7
西门子一级授权代理商DP电缆总代理商价格
| 1、引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和燃烧。如图1所示。
2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。
P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中基本也是主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。
其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。 设置燃料量控制子系统的目的之一就是利用它来燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。 2.3 送风量控制系统 为了实现经济燃烧,当燃料量改变时,相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图4。
燃烧过程的经济与否可以通过剩余空气系数是否合适来衡量,过剩空气系数通常用烟气的含氧量来间接表示。实现经济燃烧基本的方法是使风量与燃料量成一定的比例。 送风量控制子系统的任务就是使锅炉的送风量与燃料量相协调,可以达到锅炉的热效率,保证机组的经济性,但由于锅炉的热效率不能直接测量,故通常通过一些间接的方法来达到目的。如图5所示,以实测的燃料量B作为送风量调节器的给定值,使送风量V和燃料量B成一定的比例。
在稳态时,系统可保证燃料量和送风量间满足 选择使送风量略大于B燃烧所需要的理论空气量。这个系统的优点是实现简单,可以来自负荷侧和燃料侧的各种扰动。 2.4 引风量控制系统 为了保持炉膛压力在要求的范围内,引风量与送风量相适应。炉膛压力的高低也关系着锅炉的和经济运行。炉膛压力过低会使大量的冷风漏入炉膛,将会增大引风机的负荷和排烟损失,炉膛压力太低甚至会引起;反之炉膛压力高且高出大气压力的时候,会使火焰和烟气冒出,不仅影响环境卫生,甚至可能影响设备和人生。引风量控制子系统的任务是保证一定的炉膛负压力,且炉膛负压控制在允许范围内,一般在-20Pa左右。 控制炉膛负压的手段是调节引风机的引风量,其主要的外部扰动是送风量。作为调节对象,炉膛烟道的惯性很小,无论在内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈的方法进行控制,如图6所示。
图中为炉膛负压给定值,S为实测的炉膛负压,Q为引风量,V为送风量。由于炉膛负压实际上决定于送风量和引风量的平衡,故利用送风量作为前馈信号,以改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度偏差引起引风机挡板的频繁动作,可设置调节器的比例带自动修正环节,使得在小偏差时增大调节器的比例带。对于负压S的测量信号,也需进行低通滤波,以抑制测量值的剧烈波动。 在锅炉燃烧过程中,用常规仪表进行控制,存在滞后、间歇调节、烟气中氧含量过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,由于它的运算速度快、精度高、准确,可适应复杂的、难于处理的控制系统。因而,可以解决以上由常规仪表控制难以解决的问题。所选择的PLC系统要求具有较强的兼容性,可用小的投资使系统建成及运转;其次,当设计的自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;后,系统性能较高。硬件结构图如图7所示。
根据系统的要求,选取西门子PLCS7-200 CPU226 作为控制,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226的IO点数是2416,这样可以满足系统的要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。 S7-200的PPI接口的物理特性为RS-485,可在PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机的通讯提供了多种选择。 为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列的触摸显示屏,操作控制简单、方便,可用于设置系统参数, 显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,通过以太网进行远距离交换数据,与其他的S7-200进行,通信基于TCPIP,安装方便、简单。 4、系统软件设计 控制程序采用STEP7-MicroWin软件以梯形图方式编写,其软件框图如图8所示。
S7-200PLC给出了一条PID指令,这样省去了复杂的PID算法编程过程,大大方便了用户的使用。使用PID指令有以下要点和经验: (1)比例系数和积分时间常数的确定。应根据经验值和反复调试确定。 5、结束语 单元机组燃烧过程控制系统在某火电厂发电机组锅炉协调控制系统中投入使用。实际运行情况表明:由于引入负荷模糊前馈,使得锅炉燃烧控制系统作为协调控制的子系统,跟随机组负荷变化的能力显著提高,风煤比能够在静态和动态过程中保持一致;送、引风控制系统在逻辑控制系统的配合下运行的平稳性和性提高,炉膛负压波动减小,满足了运行的要求;在机组负荷不变时,锅炉燃烧稳定,各被调参数动态偏差显著减少,实现了锅炉的优化燃烧;采用非线性PID调节方式,解决了引风挡板的晃动问题。 采用西门子的PLC控制,不仅简化了系统,提高了设备的性和稳定性,同时也大幅地提高了燃烧能的热效率。通过操作面板修改系统参数可以满足不同的工况要求,机组的各种信息,如工作状态、故障情况等可以声光报警及文字形式表示出来,主要控制参数(温度值)的实时变化情况以趋势图的形式记录显示, 方便了设备的操作和维护,该系统通用性好、扩展性强,直观易操作。 |
| 1、引言 在煤矿采煤生产中,空气压缩机(简称:空压机)主要负责向矿井大量的风动机械提供动力,其工作的性和性直接影响着矿山的正常生产和经济效益。目前大部分空压机组存在着控制方式落后、操作不方便的问题。控制回路大多为继电器控制,控制方式采用就地分散式人工操作,由固定人员24小时值守,值守人员根据井下用风量的需求手动启动或者停止空压机,并且定时巡检、记录运行状况。另外,空压机组耗电量很大,其中有相当长时间是在空载或轻载状态下运行,导致能耗大、机器受损严重、运行成本较高。因此,设计一个操作方便、功能完善的全自动集中监控系统,对空压机组进行监控和保护,提高空压机组的工作效率,降低能耗,延长使用寿命,有着重要的现实意义。 本项目空压机房有五台CompAir L250型喷油螺杆式空压机,主电机功率为250kW,供电电压为6000V, 转速为1485rpm,自由排气量为42.7m3/min、大排气压力为7.5×105Pa。每台空压机都配有本体控制器Delcos3100,通过Delcos3100控制器的操作面板,操作人员可以就地控制单台空压机的启停、查看运行状况、设置运行参数等。另外,Delcos3100控制器留有一个RS-485通信接口,支持Modbus RTU协议,为实现空压机组的集中监控提供了条件。系统结构图如图1所示。
2.1 PLC配置设计 系统选用西门子公司的S7-300 PLC实现集中监控。S7-300 PLC为模块化结构,具有模块齐全、扩充方便、通信能力强、运行稳定等优点,特别适合用于工业环境及电气干扰环境。根据系统控制要求并考虑留有一定的裕量,PLC的硬件配置如下: (1)电源模块PS307:输入电压为220VAC,输出电压为24VDC,输出电流为,向其他PLC模块供电。 (2)CPU模块CPU315-2DP:系统中信息的运算和处理的,内有48KB随机存储器和80KB装载存储器,每执行1000条指令约需0.3ms,大可扩展1024点数字量或128个模拟量通道。它有一个MPI通讯口和一个DP通讯口,MPI口用于连接触摸屏,DP口用作调试程序时监视PLC程序的运行以及下载程序;并留作将来系统扩展时使用。 (3)数字量输入模块SM321:配置3块型号为DI16×24VDC的SM321模块,采集向空压机供电的五台高压开关柜的状态信号(如:高压允许、高压故障、合闸反馈、分闸反馈、小车就位等)、与五台空压机相对应的五个手自动转换开关和五个紧急停止按钮的状态信号。 (4)数字量输出模块SM322:配置2块型号为DO16×24VDC/0. REL的SM322模块,输出PLC的控制信号如启动、停止、加载、卸荷、急停等,控制空压机运行。 (5)通信模快CP341:CP341模块是串行通讯处理器模块,硬件接口可采用RS-232C或TTY或RS-422/485方式,集成了3964(R)、RK512、ASCII通讯协议,并且支持用户加载协议。系统选用接口为RS-485标准的CP341模块,并在CP341通讯模块中插入Modbus主站Dongle模块加载Modbus协议,使CP341模块成为Modbus主站。CP341模块利用基于RS-485总线的Modbus协议,与五个作为Modbus从站的Delcos3100控制器进行通讯,采集Delcos3100控制器中存储的空压机运行状态信息。 (6)通信模快CP343-1:CP343-1是用于连接工业以太网的通讯处理器模块,将PLC系统接入以太网,负责PLC和上位机之间的通讯。 2.2 触摸屏配置设计 系统采用西门子TP270-10型触摸屏作为车间级的集中监控站。它是基于标准操作系统Microsoft bbbbbbs CE的多功能人机交互界面,具有强大的数据采集和管理功能,稳定,界面友好,图形显示,操作和管理方便。操作人员可以通过图形和菜单的方式查看空压机的运行状态及实时数据,设定空压机的压力、时间等运行参数,查看系统的历史数据、故障报警信息,并可设置是否允许上位机远程控制空压机。触摸屏直观显示了空压机组的运行状况,操作方便快捷,避免了定时巡检记录的烦琐工作,大大提高了工作效率和管理水平。 2.3 上位机配置设计 系统采用PC机作为上位机远程监控站。通过网络在线监视空压机的运行状况,查看压力、温度、运行时间、电机电压、电机电流、输出功率等实时数据,记录并存储历史数据,提供数据的查询和打印功能。当现场设备有动作或者出现故障时能够弹出提示消息并记录存储下来;在远程控制允许的情况下,值班人员还可以远程控制空压机。远程监控方便了调度,提高了管理自动化水平,是煤矿信息化发展的需要。 其他元件包括手自动转换开关、紧急停止按钮、声光报警器等。 3、通讯系统的构成 系统中的通讯包括三个部分。 3.1 现场设备通讯 PLC和Delcos3100控制器之间的通讯[4>采用控制方便、设计简单的RS-485接口标准作为物理通信标准。RS-485标准要求采用两线制差分方式发送和接收数据,因此能够有效克服共模干扰、抑制线路噪声。根据实际情况,通信协议采用单主站多从站结构的Modbus协议,选用Modbus的RTU通讯模式。RS-485标准是总线的物理层标准,负责完成电平转换和数据收发;Modbus协议则构成了总线的数据链路层协议,规定了总线上传输的数据帧格式,为主站和从站之间传递数据提供通信规约,保有效数据在主站和从站之间传递,两者共同构成了RS-485总线。 CP341模块设置为总线的主站,五个Delcos3100控制器设置为总线的从站,每个从站分配的地址,主站和从站的通讯速率统一设定为76.8kbps。工作时采用命令/应答的通讯方式,每一种命令帧都对应着一种应答帧,Modbus协议为命令帧定义了许多功能码,不同的功能码要求从站进行不同的响应。系统中用到的功能码为0x03,即读取Delcos3100控制器的寄存器。CP341模块发出功能码为0x03的命令帧,地址匹配的Delcos3100控制器就会做出响应,将存储在寄存器中的空压机运行信息(压力、压差、温度、电压、电流、载荷状态、运行时间、故障信息等)组成应答帧发出至CP341模块。重复上述过程,CP341模块即可实现轮循采集空压机组的运行信息。 CP341模块下发的命令帧格式如图2所示。
在命令帧中,寄存器起始地址是告诉Delcos3100控制器,CP341模块要读取的寄存器的起始地址;寄存器数是指从起始地址开始连续读取的寄存器值的个数;CRC校验是指对从站地址及其以后部分在命令帧中所占的字节数进行CRC-16校验所生成的校验码。 Delcos3100控制器上传的应答帧格式如图3所示。
在应答帧中,字节数是指主站要求从站发送的内部寄存器数据的字节数,寄存器1、2…n是指发送的各寄存器的内容,CRC校验与命令帧中的含义相同。 后需要说明的是,RS-485总线仅用作数据采集,控制信号由PLC的数字量输出模块SM322输出,经过信号线传输到空压机自身的控制继电器,这是由现场的实时性要求决定的。如果控制信号也由CP341模块发出,就需要经过RS-485总线传输到Delcos3100控制器,再由Delcos3100控制器控制空压机的控制继电器;而采用硬接线的方式直接传送控制信号到空压机的控制继电器,就大大缩短了系统的控制响应时间;同时,RS-485总线能够以快的速度采集实时数据。 3.2 触摸屏通讯 PLC和触摸屏之间的通讯二者均为西门子的产品,通过MPI电缆连接PLC的MPI通信口和触摸屏的RS-485通信口.组态时对相关通讯参数如所要连接CPU的MPI地址和槽号等进行定义,选择接口类型为MPI,将波特率设置为187.5kbps进行简单的组态操作即可实现通讯。 3.3 上位机通讯 在PLC和上位机之间的通讯中,PLC通过以太网模块CP343-1接入工业以太网,上位机通过网络实现远程监控功能。选择接口类型为工业Ethernet,通信速率为100Mbps,设置PLC和上位机的IP地址。 4、软件设计 系统的控制要求如下:手自动转换开关为手动状态的空压机,仅受其Delcos3100控制器控制,以方便机器检修和维护,此时PLC只能采集该Delcos3100控制器中的数据而不能控制空压机;手自动转换开关为自动状态且远程控制无效的空压机,将由PLC进行集中监制,PLC根据风压的变化来决定投入运行的空压机台数,维持风压能够满足井下用风的需要,并且依据空压机运行时间的长短使它们轮换工作;当触摸屏上的远程控制设置无效时,上位机只能监测到空压机的运行状况而没有控制权限,当远程控制有效且手自动转换开关为自动状态时,空压机将只受上位机远程控制。 4.1 PLC监控程序设计 开发环境为SIMATIC STEP7 V5.3 SP2编程软件包,它采用结构化程序设计,程序可读性强,调试和维护方便。单台空压机的主程序流程图如图4所示。
PLC控制程序主要具有以下功能: (1)自动轮换运行。PLC根据总线采集的信号进行综合判断,然后发出启动、停机、加载、卸荷、报警等控制指令,监控空压机组自动运行,使得总管压力维持在设定的压力下限值和压力上限值之间。若风压压力下限值就增加空压机运行的台数,若风压压力上限值则减少空压机运行的台数,达到既满足井下用风需要、又可以降耗节能的目的。 空压机连续运行8小时后机身温度会很高,需要停机休息,用于散发自身的热量,以保证机器不受损伤。因此,空压机需要进行轮换工作,以保证空压机运行,延长设备使用寿命。PLC根据运行时间将受控于PLC的空压机进行排序,建立开机序列和停机序列,当需要增加空压机的运行台数时,PLC将启动总运行时间短的空压机;当需要减少空压机的运行台数时,PLC将停止本次运行时间长的空压机。 (2)延时启动和延时停机。PLC自身具有较强的抗干扰能力,但由于现场条件、电网、用风量等各种复杂因素的影响,电机电流、电机电压等受到干扰将产生误报警;如果总管压力的扰动发生在压力下限值或者压力上限值附近,将它们作为一般工状处理就会出现频繁启动、停机现象,影响设备的性和使用寿命。因此,需要对发出动作指令的起因信号作适当的延时处理,以扰动,防止误动作。 (3)智能保护。空压机主电机在启动时,启动电流为额定电流的5~7倍,对电网和其他用电设备冲击很大,同时也会影响空压机的使用寿命,所以,空压机不宜频繁启动。为了使系统能够对用风状况进行准确判断,并据此控制空压机的启动,在井下用风高峰期空压机启动较频繁,当两次启动时间间隔小于预先设定的值时,将保持空压机持续运转而不停机,当连续两次加载间隔时间较长时,可认为用风高峰期已过,空压机投入间断运行状态。另外,对电机电流、电机电压、排气压力、进气负压、运行温度、油温、油滤压差等重要参数进行实时监控,出现异常及时进行故障报警,并作出处理。 4.2 触摸屏人机界面设计 选用与触摸屏TP270配套的组态软件Protool/pro设计界面。画面包括:(1)主画面:空压机组的运行状态以及主要参数的显示。(2)数据报表:实时数据汇总显示,并可查询历史数据和总管压力曲线。(3)运行设置:设置启动远程控制是否有效;设置自动启动、停机、加载、卸荷的压力阈值;设置时间参数、报警参数等。(4)报警查询:查询报警详细信息。(5)系统管理。 4.3 上位机监控程序设计 上位机软件选用西门子公司基于bbbbbbs环境的组态软件WinCC6.0版。主要由监控画面、实时报表、历史数据、报警查询、远程控制和系统管理界面组成 |
1、前言
纸巾机械中的分切复卷机原来是继电器电路控制,存在着计数不够,控制不够灵活,稳定性不高的弊病。采用北京凯迪恩自动化技术有限公司的K3系列PLC改造后,稳定性、可操作性和精度等性能得到了很大提高,而且可以减少两个接近开关的使用,大大降低了设备的故障率,进一步提升了产品的质量和档次。
该机型为半自动机型,整体电控方案为PLC+人机界面+变频器+中间继电器+接触器。PLC采用K306交流220伏24点继电器输出类型,人机界面采用4行文本显示器,变频器用来控制整机的主轴速度。
2、系统配置
(1)PLC的IO配置如下表:
(2)文本显示设置参数
由于整个工作过程中需要按时间顺序来执行,并且这些时间参数要可以自由设定。具体参数为:切启动延时,喷胶启动延时,喷胶持续时间,切纸持续时间,吹气持续时间和切复位时间。
工作过程中要实时显示当前机器的转速和卷动节数。
在停机状态下还可以设置卷纸的节数和变频器变速节数。
3、工艺流程
该控制方案是典型的顺序控制系统,控制工艺大致如下:
(1) 按下按钮,变频器输出,主轴转动,卷纸开始
(2) 当卷纸到达设定节数后,变频器将速运行
(3) 当卷纸结束后,变频器关输出,主轴停止转动
(4) 把卷好的纸卷放到切纸喷胶的工位上后,开始切纸喷胶
(5) 根据操作可以控制机器工作方式:联动或则单动
另外采用了文本液晶显示后,机器的人机交互加友好灵活。如可以提示用户输出时间参数的互斥,机器转速报警等。
4、结束语
该机器原来的故障主要是外部传感器经常坏,由于其原来控制系统的限制,不能采用加灵活的可调时间参数来控制机器的动作,而这正是PLC控制灵活的地方,加上PLC本身的稳定性很高使得改造后大大降低了机器的故障率
一 系统工艺流程
对于循环流化床锅炉进行脱硫处理,目种普遍采用的方法是将脱硫剂(石灰石粉:粒径0~2mm,比重约1.4t/m3)通过送粉管道从炉次风口送入锅炉炉膛中与煤一起燃烧,通过化学反应生成CaSO4,达到脱硫目的。系统工艺流程路线如下:
(1)石灰石粉→粉仓→粉仓插板阀→粉仓旋转给料阀→缓冲罐→缓冲罐插板阀→缓冲罐旋转给料阀→喷料泵→送粉管路→炉前检修隔断门→炉膛;
(2)空气→罗茨风机→电动蝶阀→喷射泵→送粉管路(另一路送气化风)→炉前检修隔断门→炉膛;
(3)气化风→空气加热器(有旁路阀)→气化风环管→气化板→粉仓→布袋除尘器。
该系统设计采用双路联调送粉方式,每台炉由两路送粉设备装置及管路将石灰石粉送入炉膛。送粉量由PLC根据每台炉SO2监测装置所提供的信号对该炉的旋转给料阀实行变频联动调节。
二 控制系统设计实施
整个控制系统由一台中控室内的监控计算机(操作员/工程师站)、一台现场控制站 FX2N型PLC-128MR、并配以4个 FX2N-4A/D数据采集模块、一个 FX2N-4D/A模拟数据输出模块和4台变频给粉装置组成。监控计算机主要负责实时监控烟气监测系统检测的SO2参数值和对系统进行操作和故障监测,现场控制站根据SO2含量对送粉量进行自动或手动操作,并与上位机采用RS-485进行实时通信。
现场控制站配置见附图。
1. FX2N-128MR现场控制站
FX2N-128MR现场控制站是整个控制系统的,其运算处理速度:基本指令0.08µs/指令,应用指令1.52~100µs/指令,输入输出总点数256点,大存储容量16k步,内置存储器容量8k步,顺控指令27条,步进梯形图指令2条,应用指令128种,298个。 FX2N-4A/D数据采集模块:接受4~20mA电流信号转换成数字信号输送给PLC。 FX2N-4D/A模拟数据输出模块:将PLC发出的控制量数值转化为4~20mA电流信号输入到变频器控制旋转给料阀。
2. 喷钙脱硫系统的启动和控制
喷钙脱硫系统可采用三种方式进行启动。
(1)方式一:自动启动
将各就地设备的控制箱切换至“远方”位置,在显示器屏上点击“全自动启动”按钮,系统将按下列顺序启动设备。
(a)启动罗茨风机延时12s,开始下一步,否则报警;
(b)自动打开风机后电动蝶阀开到预定位置时,开始下一步,否则12s后报警;
(c)此时空气母管压力下降至运行I值(调试确定)。启动缓冲罐下旋转给料阀缓慢升速至设定转速(调试确定)运行l 2s;
(d)启动缓冲罐上粉仓旋转给料阀,并接通缓冲罐料位控制回路;
(e)接通SO2监测控制系统回路,通过PLC控制缓冲罐下旋转给料阀转速,使SO2测量值达设定标准值(<1200mg/m3),此时空气母管的压力要上升至运行II值;
(f)启动电加热器,并将温度调至设定值。
(2)方式二:远方操作启动
各就地设备控制箱的切换开关切至“远方”位置。设备启动顺序与方式与上述相同,只不过是由设备操作人员在主控室CRT前利用鼠标按程序提示框逐一进行启动操作。
(3)方式三:就地操作启动
各就地设备控制箱的切换开关切至“就地”位置,此时设备的启动顺序不受限制,由操作人员任意启动,但若不是特殊情况,不采用此工作方式,因为该方式即使启动设备也不会实现PLC联调,达不到系统的使用目的。
3. 喷钙脱硫控制系统的运行
(1)系统运行时显示的状态参数有:粉仓料位、罗茨风机运行状态、电动蝶阀状态、下旋转给料阀转速、上旋转给料阀运行状态(停止、运行交替显示)、缓冲罐料位、烟气SO2值、空气加热后温度、PLC运行状态指示、喷钙量。
(2)系统运行时可将各设备的运行状态及SO2值实现采集、存储、通信打印、图形显示等功能,各项功能可在CRT人机界面上利用菜单命令来实现。
(a)数据采集:通过画面中的按钮设定数据,通过PLC的A/D模块进行数据采集;
(b)结果显示:将通过PLC的A/D模块采集到的数据显示到画面中;
(c)状态显示:通过PLC与组态的通信将结果状态在画面中显示;
(d)故障报警:当出现故障时,报警画面自动弹出,查看出现故障的地方;
(e)数据存储:通过设定后,设定的数据将自动存储到系统中去;
(f)生成报表:可用工具栏中的按钮查看报表;
(g)图形显示:加上运行狗(watch-dog)之后,启动系统就可显示图形画画,从而从画面中监视整个系统;
(h)打印:选择需要打印的内容点击工具栏上的打印按钮就可打印;
(i)内部通信:通过SC09通信电缆完成PLC与电脑的组态通信。
(3)系统运行时的联锁保护逻辑关系
Lb当某套送粉装置的下旋转给料阀停运时,自动解列联调方式变为单调方式,并停止该套送粉装置;
Lc当送粉装置的下旋转给料阀转速设定值,但SO2的值不能满足排放标准时,报警;
Ld当某套送粉装置的上旋给料阀停运时,直至下料位报警延时12s后停止下旋给料阀并自动解列联调方式变为单调方式;
Le当风机电动蝶阀误关时,3s内应启动设备用罗茨风机并打开备用罗茨风机后的电动蝶阀,并停止本风机运行,否则进入事故停机程序;
Lf空气电加热器的启动、停止,只需实现远方就地操作和温度显示以及故障停运报警即可,不必加入联锁;
Lg当空气分支管压力值过高值(调试时定)报警并延时3s停下旋转给料阀,然后进入逻辑Lb程序;
Lh当空气分支管压力值低压值(调试时定)时,执行逻辑La程序;
Li当下旋转给料机转速升至二设定转速(调试时确定)时报警。
4. 喷钙脱硫控制系统的停止
(1)正常停止
当锅炉机组按计划停机时要先将脱硫系统停止运行。若需#4、#5炉都停的话,后停的脱硫系统要将粉仓内的石灰粉用完,然后再停止运行,可采用微机自动停止和人工控制停止两种办法,其顺序是一致的。其步骤如下:
(a)停止某台炉两套送粉装置缓冲罐的上旋转给料阀运行,不再向缓冲罐送料;
(b)缓冲罐内料位降至低料位报警值后,让其依靠联锁自动动作停止下旋转给料阀的运行;
(c)关闭运行罗茨风机出口管路的电动蝶阀;
(d)切断运行罗茨风机与备用罗茨风机的联锁回路,将运行的罗茨风机停止运行;
(e)就地关闭该炉系统装置的手动插板,手动检修隔断门。
(2)事故停止
当系统设备在运行当中出现 La、Le所提及的故障情况时,系统要转入事故停机程序,各台设备顺序停机之间需要延时,停机步骤如下:
(a)停止该炉两套送粉装置的下旋转给料阀运行。
(b)停止该炉两套送粉装置的上旋转给料阀运行。
(c)解列运行及备用风机间的联锁,停止运行的罗茨风机。
三 应用体会
东方热电三厂脱硫PLC控制系统自投运以来,性能,运行平稳,经过2年多运行,出现过故障,基本不需要维护。 FX2N型PLC小型化、,适合此种环保控制系统的应用改造。随着对供热锅炉环保要求的不断提高,该系统将拥有良好的开发前景