西门子一级授权代理商-模块总代理商批发
  • 西门子一级授权代理商-模块总代理商批发
  • 西门子一级授权代理商-模块总代理商批发
  • 西门子一级授权代理商-模块总代理商批发

产品描述

产品规格模块式包装说明全新

西门子一级授权代理商-模块总代理商批发

1.引言

随着机械自动化水平的不断提高,自动控制技术在定量包装生产中应用越来越多,在粮食、化肥、饲料和轻工等行业中都有广泛应用。称量包装技术的发展大致经历了手工称量、继电器控制、称重仪表控制、PLC 控制等几个阶段。相对于传统的称重仪表控制,应用PLC 和触摸屏组成的控制系统便于将开关量设置、复位操作以及设定和修改系统参数功能的结合,提高机器速度和精度。

2. 包装机的工作原理

2.1 包装机的组成

称重式自动定量包装机由供料部分、称重部分与卸料部分组成。供料部分分为储料斗和重力供料装置。储料斗用于存储需要灌装的物料,重力供料装置主要是向称量料斗中提供物料。称重部分即称量斗,它通过和称重传感器相连,测量物料重量。卸料部分用来完成标准重量物料的卸料装袋过程。如图1 所示,为包装机的组成图。

2.2 工作原理

称重式自动定量包装机的工作原理流程图如图2 所示。当储料斗中物料足够,在重力的作用下进入重力供料装置,打开料门进入大给料状态。当到达给定大给料重量时,关闭给料门,留一条狭缝,进入小给料状态。当到达给定小给料重量时,关闭给料门,经过一定的空中落料,称量斗稳定,并且卡袋机构卡紧时,卸料门打开,物料进入放料斗,再落入袋内,完成一个包装循环

3.控制系统硬件设计

该系统主要为开关量控制,料门的全部动作由气缸驱动,而气缸又由相应的电磁阀控制。设备即可以手动操作也可以自动操作。手动操作要求用按钮对机器的每一步运动单进行操作控制。自动操作要求按一下自动/手动选择开关,机器自动地、连续不断地周期性循环。在工作中若按下停止按钮,则机器继续完成一个周期的动作,回到初始状态后自动停止。控制系统框图如图3 所示。

根据称重式自动定量包装机的操作和控制要求,控制系统选用西门子公司的SIMATICS7-200 系列PLC,此系列的PLC 具有结构紧凑、模块化、可扩展性强、指令集丰富等特点。所选CPU 的型号为CPU 226 AC/DC/REL,它提供24 个数字量输入和16 个数字量输出,输入/输出接口电路均采用了光耦合电路,对外界接口具有很强的适应性。并且2 个RS485 通讯/编程口,具有PPI 通讯协议、MPI 通讯协议和自由方式通讯能力。由于要处理传感器的模拟量输入信号,所以扩展了一个EM 235 模拟量处理模块,该模块具有4 路模拟量输入。POP 文本显示器对整个系统进行过程监控显示以及参数设定等功能,可以通过PPI 协议和s7-200 系列PLC 的编程口或扩展通讯口直接通讯。

4.控制系统软件设计

控制系统软件设计为各功能软件设计,包括显示功能、参数设定功能、自动修正给料量功能、通讯功能等。如图4 所示为软件系统的总体结构。

4.1 称重信号处理

由于称量信号存在干扰,需要对信号进行滤波处理,并判断信号是否稳定,读数是否准确。所谓数字滤波,就是通过一定的计算或判断程序减少干扰在有用信号的比重,是一种程序滤波即软件滤波。常见的滤波方法有限幅滤波、限速滤波、中值滤波、滑动平均滤波等。

本系统采用滑动平均滤波方法,系统采集的信号是与重量成正比的电压信号。这类信号的特点是存在一个平均值,信号在某一数值范围附近作上下波动,在这种情况下仅取一个采样值作为判断依据显然是不准确的。采用滑动滤波方法可以得到较好的效果。该方法采用新采集的一个数据替换n 个暂存数据中的早的一个数据,使得n 个暂存数据始终是近的数据。求平均后所得数据既反映了近的数据变化,又克服了随机误差带来的响。

所求的平均值为

标准差为

当标准差σ 小于设定值时,则系统稳定,当前值即为称量值。根据系统要求的精度不同,可以设定不同的值。

4.2 PLC 程序设计

根据称重式自动定量包装机的操作要求,确定各动作的顺序和相互之间的关系,画出程序流程图,再由PLC 输入输出的逻辑关系编写出梯形图。本系统输入端口定义为自动手动按钮、卡袋复位按钮、单步执行按钮、总复位按钮、停止按钮、卡袋开关等,输出端口定义为称量斗稳定指示、大给料气缸动作、小给料气缸动作、卸料气缸动作、卡袋气缸动作、系统报警等。输出采用西门子公司STEP7-Micro/WIN32 软件进行编写,程序流程图如图5 所示。

4.3 POP 文本画面设计

POP-HMI 除 LCD 显示窗之外,还有22 个薄膜开关按键,其中16 个按键能被设定成特殊的功能键,用来完成画面跳转,开关量、位状态设定等功能。本系统中通过POP-HMI 可以设定灌装目标重量、大给料量、小给料量,同时实时监控称量重量,并且查看灌装数据。

5.结束语

本系统设计完成后,进行了多次模拟实验,并且根据现场调试的情况进行修改。系统在投入运行后,性能稳定,满足各项工艺要求,生产效率和产品质量均有所提高,完成了机械和电器控制系统的一体化要求,可广泛应用于食品包装等行业。


在采用PLC对自动模切压痕机等包类机械实现电气自动化控制的系统中,像经典的继电-接触器控制系统中的大部分联锁控制都可转移到PLC中实现,继电-接触器控制系统大大地简化,成为只含有一些必要的电气联锁的MCC(Motor Control Centre)系统,成为PLC系统指令的有条件的执行者。

应保留继电-接触器的联锁

在PLC与继电-接触器系统综合设计中,这种联锁主要是指重要的联锁,包括人身和设备两方面。从人身的角度出发,应保留一些对人身至关重要的联锁,如事故开关、紧急停机装置等,这些开关一般要求采用非半导体的机电元件组成。从设备的角度出发,往往需要保留一些重要的限开关和保护手段。

PLC和MCC系统的接口

PLC和MCC系统的接口方法常见的有两种:一种是采用继电器隔离的方法,一种是PLC直接接受MCC系统的信号,并且由PLC直接驱动MCC中的接触器的方法。

采用种方法时,进人PLC的信号要先经过光电隔离继电器,再由其触点接入PLC的输入模板。PLC的输出信号也是动继电器线圈,然后再由继电器的触点参与MCC的联锁控制。这种方法的优点是:方便了PLC模板的选取,从而有可能降低PLC的造价,基本上了外部强电侵入PLC的可能性,有效地保证了PLC系统的运行。其缺点是增加了大量的继电器,从而增加了可能的新故障点。在实用中,应选用高质量的继电器,选用带有能指示吸合动作的发光器件的继电器。采用PLC和MCC系统直接接口的方法的优点是简单明了,整个控制系统的故障点少。缺点是系统的性不如种方法高。

工程实践中,两种方法应用都很广泛,而且很多系统中两种方法兼而有之。选取接口要视环境和具体条件、元件水平等灵活考虑决定。

I/O分站的热备

在一些对PLC系统性要求高的系统设计中,不仅要求主机有热备,有时还要考虑系统中某些I/O分站也要热备,出现故障时,实现I/0通道的自动或手动切换。
为了实现功能,在系统设计中应建立起两个一样的I/0分站,其系统的输人是并联的,而输出信号则要求可切换。作为自动切换的应用,切换装置应当是受PLC控制的。

就地操作

就地操作是指机旁单机操作,它有两种设计原则,一是不经过PLC,直接通过MCC盘控制电气设备,二是经过PLC,实则是又一种手动方式。但无论采用哪一种,上述人身、设备等必要的联锁仍然在继电-接触器系统中实现。
采用不经过PLC的就地控制方式,优点是就地操作试验时只要将转换开关一转换,就可脱离PLC,不用考虑PLC系统的硬软件问题,集中力量检验机械动作性能。国外设计一般都采用这种方法。缺点是增加了MCC盘上联锁的复杂性。如果采用经PLC就地操作,将就地开关接人PLC模板即可。这样外部电缆、MCC盘都显得简单。在远距离情况下,PLC输入可以通过选择高电压范围输人模板的办法保输人信号的性,输出由干是通过MCC盘直接控制继电器,消去了采用不经过PLC就地操作方式时继电器回路的长电缆,保证了继电器动作电压。所以这种方法也有优点。合理科学地编制PLC程序

PLC程序摒弃了微机常用的计算机编程语言的表达方式,具风格地形成一套以继电器梯形图为基础的形象编程语言和模块化的软件结构。用户根据PLC说明书的提示,就可以按照继电器梯形图和逻辑代数式来直接编程。但是在编制PLC程序过程中,使设备,其中重要的就是误操作影响。误操作主要包括人为误操作和系统本身产生的失误两方面。

1.人为误操作

1)手指颤动造成失误解决的方法是使用微分指令DIFU(13)来检索按钮送人电信号的上升沿,在一个执行周期里PLC只执行一次,从而避免些类误操作的发生,如图1中,00005为高压泵停止按钮,HR0005为低压泵起动标志位。当按下低压泵起动按钮00003时,信号转化为微分指令HR0005,HR0005在一个程序扫描周期里,只接收一个上升沿脉冲,从而过滤掉由于手指颤动产生多余的脉冲,保证定时器TIM000正常延时1min,确保高压泵按时起动。

2)无意误操作解决的方法有两种。一是通过程序来优化显示功能,减少人为失误,在设计中使用一个指示灯来显示各种不同的工作状态平光—显示系统处于运行状态高频闪光——显示系统处于试验状态,每1s闪1次;低频闪光——显示系统处于步进状态,每3s闪1次。二是通过输入信号之间的联锁,这种方法工作量大,考虑要,否则也会出现输入信号相互干扰,起反作用。图2是简化的梯形图,00003为1号低压泵起动按钮;00005为2号低压泵起动按钮;HR0400为1号主机停止24 h后标志;HR0401为2号主机停止24h后标志。

图2的工作原理为1号或2号低压泵任意一台工作,1号2号互为备用,保证有一台在工作。1号2号低压泵停止按钮的常闭接点(00004, 00006)互为联锁,当操作人员误按停机按钮00004(00006)时,程序会自动起动另台低压泵(2号或1号低压泵),从而避免造成低压泵停机严重事故的发生。HRO100为低压泵停机起动标志,常开(闭)接点广泛串联到各个相关回路中,尤其是串联到高压泵控制回路中,保证在低压泵未起动的前提下,起动高压泵无效,从而避免对高压泵的误操作。1号或2号低压泵起动后,HRO100得电,技术要求只有三种情况低压泵起动标志HRO100失电:1号2号主机00000、00001同时停运,且按下系统总停按钮00002;PLC上电复位信号25315; 1号2号主机同时停运24 h后HR0400、HR0401。除了上述三种情况外,总保持上电状态,保证整个控制系统的稳定,误按下系统总停按钮也不要紧。

2.系统本身产生的失误

由于PLC输人信号来源复杂,目PLC的动作响应时间远远短于继电接触控制系统的响应时间,因而在继电接触控制系统中不太引起注意的触点瞬间跳动问题,将会在PLC控制系统中产生误操作。为此程序中加入了干扰滤除程序,见图3。

TIM000用于00104接点断开时,因机械振动影响出现的瞬间闭合,TIM001用于00104接点闭合时,因跳动与受干扰的影响出现的瞬间断开。CNT020用于保持输人的信号。HR0410、HR0411为相关的运行设备。

当00104(油位下限开关)断开后,由于以上原因造成00104瞬间闭合,起动定时器TIM000,如果在设定时间内,00104断开,则系统判定此次闭合为误动作,不执行以下程序;若00104在设定时间内仍为闭合,由系统判定此次闭合为正常的命令,通过计数器CNT020保持输入的信号,起动相关的运行设备;当00104闭合后,由于以上原因造成00104瞬间断开,方法同上,TIM000、TIM001的时间设定为#0002(0.2s),它不会对控制系统有什么影响。一般来讲TIM000,TIM001时间的设定值是按输入继电器吸合后立即断开这一过程的时间考虑的,约0.2~0.5s,在此范围内都可以达到触点跳动干扰的目的。如果时间设定值过大,将使系统动作延迟;太小,则收不到滤除干扰的效果。

文本显示器与EC20的PORT0通讯端口采用MODBUS协议通讯,其中PLC作为从站。主站发送的信息主要有一杆长面的长度,切割挂面的单长,切割数,手动/自动切换等;从站返回的信息包括当前变频器运行频率,已切割数,总的面杆数计数等。

变频器与EC20的PORT1通讯端口采用自由口协议通讯。运行中PLC向变频器发送启动、停止、频率设定三种命令,具体发送时刻和发送周期由程序中的逻辑控制。

编码器将A、B两相信号分别送入PLC的X0和X1。PLC应用高速计数功能对编码器信号计数,经过内部计算和变换后确定何时驱动伺服放大器动作。

伺服放大器与PLC的高速输出端子Y0连接,通过PLC输出的高速脉冲的频率和数量确定切的转速与位置。

4.工艺的实现

长度控制:将编码器信号接入PLC中以实现长度控制,实际上只需将编码器与面条长度之间的对应关系找到就可以。通过编程实验测得,十杆挂面编码器所发脉冲数为70610个,又通过实际测量得知每个面杆间的长度为1527mm,由此可得每毫米对应脉冲数为4.624个。因此只需在程序中将设定长度乘以4.624,当高速计数达到该要求时产生切动作即可。

主电机转速调节:该工艺如果直接按照原要求实现,程序修改较大,难点就是如何判断“连续”。如果采用时间间隔的概念来判断连续,在固定转速的情况下是可以的。但是在几次“连续”之后,对方要求增加转速,相应的时间间隔也将改变,这就要求用于判断“连续”的时间标尺也要连续变化,而时间间隔的变化与变频器频率的变化并不是的线性关系,问题复杂了。

本次采用的是一种近似的实现方法:每次面杆到来即增加频率,而一定的时间内无面杆接近信号则降低频率。该方法的实验效果大致与用户要求的相同。

切动作:切的动作是由伺服放大器控制的,通过程序实测得知需要接收17173个脉冲转半圈(是)。

切转速问题:实际上只需要找到传送带转速时对应的切转速,它们之间保持等比例关系即可实现面条的无堆积。通过现场实测,在传送带转速达到时,切伺服接收的脉冲频率为90KHz效果。

切割数可调:该问题可以看作是挂面总长的一种改变,因此只需正常切割规定的次数,剩余部分高速转动即可。需要注意的是高速转动时每一圈要消耗一个固定时间,因而在下一杆面的接近信号到来前的转动将可能使系统该接近信号。

为了避免这种现象,需要根据面条已经过长度决定后一次高速转动。本次利用编码器中的B相来反馈面条的长度,当脉冲数大于6000时(已经过面条1.3m),不再高速动作。

5.结束语

小型可编程控制器其典型应用之一便是通过一台上位机对PLC进行读写,控制和监视与PLC相连的其他设备。本文介绍的挂面切割机正是如此,通过上机实际操作,面条的切割效果比较理想,满足客户的各方面要求。

随着工业设备自动化控制技术的发展,可编程控制器(PLC)在工业设备控制中的应用越来越广泛。PLC控制系统的性直接影响到企业的生产和经济运行,系统的抗干扰能力是关系到整个系统运行的关键。本文详细介绍了影响PLC运行的干扰类型及来源,并提出抗干扰设计的实施策略。

自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。

1. 电磁干扰类型及其影响

影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是干扰源。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声波形性质来划分。按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,可分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。

2. 电磁干扰的主要来源

2.1 来自空间的辐射干扰

空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护

2.2 来自系统外引线的干扰

主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类:

类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后换隔离性能高的PLC电源问题才得到解决。

PLC系统的正常供电电源均由电网供电,由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电流,尤其是电网内部的变化、开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其机构及制造工艺等因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。

二类是来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种往往非常严重。

由信号引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

三类是来自接地系统混乱的干扰。接地是提高电子设备电磁兼容性(EMC)的有效手段之一,正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使PLC系统无法正常工作。

PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等,接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷击时,地线电流将大。

此外,屏蔽层、接地线和大地可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

2.3 来自PLC系统内部的干扰

主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂家对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。

3. 抗干扰设计

为了保证系统在工业电磁环境中免受或减少内外电磁干扰,从设计阶段开始便采取三个方面抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。这三点就是抑制电磁干扰的基本原则。

PLC控制系统的抗干扰是一个系统工程,要求制造单位设计生产出具有较强抗干扰能力的产品,且有赖于使用部门在工程设计、安装施工和运行维护中予以考虑,并结合具体情况进行综合设计,才能保证系统的电磁兼容性和运行性。进行具体工程的抗干扰设计时,应主要注意以下两个方面。

3.1 设备选型

在选择设备时,要选择有较高抗干扰能力的产品,其包括了电磁兼容性,尤其是抗外部干扰能力,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等;另外是靠考查其在类似工作中的应用实绩。

在选择国外进口产品要注意,我国是采用220V高内阻电网制式,而欧美地区是110V低内阻电网。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求高。在国外能正常工作的PLC产品在国内工业就不一定能运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。

3.2 综合抗干扰设计

主要考虑来自系统外部的几种抑制措施,内容包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆应分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还利用软件手段,进一步提高系统的性。

4. 主要抗干扰措施

4.1 采用性能优良的电源,抑制电网引入的干扰

在PLC控制系统中,电源占有重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。现在对于PLC系统供电的电源,一般都采用隔离性能较好的电源,而对于变送器供电电源以及和PLC系统有直接电气连接的仪表供电电源,并没受到足够的重视。虽然采取了一定的隔离措施,但普遍还不够,主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。

此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的性。而且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。

4.2 正确选择电缆的和实施敷设

为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,笔者在某工程中采用了铜带铠装屏蔽电力电缆,降低了动力线产生的电磁干扰,该工程投产后了满意的效果。

不同类型的信号分别由不同电缆传输,信号
电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敷设,以减少电磁干扰。

4.3 硬件滤波及软件抗干扰措施

信号在接入计算机前,在信号线与地间并接电容,以减少共模干扰;在信号两间加装滤波器可减少差模干扰。

由于电磁干扰的复杂性,要根本干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的性。常用的一些提高软件结构性的措施包括:数字滤波和工频整形采样,可有效周期性干扰;定时校正参考点电位,并采用动态零点,可防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。

4.4 正确选择接地点,完善接地系统。

接地的目的通常有两个,一为了,二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

系统接地有浮地、直接接地和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体接地点以单的接地线引向接地。如果装置间距较大,应采用串联一点接地方式,用一根大截面铜母线(或绝缘电缆)连接各装置的柜体接地点,然后将接地母线直接连接接地。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地的接地电阻小于2Ω,接地埋在距建筑物10?15m远处,而且PLC系统接地点与强电设备接地点相距10m以上。

信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。

5. 本文小结

PLC控制系统的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析,采取对症的方法,才能够使PLC控制系统正常工作,保证工业设备运行。


http://zhangqueena.b2b168.com

产品推荐