7
西门子一级授权代理商-PLC模块总代理商批发
引言
自动扶梯广泛应用于大型商场、市、机场、地铁、宾馆等场合。大多数扶梯在客流量大的时候,工作于额定的运行状态,在没有乘客时仍以额定速度运行,具有耗能大、机械磨损严重、使用寿命低等缺点。采用PLC与变频控制相结合的节能控制系统,已成为自动扶梯控制技术的发展方向。
带有节能效果的自动扶梯具有以下特点:
(1)无人乘梯时,扶梯自动平稳过渡到节能运行,以1/5额定速度运行(可以选择当无人乘梯时,扶梯自动停止的功能);
(2)有人乘梯时,扶梯立即自动平稳过渡到额定速度运行;
(3)由于节能运行时速度很低,机械部分的磨损大大降低,相对延长了扶梯的使用寿命;
(4)变频技术的采用大大降低了扶梯启动时对电网的冲击。
目前节能扶梯大多形式和功能单一,仅能实现简单的慢循环或快停循环。本系统设计的亮点是慢循环和快慢停循环是可以通过程序进行自由选择的,系统同时集成了上下梯级遗失、防驱动链断链、防逆转及故障保护输出等功能,并可通过程序内部辅助继电器的状态监控扶梯运行状态,现场调试十分方便。
2 自动扶梯变频节能控制方式
2.1 变频非自启动(快慢循环)
2.1.1 功能描述
通过增加变频器来控制扶梯运行的速度,当梯上有乘客时,扶梯以高速运行(例如额定速度),提高客流量,当乘客检测装置在一段时间内没有检测到乘客通过时,扶梯开始减速转为低速运行(例如0.2m/s,参数可设置),此时一直处于待机运行中,即为非自启动节能。
2.1.2 运行状态描述
变频控制,无人时低速,有人时高速。高速运行时间记为TQ,可通过PLC程序进行设置,具体时间根据梯的提升高度和速度而定。
2.1.3 运行步骤
(1) 当扶梯上电停止等待,有方向(比如上行)开始运行时,此时扶梯以低速开始节能运行进入待机等待。
(2) 下机房乘客检测装置检测是否有人通过,当有人通过时,控制器内部的高速运行时间计数器(记为TC)清零,此时扶梯开始缓慢加速速运行。
(3)高速运行时间计数器(记为TC)开始计数,当TC
(4) 当有一段时间没人乘梯即TC≥TQ时,扶梯又开始减速进入低速运行待机等待状态,如此循环往复运行。
图1为自动扶梯快慢循环控制时序图。
图1 自动扶梯快慢循环控制时序图
图2 自动扶梯快慢停循环控制时序图
由图3可知,该系统主要由以下几部分组成:电源、PLC、变频器等。PLC是控制系统的,PLC根据输入的光电信号是否有效确定高速运行指令的输出,变频器根据PLC的高速运行指令控制扶梯的运行速度,完成扶梯的慢及快慢停循环运行。
3.2 硬件选型
以自动扶梯变频非自启动(快慢循环)为例,其扶梯控制系统实际需要输入11点,输出7点,PLC主控制器采用欧姆龙CPM1A-20CDR-A-V1型PLC。这种机型的PLC配有相应的编程软件CX-Programmer进行编程及监视,不仅可以通过手持编程器对PLC编程,也可在个人PC机上进行编程。在扶梯运行过程中,可通过程序内部辅助继电器的状态监控电梯运行状态,现场调试十分方便。[1]
变频器采用汇川公司的MD320变频器。MD系列变频器具备完善的输入输出接口,全系列立风道和散热器柜内柜外安装可选,可以提供接近IP54防护要求的解决方案,其系统设计尤其适合恒转矩负载使用。
摘 要:本文提出了一种适用精密切割的数控车床设计方案。该方案采用机械触发式传感器,通过控制车运动来触发传感器,PLC把传感器得到的信号传给数控系统,再由系统来进行相应的数据处理。机械触发式传感器与PLC的输入扩展端的连接线简单,而且易于维护,比用其它的传感器降低了成本。
关键词: PLC;数控机床;精密;NUM;传感器
1 前言
随着科学技术的发展及制造技术的进步,社会对产品多样化的需求越来越强烈,产品的新换代周期也越来越短,中小批量生产的比重明显增加,从而对制造设备提出了高的要求。为满足市场的需要,要求制造设备具有率、高质量、高柔性及的性能,数控机床作为一种自动化的加工设备而被广泛采用。同时,随着现代机械制造业向高层次的发展,数控机床也必将成为柔制造单元(FMC)、柔制造系统(FMS)以及计算机集成制造系统(CIMS)的基础装备。计算机数控系统作为制造形状复杂、高质量、产品所的基础设备,己成为当今制造技术的一个重要组成部分。
PLC(Programmable Logic Controller)可编程逻辑控制器是20世纪60年代末期逐步发展起来的一种以计算机技术为基础的新型工业控制装置。PLC作为计算机技术应用于工业控制领域的崭新产品,也是开放式数控系统中不可缺少的重要组成部分。它在处理开关量的控制问题时起着重要作用。现代的数控机床一般可分为机床床体(MT)、NC和PLC三部分。数控机床中NC和PLC协调配合共同完成对数控机床的控制,其中NC主要完成管理调度及轨迹控制等“数字控制”工作,PLC主要完成与逻辑有关的一些动作,如的换、工件的夹紧及冷却液润滑液的开停。PLC技术在各种工业过程控制、生产自动线控制中得到为广泛的应用,成为工业自动化领域中的一项十分重要的应用技术。
在数控机床上有两类控制信息:一类是控制机床进给运动坐标轴的位置信息,如数控机床工作台的前、后、左、右移动;主轴箱的上、下移动和围绕某一直线轴的旋动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值,对伺服进给电机进行控制而实现的。这种控制的作用就是保证实现加工零件的轮廓轨迹,除点位加工外,各个轴的运动之间随时随刻都保持严格的比例关系。这类数字信息是由CNC系统(计算机)进行处理的,即“数字控制”。另一类是数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,的换,工件的夹紧、松开,液压、冷却、润滑系系统的运行控制。这一类控制信息主要是开关量信号的顺序控制,一般由PLC来完成。
2 精密切割数控机床的功能分析
精密切割数控机床是通过数控系统以数字方式控制的运动以实现对工件的切削,在编写数控车削加工程序时,并不考虑。在加工前,用户将的X轴补偿量、Z轴补偿量、尖圆弧半径、尖形式共四种补偿参数输入数控系统,由数控系统根据程序,进行补偿运算。这四种参数中,尖形式按数控系统的规定予以确认,尖圆弧半径可由R规测量,而的X,Z轴补偿量的测量则相对困难一些,使用自动对仪能很好地解决这个问题,为此,数控机床及加工大多配置了各种不同类型的对装置,如机外对仪、机内光学对仪、接触式自动对装置等。由于车削对一般的数控车床夹持标准化程度不高,因此采用机外对仪的对精度相对较低,而且机外对仪成本较高,操作复杂,需要专门的操作空间,所以实用性较差。而采用机内接触式自动对装置无疑是一种简便、快捷的对方法,它能方便地自动测量的固定补值,大大减少对时间,提高机床的加工效率。所以本文旨在设计一种机内接触式的数控车床,实现数控车削前的精密对,提高生产率,降低加工成本。需要解决的问题主要有以下方面:自动对仪需有的电子测头(传感器),能够准确在触发点触发,有较快的反映时间;对仪的测头与尖刚性接触,需加缓冲装置,对测头表面保护,压力需控制在1~10MPa左右,这样才不会对传感器的测头造成损坏,形成凹坑;系统能利用机床本身的位置测量装置进行测量,通过对不同尖触发点坐标(X,Z)的记录,可以方便地得到一组坐标值,分析计算后便可确定各补值;安装和固定对仪的装置(联接臂)应达到相应精度要求,满足平行度与垂直度要求,且要有较好的刚度和易操作性。
3 精密切割数控机床总体设计
对精密切割的功能,主要需保证切割精度,因此要求对数据机床的主要部件一一传感器的精度得到保证,传感器的作用是感知和检测某一形态的信息,并将其转换成另一形态的信息,将被测量(尖位置这个物理量)按照一定的规律转换成可用输出信号(电流、电压)表示的物理量。 精密切割的数控机床传感器由以下几部分组成:
图 一:数控机床传感器组成
图 二 :数控机床接口电路
本文的点是针对数控车床对切割中,对时间长、精度差这一问题,设计了精密切割数控车床,通过对尖位置的捕捉运用NUM数控系统自身的测量装置得到了尖点的坐标,经过计算将不同相对于标准的位置偏差得出并再存入数控系统,实现了自动对,有效地提高了对的效率和精度,具有可推广性。可为生产效率的提高,制造成本的降低起到积的作用。
图1 变桨距风力发电机简图
图2 变桨距风力机控制框图
图3 液压变桨距控制系统原理图
图4 风力机起动变桨控制程序流图
图5 变桨调功程序流程图