7
西门子6ES7321-1BH50-0AA0型号含义
数控加工的准备过程较复杂,内容多,含对零件的结构认识、工艺分析、工艺方案的制订、加工程序编制、选用工装及使用方法等。机床的调整主要包括命名、调入库、工件安装、对、测量位、机床各部位状态等多项工作内容。程序调试主要是对程序本身的逻辑问题及其设计合理性进行检查和调整。试切加工则是对零件加工设计方案进行动态下的考察,而整个过程均需在步实现后的结果评价后再作后一步工作。试切成功后方可对零件进行正式加工,并对加工后的零件进行结果检测。步工作均为待机时间,为提高工作效率,希望待机时间越短越好,越有利于机床合理使用。该项指标直接影响对机床利用率的评价(即机床实动率)。
3 机床数控系统需要解决的几个问题
机床是由机械和电气两部分组成,在设计总体方案时应从机电两方面来考虑机床各种功能的实施方案,数控机床的机械要求和数控系统的功能都很复杂,所以应机电沟通,扬长避短。机床控制系统选件、装配、程序编制及操作都应该比较合理,精度和稳定性都满足使用要求。同时为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。PLC按照逻辑条件进行顺序动作或按照时序动作,另外还有与顺序、时序无关的按照逻辑关系进行联锁保护动作的控制,PLC发展成了取代继电器线路和进行顺序控制的主要产品,在机床的电气控制中应用也比较普遍。
在实际控制中如何既能提高定位速度,同时又能保定位精度是一项需要认真考虑并切实加以解决的问题。精度是机床保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈元件的精度对系统的精度常常起着决定性的作用。的控制系统有的检测元件作为保证。当现场条件发生变化时,系统的某些控制参数能作相应的修改,为满足生产的连续性,要求对控制系统可变参数的修改应在线进行。尽管使用编程器可以方便快速地改变原设定参数,但编程器一般不能交现场操作人员使用;所以,应考虑开发其他简便有效的方法实现PLC的可变控制参数的在线修改。另外为了防止电压过高损坏PLC,电源输入端加上压敏电阻。为了防止过热, PLC不许安装在变压器等发热元件的正上方,变频器与PLC、伺服驱动器等保持一定距离。在元件间留有适当的空隙,以便散热,并且在配电箱上安装风扇降温。此外,为保证控制系统的与稳定运行,还应解决控制系统的保护问题,如系统的行程保护、故障元件的自动检测等。
4 永宏FBs系列PLC的NC机床定位伺服控制系统分析
数控机床是一种、率的自动化设备,提高数控机床的性就显得尤为重要。度是评价性的主要定量指标之一,其定义为:产品在规定条件下和规定时间内,完成规定功能的概率。对数控机床来说,这里的功能主要指数控机床的使用功能,例如数控机床的各种机能,伺服性能等。数控机床的功能部件对机床的功能扩展和性能的提升起着为重要的作用,因此,它不同于一般配套件和附件的选用,不仅须与数控机床的整体结构谐和协调,融入整机系统具有的匹配性能,而且还能很好地彰显出该数控机床的个性化特征。用于高速化的数控系统不能仅是提高数据处理能力,而是应具备热误差补偿单元以及能实现速度前瞻控制、位置环前馈控制和加减速平稳控制等控制技术的功能。所以选择稳定的控制单元才能保证数控机床正常运行。
鉴于以上各项要求,笔者采用闽台永宏电机股份有限公司的FBs-44MN PLC作为该机床控制主单元,该型机具有较高的性价比,体积小,使用起来非常方便,接线简捷。其编程软件WinProladder有梯形图之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。同时配以人机界面进行程序参数修改、设定以及运行状态显示监控,可编程设置人机界面的内容。该控制系统具有性高,价格,结构紧凑等特点,非常适合机床的控制要求。
可编程逻辑控制器是该机床各项功能的逻辑控制,集成于数控系统中,主要是指控制软件的集成化,而PLC硬件则在规模较大的系统中往往采取分布式结构。由图3可以看出,系统控制采用永宏PLC FBs-44MN控制,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端限传感器和原点传感器,冷却和润滑也都有异常检测,在报和人机界面处显示报警信息由光栅、感应同步器等位置检测装置测得的实际位置反馈信号,随时与给定值进行比较,将两者的差值放大和变换,驱动执行机构,以给定的速度向着偏差的方向运动,直到给定位置与反馈的实际位置的差值等于零为止。闭环进给系统在结构上比开环进给系统复杂,成本也高,对环境室温要求严。设计和调试都比开环系统难。但是可以获得比开环进给系统高的精度,快的速度,驱动功率大的特性指标。早期使用一般电机作为定位控制,由于速度不快、或者精度要求不高,所以足够应对所需场合;当机械运转为了效率而将速度加快时,当产品质量、精度要求越来越高时,电机停止位置的控制就不是一般电机所能达到的了。解决这一问题的方法是采用NC定位控制配合步进或伺服电机作定位控制。但在过去,由于它的价格很高,而限制了它使用的普遍性,近年来由于技术的发展及成本的降低,其价位已被用户所接受,使用数量也越来越多。为配合这一趋势,永宏PLC FBs系列将目前市面上的NC定位控制器功能整合在PLC内部SoC芯片内,除了免掉PLC与NC 定位控制器之间复杂的数据交换与连结程序外,大幅降低整体成本,为用户提供一种、简单方便的PLC整合NC定位控制的方案。永宏PLC FBs-44MN内部的SoC芯片含有多轴高速脉冲输出以及高速硬件计数器,并且提供简易使用和设计的定位程序编辑,对于这方面的应用,是如虎添翼、如鱼得水、得心应手了。PLC结合伺服驱动器所构成的NC闭环回路控制系统中,PLC负责发送高速脉冲命令给伺服驱动器,除了装在伺服电机的位移检测信号直接反馈到伺服驱动器外,外加位移检测器装在传动机构之后,真正反映实际位移量,并将此信号反馈到PLC 内部的高速硬件计数器,这样就可作的控制,并且可避免上述半闭环回路的缺点。永宏PLC FBs系列的定位功能将市面上NC定位控制器整合在PLC内,使PLC与NC控制器能共享相同的数据区,而不需要作两个系统之间的数据交换与同步控制等复杂的工作,但仍可用一般常用的NC 定位控制指令(例如DRV、SPD…等)。PLC控制4轴的定位工作,并可作多轴同动控制,除了提供点对点的速度控制,还提供了各轴间直线插补功能。当系统应用过4轴时还可利用永宏PLC的CPU bbbb功能达到多的定位运动控制。数控机床对位置系统要求的伺服性能包括:定位速度和轮廓切削进给速度;定位精度和轮廓切削精度;精加工的表面粗糙度;在外界干扰下的稳定性。这些要求主要取决于伺服系统的静态、动态特性。对闭环系统来说,总希望系统有较高的动态精度,即当系统有一个较小的位置误差时,机床移动部件会反应。在数控机床的加工中,伺服系统为了同时满足高速快移和单步点动,要求进给驱动具有足够宽的调速范围。
单步点动作为一种辅助工作方式常常在工作台的调整中使用。伺服系统速度的选择要考虑到机床的机械允许界限和实际加工要求,高速度固然能提高生产率,但对驱动要求也就高。此外,从系统控制角度看也有一个检测与反馈的问题,尤其是在计算机控制系统中,考虑软件处理的时间是否足够。全闭环伺服系统是将位置检测元件置于被测坐标轴的终端移动部件上,以检测机械传动链中螺距误差、间隙及各种干扰所造成的传动误差,并进行反馈补偿控制,从而提高机床的位置控制精度。在全闭环伺服控制系统中,对位置检测元件和反馈元件的选择很关键。感应同步器具有精度高、重复性好、抗干扰能力强,耐油耐污及维护简单等优点,特别适合于全闭环数控机床的工作场合。数控机床要求具备稳定性、快速性和准确性,而大型数控机床的机械传动装置转动惯量较大,固有频率低,要使其大大系统截止频率很困难,全闭环包括了该进给系统轴几乎所有不稳定的非线性因素,调整不当很容易使机床产生抖动现象。
因此数控机床全闭环伺服系统在保证性的基础上主要是解决机床进给运动的稳定性而获得比半闭环伺服系统高的位置精度。伺服电机的编码器将位移检测信号反馈到伺服驱动器,驱动器将输入信号的脉冲频率和脉冲数与回馈信号的频率和脉冲数,经内部的偏差计数器与频率转电压电路处理后,得到脉冲偏差值与转速误差值,这样使控制伺服电机实现高速、精密的速度与位置闭环回路处理系统。伺服电机的转速与输入信号的脉冲频率成正比,而电机的移动量则由脉冲数决定。图4是PLC控制下的伺服电机工作示意图。
5 相关程序设计与操作
PLC通过编程器输入程序,达到控制目的。由于PLC工作过程是循环,所以程序执行速度很快。另外软件故障检测设计在采用硬件设计的基础上采用软件检测外部行程开关状态,当行程开关失灵后,通过程序控制停止机床的运行,有效地减少了机床因元件失灵造成的事故。
图5是使用编程软件WinProladder编辑定位程序参数设定指令图,图6是具体操作加工程序图。
6 结束语
我国是一个机床生产和应用大国,但数控技术的应用水平还不高,严重制约着我国制造业水平的提高。上的相关开发计划对我国的数控技术的发展提出了严峻的挑战,同时也带来了机遇。只有选择合适的PLC才能使定位达到预期的效果。永宏FBs系列PLC的NC定位功能在机床数控系统设计中占有重要的地位,该机床经过长期运行表明,整个系统设计合理,控制精度高,运行,提高了生产的自动化水平,减小了操作人员的劳动强度。
由于采用了PLC控制,使电气部分的抗干扰能力增加,提高了机床的运行性,因而增加了设备的柔性,提高了设备的使用效率。
2 PLC系统设备选型
PLC主要的目的是控制外部系统。这个系统可能是单个机器,机群或一个生产过程。不同型号的PLC有不同的适用范围。根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有余量而不浪费资源的机型(小、中、大形机器)。并且结合市场情况,考察PLC生产厂家的产品及其售后服务、技术支持、网络通信等综合情况,选定价格性能比较好的PLC机型。
目前市场上的PLC产品众多,国外有德国的SIEMENS;日本的 OMRON、MITSUBISHI、FUJI、Panasonic;美国的GE;韩国的LG等。国产有研华、研祥、合力时等。近几年,PLC产品的价格有较大的下降,其性价比越来越高。PLC 的选型应从以下几个方面入手。
2.1 确定PLC 控制系统的规模
依据工厂生产工艺流程和复杂程度确定系统规模的大小。可分为大、中、小三种规模。
小规模PLC控制系统:单机或者小规模生产过程,控制过程主要是条件、顺序控制,以开关量为主,并且I/O点数小于128 点。一般选用微型PLC,如SIEMENS S7-200等。
中等规模PLC控制系统:生产过程是复杂逻辑控制和闭环控制,I/O点数在128——512 点之间。应该选用具有模拟量控制、PID控制等功能的PLC,如SIEMENS S7-300等。
大规模PLC控制系统:生产过程是大规模过程控制、DCS系统和工厂自动化网络控制,I/O点数在512点以上。应该选用具有通信联网、智能控制、数据库、中断控制、函数运算的PLC,如SIEMENS S7-400等, 再和工业现场总线结合实现工厂工业网络的通讯和控制。
2.2 确定PLC I/O 点的类型
根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有软硬件资源余量而不浪费资源的机型(小、中、大型机器)。
根据PLC输出端所带的负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出,还是晶体管输出,或品闸管输出。不同的负载选用不同的输出方式,对系统的稳定运行是很重要的。
电磁阀的开闭、大电感负载、动作频率低的设备,PLC输出端采用继电器输出或者固态继电器输出;各种指示灯、变频器/数字直流调速器的启动/停止应采用晶体管输出。
2.3 确定PLC编程工具
(1) 一般的手持编程器编程。 手持编程器只能用商家规定语句表中的语句表(STL)编程。这种方式效率低,但对于系统容量小、用量小的产品比较适宜,具有体积小、价格低、易于现场调试等优点。 这主要用于微型PLC的编程。
(2) 图形编程器编程。图形编程器采用梯形图(LAD)编程,方便直观,一般的电气人员短期内就可应用自如,但该编程器价格较高,主要用于微型PLC和中档PLC。
(3) 计算机加PLC软件包编程 。这种方式是效率的一种方式,但大部分公司的PLC 开发软件包价格昂贵,并且该方式不易于现场调试,主要用于中PLC系统的硬件组态和软件编程。
3 PLC控制系统的设计
PLC 控制系统设计包括硬件设计和软件设计。
3.1 PLC控制系统的硬件设计
硬件设计是PLC控制系统的至关重要的一个环节,这关系着PLC控制系统运行的性、性、稳定性。主要包括输入和输出电路两部分。
(1) PLC控制系统的输入电路设计。PLC供电电源一般为AC85—240V,适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等);隔离变压器也可以采用双隔离技术,即变压器的初、次级线圈屏蔽层与初级电气中性点接大地,次级线圈屏蔽层接PLC 输入电路的地,以减小高低频脉冲干扰。
PLC输入电路电源一般应采用DC 24V, 同时其带负载时要注意容量,并作好防短路措施,这对系统供电和PLC至关重要,因为该电源的过载或短路都将影响PLC的运行,一般选用电源的容量为输入电路功率的两倍,PLC输入电路电源支路加装适宜的熔丝,防止短路。
(2) PLC控制系统的输出电路设计。依据生产工艺要求,各种指示灯、变频器/数字直流调速器的启动停止应采用晶体管输出,它适应于高频动作,并且响应时间短;如果PLC 系统输出频率为每分钟6 次以下,应继电器输出,采用这种方法,输出电路的设计简单,抗干扰和带负载能力强。
如果PLC输出带电磁线圈等感性负载,负载断电时会对PLC的输出造成浪涌电流的冲击,为此,对直流感性负载应在其旁边并接续流二管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。
当PLC扫描频率为10次/min 以下时,既可以采用继电器输出方式,也可以采用PLC输出驱动中间继电器或者固态继电器(SSR),再驱动负载。
对于两个重要输出量,不仅在PLC内部互锁,建议在PLC外部也进行硬件上的互锁,以加强PLC系统运行的性、性。
对于常见的AC220V交流开关类负载,例如交流接触器、电磁阀等,应该通过DC24V微小型中间继电器驱动,避免PLC的DO接点直接驱动,尽管PLC手册标称具有AC220V交流开关类负载驱动能力。
(3) PLC控制系统的抗干扰设计。随着工业自动化技术的日新月异的发展,晶闸管可控整流和变频调速装置使用日益广泛,这带来了交流电网的污染,也给控制系统带来了许多干扰问题,防干扰是PLC控制系统设计时考虑的问题。一般采用以下几种方式:
隔离:由于电网中的高频干扰主要是原副边绕组之间的分布电容耦合而成,所以建议采用1:1隔离变压器,并将中性点经电容接地。
屏蔽:一般采用金属外壳屏蔽,将PLC系统内置于金属柜之内。金属柜外壳接地,能起到良好的静电、磁场屏蔽作用,防止空间辐射干扰。
布线:强电动力线路、弱电信号线分开走线,并且要有一定的间隔;模拟信号传输线采用双绞线屏蔽电缆。
3.2 PLC 控制系统的软件设计
在进行硬件设计的同时可以着手软件的设计工作。软件设计的主要任务是根据控制要求将工艺流程图转换为梯形图,这是PLC应用的关键的问题,程序的编写是软件设计的具体表现。在控制工程的应用中,良好的软件设计思想是关键,的软件设计便于工程技术人员理解掌握、调试系统与日常系统维护。
(1) PLC控制系统的程序设计思想。由于生产过程控制要求的复杂程度不同,可将程序按结构形式分为基本程序和模块化程序。
基本程序:既可以作为立程序控制简单的生产工艺过程,也可以作为组合模块结构中的单元程序;依据计算机程序的设计思想,基本程序的结构方式只有三种:顺序结构、条件分支结构和循环结构。
模块化程序:把一个总的控制目标程序分成多个具有明确子任务的程序模块,分别编写和调试,后组合成一个完成总任务的完整程序。这种方法叫做模块化程序设计。我们建议经常采用这种程序设计思想,因为各模块具有相对立性,相互连接关系简单,程序易于调试修改。特别是用于复杂控制要求的生产过程。
(2) PLC控制系统的程序设计要点。PLC控制系统I/O分配,依据生产流水线从前至后,I/O点数由小到大;尽可能把一个系统、设备或部件的I/O信号集中编址,以利于维护。定时器、计数器要统一编号,不可重复使用同一编号,以确保PLC工作运行的性。
程序中大量使用的内部继电器或者中间标志位(不是I/O位),也要统一编号,进行分配。
在地址分配完成后,应列出I/O分配表和内部继电器或者中间标志位分配表。
彼此有关的输出器件,如电机的正/反转等,其输出应连续安排,如Q2.0/Q2.1等。
(3) PLC控制系统编程技巧。PLC程序设计的原则是逻辑关系简单明了,易于编程输入,少占内存,减少扫描时间,这是PLC 编程遵循的原则。下面介绍几点技巧。
PLC各种触点可以多次重复使用,用复杂的程序来减少触点使用次数。
同一个继电器线圈在同一个程序中使用两次称为双线圈输出,双线圈输出容易引起误动作,在程序中尽量要避免线圈重复使用。如果是双线圈输出,可以采用置位和复位操作(以S7-300为例如SQ4.0或者 RQ4.0)。
如果要使PLC多个输出为固定值 1 (常闭),可以采用字传送指令完成,例如 Q2.0、Q2.3、Q2.5、Q2.7同时都为1,可以使用一条指令将十六进制的数据0A9H直接传送QW2即可。
对于非重要设备,可以通过硬件上多个触点串联后再接入PLC输入端,或者通过PLC编程来减少I/O点数,节约资源。例如:我们使用一个按钮来控制设备的启动/停止,就可以采用二分频来实现。
模块化编程思想的应用:我们可以把正反自锁互锁转程序封装成为一个模块,正反转点动封装成为一个模块,在PLC程序中我们可以重复调用该模块,不但减少编程量,而且减少内存占用量,有利于大型PLC 程序的编制。
4 PLC控制系统程序的调试
PLC控制系统程序的调试一般包括I/O端子测试和系统调试两部分内容,良好的调试步骤有利于加速总装调试的过程。
4.1 I/O端子测试
用手动开关暂时代替现场输入信号,以手动方式逐一对PLC输入端子进行检查、验证,PLC输入端子的指示灯点亮,表示正常;反之,应检查接线或者是I/O点坏。
我们可以编写一个小程序,在输出电源良好的情况下,检查所有PLC输出端子指示灯是否全亮。PLC输入端子的指示灯点亮,表示正常。反之,应检查接线或者是I/O点坏。
4.2 系统调试
系统调试应按控制要求将电源、外部电路与输入输出端子连接好,然后装载程序于PLC中,运行PLC进行调试。将PLC与现场设备连接。在正式调试前检查整个PLC控制系统,包括电源、接地线、设备连接线、I/O连线等。在保证整个硬件连接正确无误的情况下即可送电。
把PLC控制单元的工作方式设置为“RUN”开始运行。反复调试可能出现的各种问题。在调试过程中也可以根据实际需求对硬件作适当以配合软件的调试。应保持足够长的运行时间使问题充分暴露并加以纠正。调试中多数是控制程序问题。一般分以下几步进行:
(1) 对每一个现场信号和控制量做单测试;
(2) 检查硬件/修改程序;
(3) 对现场信号和控制量做综合测试;
(4) 带设备调试;
(5) 调试结束。
5 结束语
PLC控制系统的设计是一个步骤有序的系统工程,要想做到熟练自如,需要反复设计和实践。本文是PLC控制系统的设计和实践经验的总结,在实际应用中具有良好的效果。
0.引言
随着计算机技术的发展,人们逐渐通过计算机软件来模拟实际的物理模型。“虚拟模型”就是以计算机技术为基础,数字接口技术为支持,对模型进行研究和利用。虚拟电梯系统是指将计算机和PLC控制虚拟成一台实际运行的电梯,计算机通过动画显示电梯的轿厢和井道并模拟电梯的运行,同时将信号传送到PLC 控制器。PLC控制器运行电梯控制程序,通过通讯程序将控制结果传回计算机,计算机上的虚拟电梯根据控制信号来进行电梯的运行和信号的指示,从而模拟电梯的运行过程,并能模拟实际电梯的各种运行状态和故障状态。
与传统的物理模型电梯相比,虚拟电梯具有以下优点:
(1),使用方便,便于自行设计开发电梯的控制功能。
(2)虚拟电梯可以作为电梯操作人员的培训软件,熟悉电梯正常的运行规律和各种控制信号的功能。虚拟电梯设置灵活,楼层数、梯速和电梯数量都可以改变,而实际物理模型都是不可改的。
(3)虚拟电梯可以作为PLC控制器的控制对象,对实际电梯控制系统的PLC控制程序及功能进行调试和完善。
因此虚拟电梯技术为开发电梯控制系统以及电梯操作人员的培训了良好的应用前景。
1.虚拟电梯系统的结构及原理
虚拟电梯控制系统由PLC电梯控制程序、系统通信程序和虚拟电梯界面三部分构成。如图1所示。虚拟电梯界面如图2所示,这是两个电梯的,画面对称地分为左右两个电梯系统。以左梯为例,左侧模拟虚拟电梯的轿厢和并道,其右侧为轿箱门和内外呼叫信号以及显示搂层信号,上部为电梯的运行状态。通过菜单的设置,可以配置电梯的数量、搂层数、电梯的运行方式(自动、司机、消防和检修等方式)。
系统的硬件主要是计算机、西门子S7-200型PLC和通讯电缆。系统的工作过程为::通过设置运行状态以及点击界面上的按钮,使计算机将虚拟电梯的信号通过通讯程序发送给PLC,PLC根据接收到的信息,运行电梯控制程序,并将控制程序的控制信号发送给计算机,计算机则通过相应的解释程序,一方面将运行状态显示在界面上,另一方面控制虚拟电梯动画模块的动作,从而达到虚拟电梯控制的目的。计算机中的软件采用VB编程,通讯方式采用串口通讯。
2.通讯协议格式设计
整个系统中将计算机虚拟电梯模型和电梯控制器PLC连接起来的就是计算机和PLC的通讯程序。通讯协议就是定义的使计算机与PLC能够识别相互之间通讯数据的通讯格式。本系统中S7-200与计算机间的,是以“帧”为单位进行的。本系统采用定长的通讯帧,每一帧的格式为:
定义:
1).开始字符标志着通讯帧的开始,在本系统中被定义为ASCII码的"@"。
2).结束字符标志着通讯帧的结束,在本系统中被定义为ASCII码的"#"。
3).校验码为正文各数据的异或和,用两个字节的十六进制ASCII码表示。
计算机与PLC通信时,为了避免通信中的冲突,采用主从方式,即计算机为主机,PLC为从机。只有主机才有权主动发送请求报文(或称为请求帧),从机收到后进行校验,若校验正确,则返回响应报文。
4)通讯帧中的命令类型则反映主从机之间的通讯数据类型。命令类型用两个字符格式表示,定义CT表示控制字,ST表示状态字,RS表示响应字。对不同命令类型的通讯数据帧格式定义如下:
(1) 状态字为计算机传向PLC的数据,表明虚拟电梯的状态及呼叫命令。该通讯帧数据格式为:
正文数据包括: 电梯的运行状态(上行、下行、停),信号(是、否),电梯开关门,电梯内呼外呼信号,平层信号等,用十进制数字按照下列定义的顺序表示:
运行方式定义为1位:自动为0,司机为1,检修为2,消防为3;
运行状态定义为1位: 电梯上行 为2,下行 1 ,停止为0,故障为3
电梯开关门定义为3位,含义:按钮未按0,电梯开门1 ,电梯关门 2 ;二、三位表示门状态:开门过程00 ,开门到位01,关门过程10 ,关门到位11 ;
电梯内呼数据以N开始,以W结束,每两位表示内呼层数,如N0413W表示电梯内有到4层和13层的内内呼信号;
电梯外呼数据以内呼结束字符W位开始,以字符S为结束字符。每三位表示外呼层数:是外呼方向0为下行,1为上行,2为上下均有呼叫,另两位表示层数。如数据W005112S则表示五层有下行呼叫,12层有上行呼叫。
平层信号用两位表示。
正文数据为A、B两梯的数据,其格式相同,其中A梯数据在前,B梯数据在后。
(2)响应字是计算机或PLC接收到数据后返回发送方的的响应。用于判断通讯数据是否正确。正文包括:当异或校验码正确时用00表示,错误时用11表示。当计算机向PLC发送如前所示状态字后,由PLC返回计算机的响应为:
(3)当计算机向PLC发送的数据格式为
表明计算机作为主机,要求PLC传送数据,主机处于数据接收状态,此时PLC向计算机传送的数据帧称为控制字,通过它来控制虚拟电梯的运行,控制字格式为
正文数据包括:电梯的上行下行停止,电梯开关门指令,信号指示(内呼、外呼、搂层)。定义格式与状态字类似。
3 .通讯程序设计
通讯程序的设计就是要在计算机和PLC之间完成以上述协议为格式的数据传递任务。分为计算机通讯程序和PLC通讯程序。
3.1计算机通讯程序
在开发计算机串行通信程序时采用VB编程语言,主要是利用MSComm (Microsoft Comm Control 6.0)通信控件,该控件提供了对串口的各种操作。MSComm提供两种通信方式,事件驱动方法和查询法。本系统采用查询法,查询法适合于较小的应用程序,每当应用程序执行完某一串行口操作后,将不断检查MSComm控件的CommEvent属性,以检查执行结果或检查某一事件是否发生。MSComm 控件主要属性有:
(1)Commport属性,设置并返回通信端口号,用于使用PC机的哪一个串行端口
(2)Setting属性,以字符串的形式设置并返回波特率、奇偶校验、数据位和停止位。
(3)Portopen属性,设置并返回通信端口的状态,用于打开或关闭端口。
(4)Output属性,用于发送数据,可以是文本数据或二进制数据。
(5)bbbbb属性,从接收缓冲区返回和删除字符,用于接收数据。
(6) bbbbbLen,设置并返回每次bbbbb属性从接收缓冲区读取的字符数。
(7) CommEvent,返回近的通讯事件或错误。
3.2 PLC通讯程序
西门子S7-200PLC提供了PPI(point to point)、MPI(multi point)和自由口(free port) 3种通讯方式,自由口通讯方式可以使S7- 200与任何具有串行口的设备进行通讯,自由口通讯使用RS-485接口,在程序中可以使用接收中断、发送中断、发送指令(XMT)和接收指令(RCV)等来控制通讯操作。通讯过程中,计算机作为主站通过COM口发送指令到PLC的PORT0口,PLC通过Rcv接收指令,然后对指令译码后实现指令要求的操作,并返回指令执行的状态信息。
PLC通讯程序采用中断方式,S7- 200系列PLC内部的特殊存储字节SMB30和SMB 130用来为通讯端口0和1在自由口通讯方式下选择波特率、奇偶校验和数据位数。利用XMT指令发送缓冲区的内容,发送完后会产生一个中断事件。利用RCV指令接收数据,接收完后也会产生一个中断。
3.3 系统的工作过程
虚拟电梯系统的通讯过程同样分为计算机和PLC两部分,计算机部分通讯过程是:虚拟电梯的界面运行后,每过一定的时间(设定为100ms),计算机就将虚拟电梯界面上的鼠标指令以及电梯的状态发送给PLC,PLC接收数据后,将其作为输入端口数据运行电梯的控制程序,产生输出数据,并将数据按协议格式传递给计算机,计算机接到后对数据进行解析,然后根据控制指令来进行电梯的运行和信号的指示。
4 结束语
通讯程序的设计是虚拟电梯中的重要一环,它决定了系统能否实现真正运行的功能,以及扩展性和通用性。本系统设计了可扩展的通讯协议格式,使用VB语言和西门子S7-200PLC开发了计算机和PLC的通讯程序,实现了计算机与PLC的实时通信。并将该通讯技术成功应用在了多电梯的虚拟系统中。该虚拟电梯系统作为PLC开放式实验室的一个虚拟对象,在PLC单电梯和多电梯控制中得到了很好的应用,也为开发电梯控制系统以及电梯操作人员的培训了良好的应用前景
我们已经知道有的FCS是由PLC发展而来,而有的FCS是由DCS发展而来,那么,今天FCS已走向实用化,PLC与DCS前景又将如何。1 前言
随着现代建筑业的飞速发展,桩基础已从木桩逐渐发展为钢筋混凝土桩或钢桩。校基础的施工方法和施工机械也有了的发展。桩的类型大体上可分为两大类:预制桩和就地灌注桩。预制桩主要采用锤击的方法将其打入土壤中。其施工机械也从刚开始坠锤、蒸汽锤和柴油锤,发展到振动锤。液压振动桩锤的优点是噪声小,随着人们环保意识的不断加强,也将足打桩设备发展的必然趋势。就地灌注桩是由相应机械成孔后,灌注而成。就地灌注校机械品种繁多。从近年来我国进口的设备情况和工程机械展览会来看,钻孔机成为灌注桩机械的主力军。它的发展也是相当的。
振动桩锤是一种广泛应用各种基础施工工程的沉拔桩施工机械,由于具有噪音低,沉桩效果好,可在水下作业等优点。
2 设备结构以及工作原理
2.1 设备结构
振动桩锤部件是一台能耐高加速度的特殊耐振电机,其轴温可耐95摄氏度,能短时过载使用且有较高的启动转矩。其大体结构分为减振框架、振动器、液压夹头、液压操纵箱、导向装置和电气控制箱等六部分。
2.2 工作原理
当设备启动前,先用吊车将振动桩锤落到桩上,并将夹头夹在桩管上。然后开启油泵,启动液压夹头夹紧,通过液压操纵箱,使夹头压力达到 10MP。当夹头夹紧后,主机随即启动,开始进入正常工作状态。液压夹头由油缸、杠杆、滑块、压块等组成,在工作时,它能将桩夹紧,把振动器所产生的激振力的传递给桩,由液压系统中的高,通过高压软管进入油缸,油缸中的活塞推动杠杆,杠杆推动滑块把桩夹紧。振动器主要由振动箱、偏心块、轴、齿轮、皮带轮等组成,耐振电机通过三角带把动力传递给振动箱内一对相啮合的圆柱齿轮上,齿轮与偏心块分别装在两根轴上,偏心块高速度旋转,产生了垂直振动(即激振力),带动桩体运动。
3.系统设计以及硬件配置
3.1 系统设计
考虑该设备使用在露天,潮湿,腐蚀性大,振动大等特殊场合,我们选用了具有三防(防湿热、防霉菌、防盐雾)处理,并装有防振性能好的WAGO 接线端子的和利时LM系列PLC以及HT6000系统触摸屏。保证设备在湿气、盐喷、潮湿、高温、振动大以及各种化学品侵蚀的恶劣环境下,仍能运行。
为了操作方便以及节约成本,我们采用和利时LM3107E带有1路模拟量输出以及2路模拟量输入的CPU模块,通过触摸屏去调节变频器频率,并反馈运行电流。
同时根据设备在现场的使用情况,我们设计了远程控制装置,对设备进行远程无线控制,大大提高了工作效率,同时也了现场操作人员的生命。
3.2 硬件配置
LM3107E模块额定工作电压220VAC,自带23点I/O,提供12路DC24V输入和8路继电器输出;同时可进行2路模拟量输入和1路模拟量输出处理。
HT6600C触摸屏和LM3107E PLC是通过RS232串口进行通讯,产用MODBUS通讯协议。变频器的频率调节是通过 LM3107E本体上带的一点模拟量输出信号进行控制,可以选择0~10V或者0~20mA两种控制信号。无线按钮是通过工业遥控器实现,把接收装置通过硬接线方式连到PLC数字量输入端。而发送装置者可以在100米范围内进行无线遥控操作。
4. 程序设计
4.1 下位PLC程序设计
该下位程序分主程序;自动控制、手动控制以及配方三个子程序。为了让客户操作方便,在自动控制子程序里面,实现一键控制设备运行全过程。在运行前先设置变频器量程,主机电流限制值,保压以及补压时间值等相应参数。然后只要一触发设备启动按纽,油泵以及夹头紧先工作,当液压夹头达到预定的 10MP后。自动启动主机,振动桩锤开始工作。为了设备运行,程序设定每隔一定时间夹头紧运行进行补压。同时为了保护设备,当主机运行电流连续过限制电流几分钟后,出现主机过载报警画面,并强制停止主机。
为了防止误操作,在主机运行过程中不允许关油泵和松夹头,如出现误操作就出现误操作报警提醒画面。
同时该PLC的编程软件具有视图功能,可以通过视图功能方便的进行程序模拟调试,避免了要经常通过触摸屏来进行调试并修改程序的麻烦。大大节省调试的时间,提高工作效率。
4.2 上位触摸屏程序设计
该触摸屏装有LM系列PLC的驱动,所以通信地址连接方便。触摸屏程序分中英文两种语言,各画面间互相切换。一些重要的参数设置了密码保护,防止误设置而损坏设备。为了使设备运行逼真,采用了主机运行动画显示功能。
5.结束语
随着国家为拉动内需,刺激经济增长在修路、建桥等民生工程的大量投入,振动桩锤的发展也将借此东风而发展。而快速发展的同时,我们也要考虑到怎样把的自动化技术融合到该行业当中,使该设备精益求精,使设备的单体工作效率发挥到大。通过该成功案例的描述,希望能对该行业起到投石问路的效果。