7
西门子中国授权代理商-电线电缆总代理商公司
1 前言
随着现代建筑业的飞速发展,桩基础已从木桩逐渐发展为钢筋混凝土桩或钢桩。校基础的施工方法和施工机械也有了的发展。桩的类型大体上可分为两大类:预制桩和就地灌注桩。预制桩主要采用锤击的方法将其打入土壤中。其施工机械也从刚开始坠锤、蒸汽锤和柴油锤,发展到振动锤。液压振动桩锤的优点是噪声小,随着人们环保意识的不断加强,也将足打桩设备发展的必然趋势。就地灌注桩是由相应机械成孔后,灌注而成。就地灌注校机械品种繁多。从近年来我国进口的设备情况和工程机械展览会来看,钻孔机成为灌注桩机械的主力军。它的发展也是相当的。
振动桩锤是一种广泛应用各种基础施工工程的沉拔桩施工机械,由于具有噪音低,沉桩效果好,可在水下作业等优点。
2 设备结构以及工作原理
2.1 设备结构
振动桩锤部件是一台能耐高加速度的特殊耐振电机,其轴温可耐95摄氏度,能短时过载使用且有较高的启动转矩。其大体结构分为减振框架、振动器、液压夹头、液压操纵箱、导向装置和电气控制箱等六部分。
2.2 工作原理
当设备启动前,先用吊车将振动桩锤落到桩上,并将夹头夹在桩管上。然后开启油泵,启动液压夹头夹紧,通过液压操纵箱,使夹头压力达到 10MP。当夹头夹紧后,主机随即启动,开始进入正常工作状态。液压夹头由油缸、杠杆、滑块、压块等组成,在工作时,它能将桩夹紧,把振动器所产生的激振力的传递给桩,由液压系统中的高,通过高压软管进入油缸,油缸中的活塞推动杠杆,杠杆推动滑块把桩夹紧。振动器主要由振动箱、偏心块、轴、齿轮、皮带轮等组成,耐振电机通过三角带把动力传递给振动箱内一对相啮合的圆柱齿轮上,齿轮与偏心块分别装在两根轴上,偏心块高速度旋转,产生了垂直振动(即激振力),带动桩体运动。
3.系统设计以及硬件配置
3.1 系统设计
考虑该设备使用在露天,潮湿,腐蚀性大,振动大等特殊场合,我们选用了具有三防(防湿热、防霉菌、防盐雾)处理,并装有防振性能好的WAGO 接线端子的和利时LM系列PLC以及HT6000系统触摸屏。保证设备在湿气、盐喷、潮湿、高温、振动大以及各种化学品侵蚀的恶劣环境下,仍能运行。
为了操作方便以及节约成本,我们采用和利时LM3107E带有1路模拟量输出以及2路模拟量输入的CPU模块,通过触摸屏去调节变频器频率,并反馈运行电流。
同时根据设备在现场的使用情况,我们设计了远程控制装置,对设备进行远程无线控制,大大提高了工作效率,同时也了现场操作人员的生命。
3.2 硬件配置
LM3107E模块额定工作电压220VAC,自带23点I/O,提供12路DC24V输入和8路继电器输出;同时可进行2路模拟量输入和1路模拟量输出处理。
HT6600C触摸屏和LM3107E PLC是通过RS232串口进行通讯,产用MODBUS通讯协议。变频器的频率调节是通过 LM3107E本体上带的一点模拟量输出信号进行控制,可以选择0~10V或者0~20mA两种控制信号。无线按钮是通过工业遥控器实现,把接收装置通过硬接线方式连到PLC数字量输入端。而发送装置者可以在100米范围内进行无线遥控操作。
4. 程序设计
4.1 下位PLC程序设计
该下位程序分主程序;自动控制、手动控制以及配方三个子程序。为了让客户操作方便,在自动控制子程序里面,实现一键控制设备运行全过程。在运行前先设置变频器量程,主机电流限制值,保压以及补压时间值等相应参数。然后只要一触发设备启动按纽,油泵以及夹头紧先工作,当液压夹头达到预定的 10MP后。自动启动主机,振动桩锤开始工作。为了设备运行,程序设定每隔一定时间夹头紧运行进行补压。同时为了保护设备,当主机运行电流连续过限制电流几分钟后,出现主机过载报警画面,并强制停止主机。
为了防止误操作,在主机运行过程中不允许关油泵和松夹头,如出现误操作就出现误操作报警提醒画面。
同时该PLC的编程软件具有视图功能,可以通过视图功能方便的进行程序模拟调试,避免了要经常通过触摸屏来进行调试并修改程序的麻烦。大大节省调试的时间,提高工作效率。
4.2 上位触摸屏程序设计
该触摸屏装有LM系列PLC的驱动,所以通信地址连接方便。触摸屏程序分中英文两种语言,各画面间互相切换。一些重要的参数设置了密码保护,防止误设置而损坏设备。为了使设备运行逼真,采用了主机运行动画显示功能。
5.结束语
随着国家为拉动内需,刺激经济增长在修路、建桥等民生工程的大量投入,振动桩锤的发展也将借此东风而发展。而快速发展的同时,我们也要考虑到怎样把的自动化技术融合到该行业当中,使该设备精益求精,使设备的单体工作效率发挥到大。通过该成功案例的描述,希望能对该行业起到投石问路的效果。
1 前言
随着科学技术的发展及制造技术的进步,社会对产品多样化的需求越来越强烈,产品的新换代周期也越来越短,中小批量生产的比重明显增加,从而对制造设备提出了高的要求。为满足市场的需要,要求制造设备具有率、高质量、高柔性及的性能,数控机床作为一种自动化的加工设备而被广泛采用。同时,随着现代机械制造业向高层次的发展,数控机床也必将成为柔制造单元(FMC)、柔制造系统(FMS)以及计算机集成制造系统(CIMS)的基础装备。计算机数控系统作为制造形状复杂、高质量、产品所的基础设备,己成为当今制造技术的一个重要组成部分。
PLC(Programmable Logic Controller)可编程逻辑控制器是20世纪60年代末期逐步发展起来的一种以计算机技术为基础的新型工业控制装置。PLC作为计算机技术应用于工业控制领域的崭新产品,也是开放式数控系统中不可缺少的重要组成部分。它在处理开关量的控制问题时起着重要作用。现代的数控机床一般可分为机床床体(MT)、NC和PLC三部分。数控机床中NC和PLC协调配合共同完成对数控机床的控制,其中NC主要完成管理调度及轨迹控制等“数字控制”工作,PLC主要完成与逻辑有关的一些动作,如的换、工件的夹紧及冷却液润滑液的开停。PLC技术在各种工业过程控制、生产自动线控制中得到为广泛的应用,成为工业自动化领域中的一项十分重要的应用技术。
在数控机床上有两类控制信息:一类是控制机床进给运动坐标轴的位置信息,如数控机床工作台的前、后、左、右移动;主轴箱的上、下移动和围绕某一直线轴的旋动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值,对伺服进给电机进行控制而实现的。这种控制的作用就是保证实现加工零件的轮廓轨迹,除点位加工外,各个轴的运动之间随时随刻都保持严格的比例关系。这类数字信息是由CNC系统(计算机)进行处理的,即“数字控制”。另一类是数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,的换,工件的夹紧、松开,液压、冷却、润滑系系统的运行控制。这一类控制信息主要是开关量信号的顺序控制,一般由 PLC来完成。
2 精密切割数控机床的功能分析
精密切割数控机床是通过数控系统以数字方式控制的运动以实现对工件的切削,在编写数控车削加工程序时,并不考虑。在加工前,用户将的 X轴补偿量、Z轴补偿量、尖圆弧半径、尖形式共四种补偿参数输入数控系统,由数控系统根据程序,进行补偿运算。这四种参数中,尖形式按数控系统的规定予以确认,尖圆弧半径可由R规测量,而的X,Z轴补偿量的测量则相对困难一些,使用自动对仪能很好地解决这个问题,为此,数控机床及加工大多配置了各种不同类型的对装置,如机外对仪、机内光学对仪、接触式自动对装置等。由于车削对一般的数控车床夹持标准化程度不高,因此采用机外对仪的对精度相对较低,而且机外对仪成本较高,操作复杂,需要专门的操作空间,所以实用性较差。而采用机内接触式自动对装置无疑是一种简便、快捷的对方法,它能方便地自动测量的固定补值,大大减少对时间,提高机床的加工效率。所以本文旨在设计一种机内接触式的数控车床,实现数控车削前的精密对,提高生产率,降低加工成本。需要解决的问题主要有以下方面:自动对仪需有的电子测头(传感器),能够准确在触发点触发,有较快的反映时间;对仪的测头与尖刚性接触,需加缓冲装置,对测头表面保护,压力需控制在1~10MPa左右,这样才不会对传感器的测头造成损坏,形成凹坑;系统能利用机床本身的位置测量装置进行测量,通过对不同尖触发点坐标(X,Z)的记录,可以方便地得到一组坐标值,分析计算后便可确定各补值; 安装和固定对仪的装置(联接臂)应达到相应精度要求,满足平行度与垂直度要求,且要有较好的刚度和易操作性。
3 精密切割数控机床总体设计
对精密切割的功能,主要需保证切割精度,因此要求对数据机床的主要部件一一传感器的精度得到保证,传感器的作用是感知和检测某一形态的信息,并将其转换成另一形态的信息,将被测量(尖位置这个物理量)按照一定的规律转换成可用输出信号(电流、电压)表示的物理量。 精密切割的数控机床传感器由以下几部分组成:
在本文中,传感器的选用应有相当的精度,完成以下功能:1)、实现对X轴和Z轴两个方向的传感,对仪要得到X轴和Z轴的坐标值,使不同在相同的点触发传感器,进而运用机床数控系统的功能再结合编程实现该点坐标值的。实际上传感器要完成的功能是一个开关量,不同的在相同点触发即可。 2)、由于偏角的不同,传感器不能做成X轴向和Z轴向相互垂直的两对传感器,这样对Z向坐标的时候,得到的尖点可能不是真实的尖点坐标。
本文采用的是机械式开关传感器,用机械触发的方式得到一个开关量的输出,当尖与传感器触发并行进到预设位置时,电路接通得到触发信号。机械式传感器相对来说精度是差一些,但只要设计合理,也能将误差控制在合理的范围内。另一方面,可自行设计以兼顾偏角的不同和传感器的大小及联接方式。此种传感器简单适用,成本较低,具有很大的市场推广。
4 PLC与数控系统编程
NUM1020/1040数控系统是NUM于1995年开发出的全新数控系统,是紧凑且功能完善的32位数控系统,并且和NUM1060系列系统兼容。它特别适合于1~6轴的数控机床,其硬件特点如下:采用CISC( 大规模集成电路)技术的GSP主板;主板上连接可插接(分离的)小模板,由于考虑到数控系统和系统外部的联系,NUM把和外界联系的功能模块制造成可插接小模块,便于用户将来的维护。具体分为轴模块、显示模块和通讯模块;NUM1020/1040采用+24VDC为其电源输入,由于数控系统是弱电电路,采用+24VDC为电源输入,可以大大降低其热源和不稳定因素的影响。用户可以把+24VDC稳压电源放在电气柜内,大大提高了整个数控系统的性;PLC功能的内部集成,PLC功能的内部集成化,提高了PLC和 CNC的内部通讯能力,增强了数控机床的逻辑控制;PLC的32输入和24输出模块,NUM的32输入和24输出模块可以和外围的电路相连接,而这种模块通过NUM提供的电缆和NUM数控系统连接,提高了整个机床的性。(如果有问题,只能损坏这种模块,不会对数控系统造成损坏);光纤技术的通讯,PLC输入输出点的扩展,通过光纤进行连接,简化了线路的连接;轴转接模块,机床的编码器和到伺服的线路可以直接联到此模块上,并通过它和数控系统的轴板进行连接,提高了数控系统的性。另外,NU M的轴连接和其它数控系统不同,NUM的轴模块连接此轴的所有信息(如编码器、速度信号、回零开关)。如果机床的轴有问题,可以直接把轴模块上的插头相对换,就能很快地查出问题所在(系统内部或外部);轻巧实用的紧凑型操作面板。其上显示器和计算机的CRT有可兼容性,与NC相通的功能键共有47个,有6个用户自由定义键及串行通讯接口,可以连接PC的键盘(直接插拔)。
按照设计要求,当传感器检测到信号时,数控系统的程序并未监控,此时是不能记录尖坐标值进行数据处理的。先使进给电机停下来,等候操作者发出指令,然后进行下一步的操作。所以应该通过PLC的控制来实现这一功能,将Q001.0和Q001.1两个端子分别与两两个进给电机相连,实现单控制。其次,传感器共有四个测头,但对进给电机的控制都是一样的:任何一个传感器得到信号都使相应的电机同时停下来,然后进行相应的数据处理。
数控机床的传感器得信号后通过接口电路传给PLC,PLC将得到的信号通过交换区与CNC进行数据的传输,CNC将信息运算处理后再传递到PLC中,PLC控制X向电机和Z向电机运动。数控系统与传感器的接口电路如图2所示:
如图所示为PLC的接线示意图,将%I001.0、%I001.1、%I001.2、%I001.3 四个输入口分别与四个传感器相连,然后再与 COM口连接。传感器得到信号后,相当于开关闭合,由原先的+24VDC电压跳变为零,从而给PLC的相应的输入端口一个信号。输出口%Q001.0控制 X方向进给电机的使能,%Q001.1控制Y方向进给电机的使能。
NUM1060CNC是一种多功能、多处理器的系统,它提供与数控机床连接的各种自动控制功能。用梯形图语言编制的自动控制功能包括安装在机床上的传感器和执行机械以及与CNC的数据交换。自动控制功能设置在处理单元之中,它包括一块或多块功能卡,CNC通过它们实现图形显示,自动控制和信息存储功能。CPU与系统的数据交换可以分为二种类型:通过交换区的通讯和通过协议的通讯。
自动控制功能由一个监督程序进行管理,它包括处理初始化,将输入/输出点分配到不同的框架以及输人输出接口和监视器的管理等多种基本任务。监控程序与用户程序一起对系统进行整体的监督管理。用户程序是在监督程序控制下受一个20ms周期的实时时钟(RTC)支配循环运行的。
机床处理器的存储器空间安排如下:
(1) 有备份功能(掉电保持)的32K静态RAM。
(2) 在电源接通是复位(清零)的32K动态RAM。
(3) 机床处理器(1MB V1)的用户程序使用的180KB动态RAM。
(3) 机床处理器(4MB V1)的用户程序使用的2.5MB动态RAM。
(3) 机床处理器(4MB V2)的用户程序使用的3.5MB动态RAM。
(6) UCSII模块上的用户程序使用的64KB动态RAM。
自动控制功能如下:
(1) 对DACs(12位)直接存取。
(2) 对ADCs和输入/输出点间接读和写存取,这种存取是经由虚拟存储空间(每20ms刷新)实现的。
5 点总结
本文的点是针对数控车床对切割中,对时间长、精度差这一问题,设计了精密切割数控车床,通过对尖位置的捕捉运用NUM数控系统自身的测量装置得到了尖点的坐标,经过计算将不同相对于标准的位置偏差得出并再存入数控系统,实现了自动对,有效地提高了对的效率和精度,具有可推广性。可为生产效率的提高,制造成本的降低起到积的作用。




1 引言
风能是可再生能源中发展快的清洁能源,也是有大规模开发和商业化发展前景的发电方式。我国风能资源储量丰富,发展风能对于改善能源结构缓解能源短缺具有重大现实意义。近年来,我国风电产业规模逐步扩大,风电已成为能源发展的重要领域。
在风电技术发展方面,风力发电机单机容量朝着大型化发展,兆瓦级风力机已经成为了风力发电市场的主品。目前大型风力发电机组普遍采用变桨距控制技术,例如,VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW, GE的1.5MW、 2.5MW、3.6MW机组,REPOWER的MD77-1.6 MW、MM82 -2MW,NORDEX的S77/1.5MW等都采用变桨距系统。
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。变桨距控制的优点是能够确保高风速段的额定功率,额定功率点以上输出平稳、在额具有较高的风能利用系数、提高风力机组起动性能与制动性能、提高风机的整体柔性度、减小整机和桨叶的受力状况。因此风力发电市场的主品是变速变桨距机组。
世界上大型风电机组变桨距系统的执行机构主要有两种,液压变桨距执行机构和电动变桨距执行机构。其中,电动变桨距系统的桨距控制通过电动机来实现,结构紧凑、控制灵活、,正越来越受到大多数整机厂家的青睐,市场前景十分广阔。
目前,我国MW级变速恒频风电机组电动变桨距系统产品一直依赖进口,国外比较有代表性的有德国LUST、SSB、美国GE 公司的产品。其高昂的产品价格、技术服务的不足和对关键技术的封锁严重影响了我国风电产业的健康快速发展。风力发电机向着大型化的方向发展,变桨距控制技术已经成为风力发电的关键技术之一,研制电动变桨距系统实现大型风力机电动变桨距控制技术国产化、产业化的要求十分迫切。因此,掌握电动变桨距控制技术将改变国外公司对变桨距控制技术的现状,提高我国风电关键技术的研制能力,降低风力发电的成本;对加快拥有自主知识产权的风电设备研制,大力发展风电事业具有重要意义,从而使我国在该领域的研究达到水平。
变速变桨风力发电机组是风力发电技术发展的主流方向,控制系统是机组的关键部件之一。控制系统的性能优劣对风机运行的效率和使用寿命有至关重要的影响。20世纪90年代,国外便开始了对变速风力机的运行特性和控制策略的研究,并了一系列的成果,生产制造出成熟的商业化运营的控制系统产品。目前的研究热点集中在基于现代控制理论的新型控制算法在风力发电控制系统中的应用上,以期进一步提高风力机的运行效率,减小疲劳载荷,改善输出电能质量。我国风电产业起步较晚,目前对变速风电机组的运行特性及规律缺乏深入研究,在控制系统的产业化项目中,缺乏优的控制策略依据。深入研究风电机组及风力机的运行特性和规律对于控制系统的分析与设计具有十分重要的指导意义。
大风能捕获是控制系统的重要功能之一,它直接影响的风力发电机组的运行效率。对于提高风电机组的发电量,减小风电成本具有重要意义。而传统的控制方法存在诸多不足,引起较大的能量损失,新型控制算法的研究和应用,可以有效提高风能利用效率,实现大风能捕获。
为了获得足够的起在变桨距系统中需要具有高性的控制器,本文中采用了罗克韦尔 SLC 500系列可编程控制器(PLC)作为变桨距系统的控制器,并设计了PLC软件程序,在国外某风电公司风力发电机组上作了实验。
2 变桨距风电机组及其控制策略
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。如图1所示为变桨距风力发电机的原理图。变桨距控制的优点是机组起动性能好,输出功率稳定,停机等;其缺点是增加了变桨距装置,控制复杂。
在风力机设计的初期,设计人员就考虑到了变桨距控制,但是由于对空气动力学特性和风力机运行工况认识不足,控制技术还不成熟,风力机的变桨距机构性不能满足运行要求,经常出现飞车现象。直到20世纪90年代变桨距风力机才得到广泛的应用。目前大型风力发电机组普遍采用变桨距控制技术,例如, VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW,ENRON Wind的 1.5S-5MW,NORDEX的S77/1500KW等都采用变桨距结构。
定桨距控制,风力机的功率调节依靠叶片结构设计发生失应使高风速时功率不增大,但由于失速点的设计,很难保风力机在失速后能维持输出额定功率,所以一般失速后功率小于额定功率[1][4];而变桨距风力机可以根据风速的大小调节气流对叶片的功角,当风额定风速时,输出功率可以稳定在额定功率上。如图2所示为定桨距风力机和变桨距风力机的输出功率比较曲线。在出现台风的时,可以使叶片处于顺桨,使整个风力机的受力情况大为改善,可以避免大风损害风力机组。在紧急停机或有故障时,变桨距机构可以使叶片顺桨到90°,风轮速度降低,减小风力机负载的冲击,延长风电机组的使用寿命。
变桨距控制技术关系到风力发电机组的运行,影响风力机的使用寿命。随着变桨距风力机的广泛应用,许多学者和研究人员投入了变桨距控制技术及变桨距风力机结构的研究。目前人们主要致力于通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡等技术的研究。Vestas公司推出了 OpiTip(桨距角)风力发电机组,不但优化了输出功率,而且有效的降低的噪音。
目前变桨机构有两种:一种是液压变桨距执行机构;另一种是电动变桨距执行机构。液压变桨控制机构具有传动力矩大、重量轻、刚度大、定位、执行机构动态响应速度快等优点,能够保证加、准确地把叶片调节至预定节距。目前国外大公司如丹麦VESTAS的V80-2.0MW风机等都采用液压变桨机构[5][6]。电机变桨执行机构是利用电机对桨叶进行控制,电动变桨没有液压变桨机构那么复杂,也不存在非线性、漏油、卡塞等现象发生,因此目前受到了许多厂家的关注。如REPOWER的XD77、MM92、GE公司生产的兆瓦级风力发电机就采用了电动变桨距机构。
如图3所示为液压变桨距执行机构原理图,桨叶通过机械连杆机构与液压缸相连接,节距角的变化同液压缸位移成正比。当液压缸活塞杆向左移动到大位置时,节距角为90°,而活塞杆向右移动大位置时,节距角一般为-5°。液压缸的位移由电液比例阀进行控制。在负载变化不大的情况下,电液比例方向阀的输入电压与液压缸的速度成正比,为进行的液压缸位置控制,引入液压缸位置检测与反馈控制。
电机变桨距控制机构可对每个桨叶采用一个伺服电机进行单调节,如图4所示。伺服电机通过主动齿轮与桨叶轮毅内齿圈相啮合,直接对桨叶的节距角进行控制。位移传感器采集桨叶节距角的变化与电机形成闭环PID负反馈控制。在系统出现故障,控制电源断电时,桨叶控制电机由UPS供电,将桨叶调节为顺桨位置。
随着风力发电机技术的不断进步,风力机已经朝着大型化方向发展。兆瓦级风力机已经成为市场上的主流机型,在国外的海上风电场广泛采用2-5MW风力发电机组。目前的变桨距风力机大多采用三个桨叶统一控制的方式,即三个桨叶变换是一致的。但由于现代大型风力机叶片比较大,一般几十米甚至上百米,所以整个风轮扫过面上的风速并不均匀,由此会产生叶片的扭矩波动并影响到风力机传动机构的机械应力及疲劳寿命;此外,由于叶片尺寸较大,每个叶片有十几吨甚至几十吨重,叶片在运行的不同位置受力状况也是不一样的,故叶片重力对风轮力矩的影响也是不能忽略的。显然对三个叶片进行立控制加合理。通过立变桨控制,可以大大减小风力机叶片负载的波动及转矩的波动,进而减小了传动机构和齿轮箱的疲劳度以及塔架的振动,而输出功率能基本恒定在额定功率附近。
3 变桨控制器的设计
3.1 系统的硬件构成
本文实验中采用的电动立变桨距系统由交流伺服系统、伺服电机、后备电源、轮毂主控构成。电动变桨距系统结构如图5、6所示。系统参数与接口的设计依据为SSB1.5MW双馈式风力发电机组变桨距系统。
图6 电动立变桨距系统结构2
本文中的风电系统涉及风速、风向、振动加速、振动开关、偏航、刹车液压系统、齿轮传动系统、液压、温度等等信号。其中,输入数字量约70-80路;模拟量约10路;温度量约16路;输出数字量约32路;此外,还需要用到发电机转速测量高速计数信号。为了满足需求,采用了罗克韦尔 SLC 500系列 PLC。SLC 500有多款不同容量和内置通讯接口的处理器可选。提供大容量多可达64K字(128K字节)的数据/程序内存,SLC 500的模块化I/O系统提供了包括开关量、模拟量和模块在内的60多种I/O模块。SLC500系列处理器的程序和数据是以文件的形式在内存中存储的。处理器文件分为程序文件和数据文件,程序文件可高达256个 ,包括处理器信息、梯形图主程序、中断子程序及其他用户根据需要编制的子程序文件;数据文件包括与外部 I/O及所有梯形图程序使用的与指令相关的数据信息。它包含 输出 /输入、状态、位、计时器、计数器、控制结构、整数、浮点数、字符串、 ASCII码文件 ,用户可以根 据需要定义除输出 /输入和状态文件以外的可达 256个数据文件。
此外,SLC500控制系统还提供 50多种不同的 I/O模块满足用户的不同需求。本地模块采用硬件寻址方式 ,程序逻辑可直接存取 I/O数据。 (1 )开关量 I/O模块。包括各种输入 /输出 方式和不同的 I/O点数 ,有 4、8、16和 32点开关 量 I/O模块及 8、12 和 16点 I/O混合模块等 ,可 与不同电压等级的交流、直流和 TTL电平连接。 其中有负载电流达 2 A和 2. 5 A的大电流继电器模块、固态输出模块和大接通信号延迟时间只 有 0. 3 ms、大关断信号延迟时间只有 0. 5 ms的快速响应直流输入模块。为提高工业应用的 性 ,这些模块都提供了输入滤波和光电隔离功能。 16点 I/O模块上还有可拆卸的接线端子排 ,使接 线和换模块容易。 ( 2)模拟量 I /O模块。SLC500系列模拟量 ( 模块有 4路 I/O、4路混合 I/O 2路输入 /2路输 ) 出 模块和高密度的 8路输入模块及快速响应模 块等。输入模块都采用差分输入 ,每路通道可单 配置成不同等级的电流或电压输入方式 , 输入分辨率可达 16 bit精度。具有输入滤波 ,对 电气噪声具有高度的防护能力。输出通道的精度都是 14 bit,提供的控制能力。SLC500系列 模拟量 I/O模块可以选择由框架的背板供电 ,不需外部电源。
系统中,发电机的功率信号由高速功率变送器以模拟量的形式(0~10V对应功率0~800KW)输入到PLC,桨距角反馈信号(0~10V对应桨距角 0~90°)以模拟量的形式输入到PLC的模拟输入单元;液压传感器1、2也要以模拟量的形式输入。在这里选用了4路模拟量的输入单元;4路模拟量输出单元,输出信号为-10V~+10V,将信号输出到执行机构来控制进桨或退桨速度;为了测量发电机的转速,选用高速计数单元,发电机的转速是通过与发电机相连的光电码盘,每转输出10个脉冲,输入给计数单元。
3.2 系统的软件设计
本系统的主要功能都是由PLC来实现的,当满足风力机起动条件时,PLC发出指令使叶片桨距角从90°匀速减小;当发电机并网后PLC根据反馈的功率进行功率调节,在额定风速之下保持较高的风能吸收系数,在额定风速之上,通过调整桨距角使输出功率保持在额定功率上。在有故障停机或急停信号时,PLC控制执行电机,使得叶片变到桨距角为90°的位置。
风力机起动时变桨控制程序流程如图7所示。当风速起动风速时PLC通过模拟输出单元输出1.8V电压,使叶片以0.9°/s的速度变化到15°。此时,若发电机的转速大于800r/s或者转速持续一分钟大于700r/s,则桨叶继续进桨到3°位置。PLC到高速计数单元的转速信号大于 1000r/s时发出并网指令。若桨距角在到达3°后2分钟未并网则由模拟输出单元给比例阀输出-4.1V电压,使桨距角退到15°位置。
发电机并上电网后通过调节桨距角来调节发电机输出功率,功率调节程序流程图如图5所示。当实际功率大于额定功率时,PLC的模拟输出单元CJ1W- DA021输出与功率偏差成比例的电压信号,并采用LMT指令使输出电压限制在-4.1V(对应变桨速度4.6°/s)以内。当功率偏差小于零时需要进桨来增大功率,进桨时给比例阀输出的大电压为1.8V(对应变桨速度0.9°/s)。为了防止频繁的往复变桨,在功率偏差在±10KW时不进行变桨。
在变桨距控制系统中,高风速段的变桨距调节功率是非常重要的部分,若退桨速度过慢则会出现过功率或过电流现象,甚至会烧毁发电机;若桨距调节速度过快,不但会出现过调节现象,使输出功率波动较大,而且会缩短变桨缸和变桨轴承的使用寿命。会影响发电机的输出功率,使发电量降低。在本系统中在过功率退桨和欠功率进桨时采用不同的变桨速度。退桨速度较进桨速度大,这样可以防止在大的阵风时出现发电机功率过高现象。
图8为变桨距功率调节部分的梯形图程序。100.08是启动功率调节命令,当满足功率调节条件时,继电器100.08由0变为1;D2100存放的是发动机额度功率与实际功率的偏差,当偏差ΔP满足-10KW<ΔP<10KW时将0赋给D2100;60.07为1时即功率偏差为负值,D2100中的功率偏差按一定比例进行缩放,并通过LMT指令限位输出到比例阀,输出的小值对应-4.1V电压;若继电器60.07为0,即功率偏差为正值,将D2100的值通过SCL3指令按比例系数缩放。
4 结束语
在国内一些机构已经对变桨距控制进行了一定的研究,如沈阳工业大学、浙江大学、新疆大学等,其中浙江大学对立变桨距风力机控制做了初步的探讨,但是变桨距控制在国内还没有成功应用的例子,变桨距控制在国内还处于理论研究阶段,较高风力机成本也限制了实验的进展,在国内主要做了理论研究和分析。虽然金风公司在今年生产安装了1.2MW的变桨距直驱永磁同步风力发电机,但是其变桨控制系统还没有实现国产化,还依靠国外的技术。东方汽轮机生产的 1.5MW FD70风力机采用了LUST的立变桨控制器。
采用了罗克韦尔 SLC 500系列PLC作为大型风力发电机变桨距系统的控制器,已经在广东南澳岛的国外某风电公司型变桨距风力机上作了实验。在现场的实验记录表明,采用这种PLC控制系统可以使风力机运行,在出现停机故障时可以顺桨停机;运行时满足功率优的原则,在额定风速之下时桨距角保持在3°不变,在高风速时能够根据输出功率调整桨距角的位置,满足设计要求。由于变桨距系统中采用了PLC作为控制器,使得该系统仅用简单的软件程序就完成了复杂的逻辑控制,而且抗干扰能力强,性能。可以预见,罗克韦尔 SLC 500系列PLC在风力发电场合会有大的应用前景。