
2 系统组成
2.1 系统描述
用于SG的水力冲洗装置可以抽象为一个具有两自由度的机器手臂。如图1中所示,图1中:M1:步进交流伺服电机、G1:步进运动减速器、M2:旋转直流电机、G2:旋动减速器、EN:增量式编码器、JK:接近开关。冲洗机器手臂端喷嘴在旋转电机M2的带动下,将内部的高压水射向远近距离不同的传热管处。为防止旋转部分与SG内部构件发生碰撞导致堵转,设置了接近开关JK进行状态监视。整个机器手臂在交流伺服步进电机M1和PLC的控制下,将喷嘴定位到每排管间处。光电编码器模块EN和控制器PLC组成步进运动,防止高压水长时间冲击传热管管壁,危机蒸汽发生器设备。整个控制系统根据设计要求,能进行各种参数设定、运行状态显示和系统自诊断。在故障状态下,具有报警功能和紧急停止功能。根据系统的控制要求,整个硬件的配置和分布如下:
(1) 核岛内高辐射区域(SG旁)
冲洗机器手臂本体:包括松下MINAS A系列伺服步进电机M1、旋转直流电机M2、接近开关JK和编码器EN;
(2) 核岛内低辐射区域(距SG10m处)
现场手操控制箱一个,是整个控制系统的部分。包括Siemens S7-200系列CPU224 PLC、交流伺服电
图1 SG冲洗系统工作原理图
机驱动模块、直流电机驱动模块、24V直流电源和控制继电器等;
(3) 核岛外非辐射区域
人机界面Siemens TP7触摸屏、高压供水子系统、泥渣收集子系统;
2.2 PLC与电机驱动模块的连接
控制器PLC侧和伺服电机侧连接设计的好坏,直接影响整个伺服运动控制系统。CPU224 PLC为14路数字量输入/10路数字量输出,Q0.0和Q0.1产生两路立的20kHz高速脉冲,输入伺服驱动模块进行经功率放大,控制步进电机工作。输入/输出端口定义如表1和表2所示。根据伺服驱动模块的相关控制信号,形成逻辑判断。
步进电机单次步进行程完成后,若位置偏差计数器内的剩余脉冲数在设定范围内时,位置到达信号(COIN)就被送入控制器。位置偏差计数器大小由伺服驱动模块内参数Pr60适当设置。设定值太小,送出COIN信号时间会过长或造成抖动。设定值过大导致无法完成精度要求。驱动器侧的电机控制时序图如图2所示。
图2 伺服电机启动时序图
3 软件设计
西门子S7-200 Micro PLC提供了上位机编程软件STEP 7-Micro/WIN。其强大的功能提供了两种指令集(SIMATIC或IEC 1131-3)和三种程序编辑器(语句表STL,梯形图LAD和功能块图FBD)。然后利用PC/PPI电缆建立S7-200 CPU与个人计算机之间的通讯,将上位机的组态程序下装到PLC中立运行。为顺应目前图形化编程的趋势,程序中采用了梯形图的编程方式。整个冲洗程序流程图如图3所示。控制系统的人机界面(HMI)采用SIEMENS TP7触摸屏,易于实现,操作简单,运行。
图3 冲洗程序流程图
4 精度控制
松下伺服交流电机带有一个增量式编码器(2500P/r)进行位置监控。当起停频率出时,通过步数丢失可以检测到位置错误。一旦出位置误差,就以较低频率进行位置校正,从而构成一个的运动控制系统。
体步进一次控制器PLC发出脉冲个数计算:
(1) 已知条件:减速器减速比i: 45; 步进长度: 25mm;
伺服电机编码器精度: 2500P/r;
倍频比(驱动模块内电子齿轮比): 45:2;
减速器输出端齿轮分度圆直径D: 20mm。
(2) 计算:PLC应发出脉冲个数b=25/a=3979(脉冲)
电机脉冲当量a=22.5πD/5000i
=0.006283mm/P(毫米/脉冲)
对控制系统而言,冲洗机器手臂的运动精度主要依赖于体的步进运动精度。由以上计算可知步进传动精度0.006283mm/P(脉冲),采用光电编码器模块,大程度上克服了步进过程中失步现象产生的运动误差,因此系统总的误差主要由于机械装配误差和机械传动误差。在调试的过程中,应根据实际的步进长度,调整伺服电机理论计算出的脉冲个数,从而补偿机械部分产生的误差。
5 结束语
本文设计的水力冲洗系统稳定性好、精度高、易于维护,已经多次在国内各核电站现场服务。在秦山一期核电站某次正常停堆中,从两台SG共冲出泥渣约120.5kg,能较好满足业主的要求,提高了核电站的运行和管理水平。
1 引言
烧结生产是钢铁生产中的重要环节,它包括原料,配料,混料,烧结和成品系统等几方面。原来的系统采用简单的单回路仪表控制,无法实现对生产过程的有效控制。这里我们采用PLC对其进行控制,能够较好的控制效果。
2 原料控制系统
(1) 熔剂系统
熔剂系统负责向配料系统提供消石灰、白云石、石灰石等原料。系统依有无上料要求来判断料线是否运行。由于三种物料共用一条主料线,因此设计了许多保护与判断功能,用来防止混料;
(2) 铁料系统
铁料系统负责向配料系统提供铁料。小车自动找到要上料的物料槽之后,向料线发启动信号,铁料仓库给料圆盘则与当前要上料的品种号进行比较,结果相同的圆盘启动给料,反之停车。当需要换上料品种时,当前工作圆盘离线,料线保持运行,使原物料卸光,然后小车行至目标槽,新的物料开始给料。若换槽而不换品种,则小车可带料行走,料线不发生变化;
(3) 燃料系统
燃料系统负责向配料系统提供煤粉,由三段组成,每一段料线流程的动作均依各段料线终点处卸料小车的位置和各受料料槽料位的变化情况而自动决定小车的行进目标与料线的启停。
原料系统的三个系统具有料线联锁、卸料小车自动/手动卸料、自动寻找物料对应关系和物料品种切换关系,自动找槽定位等功能。
3 自动配料系统
3.1 系统的工艺要求
配料系统的主要任务是按烧结机对物料的需求量,计算、分配、控制原料矿槽的下料量,以保证物料平衡和化学成分符合要求。工艺上对控制系统的要求是:
(1) 实现各配料秤和集料皮带机的顺序起停、单机起停和同时起停;
(2) 实现各配料秤的重量配比控制;
(3) 配比计算功能
根据总量和各台秤的配比,计算每台秤的流量设定值;
(4) 流量计算功能
根据检测到的重量信号和皮带速度信号,计算一段时间内物料的平均流量,以此平均流量作为反馈量进行PID调节;
(5) 报警功能
对经常出现的故障如堵料、皮带打滑、电机过流过载等进行声光报警,出现堵料情况时,要求自动起动矿槽上的振动器电机,恢复下料后自动停振;
(6) 热备功能
要求两个系统的两台上位机具有热备功能,即每一台上位机可同时对两个系统的下位机(PLC)进行监控;
(7) 报表打印功能
人工干预和定时打印各种时报、班报、月报等报表;
(8) 停电保护功能
停电后再次供电时,系统进行初始化复位,保证各台设备均处于停机状态,以防人身事故和设备事故的发生。
3.2 控制系统的组成
控制系统示意图如图1所示。控制设备选用德国SIEMENS公司的PLC系列可编程序控制器。每一配料系统都配有一台上位机和一台下位机。通过数据通讯网络,彼此相连。下位机的CPU模板采用PLC SIMATIC S7可编程控制器,上位机采用闽台研华公司的工业控制机IPC。
物料重量通过荷重传感器,并转变为与之成正比的直流毫伏信号,再通过直流毫伏变送器变换为直流4~20mA信号,送到A/D模板。皮带秤电机转速由直流测速发电机测量,测速发电机输出的直流电压经电阻分压网络降压,得到与转速成正比的直流0~5V信号,送到A/D模板。设某一时刻,皮带秤有效称量段上的物料重量为W,皮带的线速度为V,有效称量段长度为L,则该时刻物料的瞬时流量为
F=1/L×W×V (1)
根据式(1),可以计算每一采样时刻的瞬时流量,并进一步计算一段时间内的平均流量。将其与操作员通过键盘输入的流量给定值比较,然后进行PID调节运算得到控制量,后通过D/A模板输出4~20mA的直流信号,控制变频器改变输出频率,从而改变电机转速,达到改变物料流量的目的。
3.4 系统软件设计
SIEMENS公司的STEP7系列指令系统功能非常强,不仅有丰富的用于断续控制的指令,而且有很多运算和控制指令,如PID控制指令,数据类型近十种,包括整型、实型等等,这给编程带来很大的方便。
控制软件采用梯型图语言编制。编程时,遵循软件工程规范,根据结构化、模块化原则,把功能相对立的部分编制为一个子程序,尽量减少子程序之间的联系,主程序依据不同条件调用各个子程序,完成相应的功能.软件部分包括:
(1) 主程序;
(2) 顺序控制;
(3) 流量计算;
(4) 配比计算;
(5) PID调节;
(6) 故障处理。
另外,上电复位时,CPU自动调用故障例行子程序,完成上电保护功能。
在上述各个子程序中,流量计算中的数字滤波子程序非常重要。如直接以瞬时流量作为反馈量进行PID调节,那么由于物料流波动很大,经常造成瞬时流量大幅度变化,使调节过程不易平稳。因此,我们利用数字滤波子程序计算平均流量并以此作为反馈值。
4 烧结系统
烧结机子系统将混合料经点火炉点火燃烧,机上冷却成烧结矿并破碎,使其成为合格的高炉原料。它是系统的,除了满足工艺的常规流程控制外,主要还有下列模拟量控制:
(1) 铺底料圆辊调速
控制铺底料料层厚度,采用比率调节;
(2) 混合料圆辊调速
控制烧结机料层厚度,采用比率调节;
(3) 铺底料给料机调速
预估铺底料矿槽料位的变化,调节铺底料料流量;
(4) 冷却终点控制
通过调节烧结机机速,使冷却终点温度控制在一个人为的设定值范围内;
(5) 炉温调节
串级加比值调节,温度调节器的输出作为煤/空回路的串级输入,温度环采用PID调节,煤/空回路采用PI调节并按一定的工况所设定的比值自动跟踪;
(6) 物料平衡
使混合料槽物料的进入量与烧结机的需求量保持基本平衡,采用模型来计算未来可能需要的总配料量。
5 燃烧自动调节系统及其性能指标
烧结燃烧系统是烧结工艺中影响产品产量和质量直接和关键的环节,为了稳定生产并保证烧结质量,燃烧自动调节系统由三个分系统组成。
(1) 系统:煤气总管稳压自动调节系统
可根据外部煤气管网工况将总管压力稳定在4000Pa或4500Pa(根据设定),因其检测点距离调节阀较近,滞后小,系统灵敏,阶跃响应;
(2) 点火器温度自动控制系统
通过调节煤气阀门开度,可控制点火器温度,恒定在1200℃的设定值上。
(3) 空气/煤气比例随动自动跟踪控制系统
通过调节空气调节阀阀门开度,使进入点火器的空气自动按设定的空/煤比系数跟踪煤气流量。
6 成品处理系统
成品处理子系统负责把烧结矿按粒度分类,一部分成品送高炉,一部分返回烧结机作铺底料,不合格品返回配料系统参与混合料配比。
除流程联锁控制外,本系统还有筛分(双层振动筛)流向选择控制,烧结矿送高
炉流向控制。系统根据高炉的操作条件,一旦确认是要料,烧结矿便能按控制的流向到达目的地。同时,无论何时高炉输料皮带发生故障,系统在几秒钟内便能响应,停止相应的流程并保证其它流向正常工作。
7 卸灰系统
卸灰子系统负责将烧结结矿中的不合格品以及除尘系统收集的粉尘送往配料系统参加配料,以改善混合料的造球性能。本系统除了控制输料皮带和卸灰设备按一定的“松散”关系联锁外,还控制烧结机下人烟道两侧的双层卸灰阀按一定的部位和时间卸灰。
控制卸灰阀的时间是一条“环形”脉冲带,它把均匀分布在左右烟道两侧的卸灰阀按高低序号向中间逼近的方法,定时启动卸灰,这保证了烟道卸灰的均匀性和具有一定的负压。
8 铺底料系统
铺底料子系统用来向烧结机提供均衡的铺底料,用以改善混合料在烧结过程中的透气性并对台车炉篦起一定的保护作用。
该系统具有较大的立性。通过与烧结机通讯,给料设备供给的铺底料使铺底料矿槽保持一定的料位。
9 结束语
本系统在武钢烧结厂自投产运行以来,所设计的功能均已投入使用。无论在精度、稳定性及其它一些控制系统质量指标方面,均能达到满意的效果。特别是配料总量自动跟踪、混合料加水控制和小容量矿槽物料平衡控制对保证工况正常,提高产品产量、质量发挥了良好的作用,又由于编程主要采用了梯形图语言,使得用户容易掌握,因而受到了用户热忱的欢迎。
另外,在降低工人的劳动强度,改善生产环境等方面也一定的成效。值得大力推广。
1 引言
电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
电动机常见的故障可分为对称故障和不对称故障两大类。对称故障包括:过载、堵转和三相短路等,这类故障对电动机的损害主要是热效应,使绕组发热甚至损坏,其主要特征是电流幅值发生显著变化;不对称故障包括:断相、逆相、相间短路、匝间短路等,这类故障是电动机运行中常见的一类故障。不对称故障对电动机的损害不仅仅是引发发热,重要的是不对称引起的负序效应能造成电动机的严重损坏。因而,对大型电动机进行综合保护非常重要。
2 基于PLC的电动机综合保护
对电动机的保护可以分为以下几类:
在电动机发生故障时,为了保护电动机,减轻故障的损坏程度,继电保护装置的快速性和性十分重要。在单机容量日益增大的情况下,电机的额定电流可达数千甚至几万安,这就给电动机的继电保护提出了高的要求。传统的继电保护装置已经无法满足要求,因此微机保护应运而生。
PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是性高、设计施工、调试修改方便、而且体积小、功耗低、使用维护方便。因此,本文研究了基于可编程控制器(PLC)的电动机综合监控和保护系统的方法。
3 系统硬件设计
3.1 系统的总体结构
基于可编程控制器(PLC)的电动机综合监控和保护系统的总体结构如图1所示。
3.2 PLC机型选择及扩展
选择PLC机型应考虑两个问题:
(1) PLC的容量应为多大?
(2) 选择什么公司的PLC及外设。在本系统中,包含以下输入输出点,见附表,本系统共包括12路开关量,7路模拟量。
SIMATIC S7-200系列PLC是由西门子公司生产的小型PLC,其特点是:SIMATIC S7-200系列PLC适用于各行各业,各种场合中的检测,监测及控制的自动化,S7-200系列的强大功能使得其无论在立运行中,或相连成网络皆能实现复杂控制功能,因此S7-200系列具有高的性能/价格比。
S7-200 CPU 224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,大扩展至168路数字量I/O点或35路模拟量I/O点;13K字节程序和数据存储空间;6个立的30KHz高速计数器,2路立的20KHz高速脉冲输出,具有PID控制器;1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力;I/O端子排可以很容易地整体拆卸,是具有较强控制能力的控制器。根据系统的实际情况,结合以上特点,SIMATIC S7-200 CPU 224可以作为本系统的主机。
CPU224可扩展7个模块,而其本身具有14输入/10输出共24点数字量,因此已无须数字量扩展模块。但由于有7路模拟量输入,故需选择模拟量输入模块。S7-200系列提供了EM231,EM232,EM235等模拟量扩展模块。根据以上技据,选择两个EM231作为模拟量输入模块,这样共可以扩展4×2=8路模拟量输入。
4 系统软件设计
4.1 主程序
程序开始,从输入单元检测输入量,判断KM是否闭合,如果闭合,说明电动机已经处于运行状态,此时应无法按下启动按钮,若KM未曾闭合,则说明电动机处于停机状态,可以按启动按钮。接着判断启动按钮是否按下,若是,则继续下面的程序,若否,则重新检测。如果按钮已经按下,则检测电动机是否启动,若是,则继续下面的程序,若否,则转入欠压保护子程序,若是电动机已经启动,则判断起动是否成功,若是,则继续下面的程序,若否,则转入起动保护。如果电动机已经正常起动,则绿灯亮。接着判断停止按钮是否按下,若否,则继续下面的程序,若是,则程序直接结束,开始下一次扫描。
如果停止按钮并未按下,即电动机仍然在运行中,则进行运行过程中的故障判断,检测是否发生短路故障,方法是:检测三相电流,再判断Imax是否大于整定值,若是则跳转至保护动作子程序段,电动机起动短路保护,警报响,并且短路故障指示灯亮。若否,则继续下面的程序。接着判断是否发生断相故障,方法是:检测三相电流,判断是否有某相电流为零,或者检测Umn,判断是否不为零,如果其中之一满足,则跳转至保护动作子程序段,电动机起动断相保护,警报响,并且断相故障指示灯亮。若否,则继续下面的程序。接着判断是否发生欠压故障,方法参见欠压保护子程序说明。接着判断是否发生接地故障,方法是:检测I0,若大于整定值则跳转至保护动作子程序段,电动机起动接地保护,警报响,并且接地故障指示灯亮。接着判断是否发生过负荷故障,方法是:检测三相电流,若到达整定时限后,电流仍大于整定值,则跳转至保护动作子程序段,电动机起动过负荷保护,警报响,并且过负荷故障指示灯亮。若判断未发生过负荷故障,则程序完成一次扫描,再次从条开始,进行二次扫描,所以结束是指一个循环的结束,并不是整个程序的结束。
4.2 欠压保护子程序
在该程序段中,采集A相和C相的电压量,求出其平均值,再与整定值相比较,若小于整定值,则跳转至保护动作子程序段,电动机起动欠压保护,警报响,并且欠压故障指示灯亮。若未发生欠压故障,则直接结束本次循环。
4.3 起动时间过长保护子程序
在该程序段中,采集三相电流量,若发现在起动过程中,电流大于整定值,或在整定时间到达后,电流仍大于另一整定值,则跳转至保护动作子程序段,起动时间过长保护动作,警报响,并且起动故障指示灯亮。
5 结束语
通过本系统设计、试验与运行,得到如下结论:
(1) 利用PLC进行电动机综合保护硬件简单。
(2) 可以采用梯形图语言进行编程,简单易行。
(3) 系统运行,便于检修维护。
(4) 由于采用集成综合设计,系统体积小、功耗低、使用操作方便。
产品推荐