企业信息

    浔之漫智控技术(上海)有限公司

  • 6
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2017
  • 公司地址: 上海市 松江区 永丰街道 上海市松江区广富林路4855弄52号3楼
  • 姓名: 聂航
  • 认证: 手机已认证 身份证已认证 微信未绑定

    西门子中国一级代理商|PLC模块总代理商公司

  • 所属行业:电气 工控电器 DCS/PLC系统
  • 发布日期:2024-10-24
  • 阅读量:12
  • 价格:666.00 元/台 起
  • 产品规格:模块式
  • 产品数量:1000.00 台
  • 包装说明:全新
  • 发货地址:上海松江永丰  
  • 关键词:西门子代理商,西门子一级代理商

    西门子中国一级代理商|PLC模块总代理商公司详细内容

     西门子中国一级代理商|PLC模块总代理商公司

    采用罗克韦尔自动化公司的PLC-5系列PLC和DeviceNet总线,奇瑞公司轻松地实现了对总装车间复杂的控制系统的管理和监控。
    汽车制造厂的输送线和装配线的控制系统非常复杂,它需要控制道岔、停止器、捕捉器、隔离开关、急停开关、接近开关、光电开关、传送机、张紧器、提升机、举升台等许多执行机构。在奇瑞公司二期工程总装车间里,采用两条装配线实现了四种车型的混线生产。整个控制系统由控制室和四个远程控制站组成了一个全厂工业局域网,远程控制柜PLC通过以太网将自己所控制区域内的生产情况传送至控制室的计算机系统。

    系统选型及特点
    在认真分析控制系统公司的产品基础上,奇瑞公司根据自动化控制技术人员在产品实际应用上的经验,鉴于一期工程采用罗克韦尔A-B PLC产品的良好运行状况,决定在二期工程中仍采用A-B PLC用来控制整个生产车间。
    A-B PLC在工业界享有,其PLC-5系列作为A-B家族中旗舰产品拥有许多功能模块,可以实现多种复杂的控制系统。此外,罗克韦尔的软件众多,功能强大,能够给予A-B的产品广泛的支持。
    终,奇瑞公司确定选用罗克韦尔的PLC-5可编程序控制器、RSLogix 5编程软件、RSNetWork控制网组态软件以及RSView软件组成的自控系统来实现对总装车间的整个生产装配线的控制。除此之外,奇瑞公司二期工程的焊装输送线和涂装输送线也采用了罗克韦尔的A-B PLC。
    PLC-5/40E CPU的特点是内存容量大、数据处理能力强、网络功能强大,带有以太网网口,不需要额外的以太网通讯模块。PLC-5/40E CPU使用钥匙开关改变处理器的操作模式:在运行模式下,用户不能创建或删除程序文件、创建或删除数据文件、或通过编程软件变操作模式;在编程模式时,用软件编程不能变操作模式;通过编程软件,在远程编程、远程测试、远程运行模式之间改变。
    RSLogix 5编程软件具有的通讯能力、强大的编程功能以及的诊断能力、监控能力、运行控制功能。运用RSLogix 5梯形逻辑编程软件可以优化系统性能,节省项目开发时间,提高生产率。
    上位机软件RSView32是罗克韦尔自动化公司推出的组态软件平台,其特点是使用方便,可以构造灵活的界面和强大的功能,能够开发出较强的组合画面。利用上位机软件RSView32,坐在控制室就可对现场的生产情况一目了然,实现监控生产。
    系统结构与配置
    罗克韦尔的通讯网络分为信息层、控制层和设备层。信息层应用以太网进行全厂的数据采集和程序维修;控制层应用控制网、DH+、DH485、远程I/O网络;设备层应用DeviceNet网络进行底层设备的、率信息集成。
         罗克韦尔采用基于生产者/客户模式的通讯技术控制网,即传送对时间有苛刻要求的控制信息也可同时传送其他的信息,但对时间无苛求的信息不会影响对时间苛求信息的传送。
         该控制网具有以下特点:
    * 连续性;
    * 传送与梯形逻辑程序的扫描异步;
    * 以一个与用户在I/O映象表中所设定的通讯速率相等或快的速率传送,充分保证了控制网中的数据准确、、快速的发送、传递、接受和处理。
    总装车间控制系统是一个基于DeviceNet网络的现场总线控制系统。控制系统由一个控制柜和四个远程控制柜组成,并与上位机和企业的以太网相连接。系统的层是设备控制层,主要实现对生产设备的现场控制与监控;控制网主要是通过上位机完成对全车间生产线的在线监测,并向设备控制层下达控制指令;上层是EtherNet网络通过EtherNet网络与公司的企业资源管理(ERP)系统连接,向ERP系统提供整个车间的生产数据
    1、控制室
    控制室采用RSView32组态软件。RSView32是高度集成、基于组件并用于监视和控制自动化设备和过程的人机界面软件,通过开放的技术扩展用户的视野,能够实现与罗克韦尔其他软件产品、微软产品以及三方应用程序的高度兼容。RSView32除了具备高质量人机界面软件的功能外,还能够提供特的系列工具以大限度地提升生产效率。
    控制室承担了数据管理、车间数据采集、报警、趋势、数据记录及中文报表等工作。在控制室设有操作员工作站,操作员通过操作终端详细了解整个车间的生产运行情况,下达操作控制指令指挥整个车间的生产,以实现车间自动化控制。
    控制室主要实现以下功能:
    * 控制操作:在控制室对整个系统的被控设备进行在线实时控制。
    * 显示功能:用图形实时显示各PLC站被控设备的运行工况;动态显示生产线工艺流程图,并能在流程图上选择弹出多级细部详图;动态显示各种信号的数值和范围清单。
    * 数据管理:建立生产数据库、操作信息库、故障信息库。
    * 数据处理:利用实时数据和历史数据计算主要生产指标。
    * 报警功能:当装配线出现故障时,工人按下呼人开关和急停开关,装配线停止运行,并把故障信息输入到报,屏幕显示报警信息,打印机输出报警信息,声光报警,并可依据报警信息推出相应的动态画面。
    * 报表功能:包括即时报表、日报表、月报表、年报表。
    * 功能:按不同操作级别分级加密,并记录操作人的员工号和所有操作信息。
    * 打印功能:可以实现报表和图形打印以及各种事件和报警的实时打印。
    2、双行道板式输送机系统
    总装车间有两套双行道板式输送机系统。该系统由四柱叉式提升机、助推器、回转举升台、传送机和接近开关等设备组成,每套系统由两条平板输送线组成。平行回行是一种非常复杂的控制技术,在国内处于技术的地位。该输送线能够在很大程度上降低工人的劳动强度,提高生产效率。因此,对控制系统技术的要求比较高,难度也比较大。设备控制和调试起来非常困难,要求控制系统的各个部分互相紧密配合,不能出现半点差错,这是控制中的难点和。
    从四柱叉式提升机的控制系统中取一个信号,用来控制吊具从宽推杆积放式悬挂输送链到双行道板式输送机上或从双行道板式输送机到宽推杆积放式悬挂输送链上,过程之间的紧密衔接,以杜绝差错和故障的出现。同时,在现场设有自动/手动切换箱,以防生产过程中出现紧急事故。
    3、车型吊具识别系统
    在油漆车身上料点,操作人员将当前吊具号及车的信息输入到录入计算机中,然后通过以太网传送至PLC进行堆栈存储。录入计算机将车的信息通过识别系统写头写入载码体,通过以太网将吊具号及车的信息传送至上位机,并在录入计算机内存储,当录入完毕后向PLC发送信号。
    上位机做出与输送线相对应的画面及参数,通过PLC给出的指针及录入计算机给出的信息进行显示,并与PLC给出的堆栈信息进行比较,上位机根据信息及要求控制出入库的道岔及停止器。当上位机出现故障时,操作人员采用人工控制运行,待上位机正常后从PLC调出堆栈信息恢复显示。
    在库存入口处的识别系统读头读取载码体信息通过以太网传至上位机,上位机根据库存及车的信息控制入库区的道岔及停止器。当上位机出现故障时,操作人员人工控制运行,待上位机正常后从PLC调出堆栈信息恢复显示。
    库区出口处,上位机根据计划及库区信息通过以太网控制停止器。当上位机出现故障时,操作人员人工控制运行。
    载车吊具入口处,上位机根据识别系统读头读取载码体信息通过以太网传至上位机,然后上位机根据车的信息控制道岔及停止器。当上位机出现故障时,操作人员人工控制运行。
    在装配悬链整车下线提升机工位处(ST48)设置识别系统读头,现场仪表板上线处设置显示计算机及打印机各一台。当车通过ST48工位时,读头将载码体信息读入,并在计算机处显示。
    发动机上线完毕后,通过以太网发送一信息,计算机自动。计算机能依次显示3台车辆的信息,并能打印当天的产量及参数。
    4、吊具储存区
    总装车间吊具存储区分空吊具存储区和油漆车身吊具存储区。其中油漆车身吊具存储区由九条宽推杆积放式悬挂输送链系统组成,用来存储不同的车型和同种车型的不同颜色车身的吊具。
    控制系统需要区分吊具的类型,在吊具进入存储区和移出存储区时需要鉴别吊具的类型,并与已经输入的信息进行比较。然后做出吊具应该进入哪一条悬挂输送线存储区,或者哪种吊具从悬挂输送线存储区出去的决定。
    在空吊具存储区前有一个坏吊具识别和检修区,把需要检修的吊具送入检修区进行维修,正常的空吊具进入吊具存储区。
    结束语
    总装车间控制系统的特点同时也是控制的难点,主要体现在以下两方面:一是,要切实保证设备运行的性,在生产过程中出现任何微小的故障都可能导致重大的事故和的经济损失;二是,控制系统复杂的连锁关系,从载油漆车身的吊具上线到成品车下线,包括工艺链和快速链之间的衔接,需要设备的各个环节紧密配合,不能出现丝毫差错。
    总装车间控制系统自动化程度较高、数据采集量大、控制站多,因此,对系统性的要求较高。通过采用罗克韦尔的产品和技术,系统基本达到设计要求,运行效果较好,运行稳定、,灵活地实现了复杂的连锁任务,具有较高的机电一体化水平。同时,该系统设计合理、,减轻了工人的劳动强度,减少了设备运行的故障率,提高了生产效率。

       采用PLC自动检测水仓水位和其它参数,根据水仓水位的高低、矿井用电信息等因素,建立数学模型,合理调度水泵运行,可以达到避峰填谷及节能的目的。介绍了PLC在岱庄煤矿井下主排水控制系统的组成、系统的功能和特点及应用状况。
    1、概述

        随着计算机控制技术的发展,以微处理器为的可编程序控制器(PLC)控制已逐步 取代继电器控制,普遍应用于各行各业的自动化控制领域。煤炭行业也不例外,但目前煤矿 井下主排水系统仍多采用继电器控制,水泵的开停及选择切换均由人工完成,还做不到根据水位或其它参数自动开停水泵,这将严重影响井下主排水泵房的管理水平和经济效益的提高 。

        岱庄煤矿是1999年设计竣工的生产能力为1.8Mt/a的现代化矿井,井下涌水量较大,泵 设计安装了5台MD500-57×9主排水泵,配套电动机1250kW,3趟排水管路。正常涌水时,2 台工作,2台备用,1台检修。鉴于PLC的性和性,煤炭工业邯郸设计院对5台主排水泵及其附属的抽真空系统与管道电动阀门等装置实施了PLC自动控制及运行参数自动检测,动态显示,并将数据传送到地面生产调度,进行实时监测及报警显示。

        系统通过检测水仓水位和其它参数,控制水泵轮流工作与适时启动备用泵,合理调 度5台水泵运行。系统通过触摸屏以图形、图像、数据、文字等方式,直观、形象、实时地 反映系统工作状态以及水仓水位、电机工作电流、电机温度、轴承温度、3趟排水管流量等 参数,并通过通讯模块与综合监测监控主机实现数据交换。该系统具有运行、操作方便 、自动化程度高等特点,并可节省水泵的运行费用。

        2、  系统组成
    岱庄煤矿泵房井下主排水泵自动化控制系统图如图1所示,整个自动控制系统由数据自 动采集、自动轮换工作、自动控制、动态显示及故障记录报警和通讯接口等5个部分组成。 

        2、1  数据自动采集与检测

        数据自动采集与检测主要分为两类:模拟量数据和数字量数据。

        模拟量检测的数据主要有:水仓水位、电机工作电流、水泵轴温、电机温度、3趟排水管流量;数字量检测的数据主要有:水泵高压启动柜真空断路器和电抗器柜真空接触器的状态、电动阀的工作状态与启闭位置、真空泵工作状态、电磁阀状态、水泵吸水管真空度及水泵出水口压力。

        数据自动采集主要由PLC实现,PLC模拟量输入模块通过传感器连续检测水仓水位,将水位变 化信号进行转换处理,计算出单位时间内不同水位段水位的上升速率,从而判断矿井的涌水量,控制排水泵的启停。电机电流、水泵轴温、电机温度、排水管流量等传感器与变送器,主要用于监测水泵、电机的运行状况,限报警,以避免水泵和电机损坏。PLC的数字量输入模块将各种开关量信号采集到PLC中作为逻辑处理的条件和依据,控制排水泵的启停。

        在数据采集过程中,模拟量信号的处理是将模拟信号变换成数字信号(A/D转换),其变换速度由采样定律确定。一般情况下,采样频率应为模拟信号中频率成分的2倍以上,这样经A/D变换的精度可恢复到原来的模拟信号精度。A/D变换的精度取决于A/D变换器的位数。如5V电压要求以5mV精度变换时,精度为5mV/5V=0.1%,即1/1000十进制的1000用二进 制表示时要求为10位,而本系统所采用的A/D模块分辨率为16bit,其精度在±0.05%以上,该精度等级足以满足控制系统要求。同时,PLC所采用的A/D模块均以积分方式变换,可使输入信号的尖峰噪音和感应噪声平均化,适用于噪音严重的工业场所。
    图1  岱庄煤矿井下主排水泵自动化监控系统图(略)

        2、2  自动轮换工作
        为了防止因备用泵及其电气设备或备用管路长期不用而使电机和电气设备受潮或其他故障未 经及时发现,当工作泵出现紧急故障需投入备用泵时,而不能及时投入以至影响矿井,本系统程序设计了5台泵自动轮换工作控制,控制程序将水泵启停次数及运行时间和管路使 用次数及等参数自动记录并累计,系统根据这些运行参数按一定顺序自动启停水泵和相 应管路,使各水泵及其管路的使用率分布均匀,当某台泵或所属阀门故障、某趟管路漏水时,系统自动发出声光报警,并在触摸屏上动态闪烁显示,记录事故,同时将故障泵或管路自 动退出轮换工作,其余各泵和管路继续按一定顺序自动轮换工作,以达到有故障早发现、早处理,以免影响矿井生产的目的。

        2、3 自动控制
    系统控制设计选用了日本欧姆龙公司C200HE型PLC为控制主机,该机为模块化结构,由PLC机 架、CPU、数字量I/O、模拟量输入、电源、通讯等模块构成。PLC自动化控制系统根据水仓 水位的高低、井下用电负荷的高、低峰和供电部门所规定的平段、谷段、峰段供电电价时 间段(时间段可根据实际情况随时在触摸屏上进行调整和设置)等因素,建立数学模型,合理调度水泵,自动准确发出启、停水泵的命令,控制5台水泵运行。

        为了保证井下生产,系统运行,水位信号是水泵自动化一个非常重要的参数,因此,系统设置了两套水位传感器,模拟量和开关量传感器,两套传感器均设于水仓的排水配水仓内,PLC将接受到的模拟量水位信号分成若干个水位段,计算出单位时间内不同水位段水位的上升速率,从而判断矿井的涌水量,同时检测井下供电电流值,计算用电负荷率,根据矿井涌水量和用电负荷,控制在用电低峰和中电价时开启水泵,用电高峰和电时停止水泵运行,以达到避峰填谷及节能的目的。

        2、4  动态显示
    动态模拟显示选用日本Digital公司的GP-570T型触摸式工业图形显示器(触摸屏),系统通过图形动态显示水泵、真空泵、电磁阀和电动阀的运行状态,采用改变图形颜色和闪烁功能 进行事故报警。直观地显示电磁阀和电动阀的开闭位置,实时显示水泵抽真空情况和压力值 。

        用图形以及趋势图、棒状图方式和数字形式准确实时地显示水仓水位,并在启停水泵的水位段发出预告信号和低段、低段、高段、高段水位分段报警,用不同音响形式提醒工作人员注意。

        采用图形、趋势图和数字形式直观地显示3趟管路的瞬时流量及累计流量,对井下用电负荷的监测量、电机电流和水泵瞬时负荷及累计负荷量、水泵轴温、电机温度等进行动态显示、 限报警,自动记录故障类型、时间等历史数据,并在屏幕下端循环显示新出现的3条故障(故障显示条数可在触摸屏上设置),以提醒工作人员及时检修,避免水泵和电机损坏。 

        2、5  通讯接口
    PLC通过通讯接口和通讯协议,与触摸屏进行全双工通讯,将水泵机组的工作状态与运行参数传至触摸屏,完成各数据的动态显示;同时,操作人员也可利用触摸屏将操作指令传至PL C,控制水泵运行。PLC同时将水泵机组的运行状态与参数经生产监测系统分站传至地面 生产调度监控主机,与全矿井生产监控系统联网,管理人员在地面即可掌握井下主排水系统设备的所有检测数据及工作状态,又可根据自动化控制信息,实现井下主排水系统 的遥测、遥控,并为矿提供生产决策信息。触摸屏与监测监控主机均可动态显示主排水系统运行的模拟图、运行参数图表,记录系统运行和故障数据,并显示故障点以提醒操作人员注意。

        3、 系统功能及特点
        (1)PLC控制程序采用模块化结构,系统可按程序模块分段调试,分段运行。该程序结构具 有清晰、简捷、易懂,便于模拟调试,运行速度快等特点。
        (2)系统根据水位和压力控制原则,自动实现水泵的轮换工作,延长了水泵的使用寿命。 
        (3)系统可根据投入运行泵组的位置,自动选择启动就近的真空泵,若在程序设定的时间内达不到真空度,便自动启动备用真空泵。
        (4)系统根据电网负荷和供电部门所规定的平段、谷段、峰段供电电价时间段,以“避峰填谷”原则确定开、停水泵时间,从而合理地利用电网信息,提高矿井的电网运行质量。
        (5)PLC自动检测水位信号,计算单位时间内不同水位段水位的上升速率,从而判断矿井的涌水量,自动投入和退出水泵运行台数,合理地调度水泵运行。
        (6)在触摸屏上动态监控水泵及其附属设备的运行状况,实时显示水位、流量、压力、温 度、电流、电压等参数,限报警,故障画面自动弹出,故障点自动闪烁。具有故障记录,历史数据查询等功能。
        (7)系统具有通讯接口功能,PLC可同时与触摸屏及地面监测监控主机通讯,传送数据,交换信息,实现遥测遥控功能。
        (8)系统保护功能有以下几种。
        温保护:水泵长期运行,当轴承温度或定子温度出允许值时,通过温度保护装置及PLC 实现限报警。
        流量保护:当水泵启动后或正常运行时,如流量达不到正常值,通过流量保护装置使本 台水泵停车,自动转换为启动另一台水泵。
        电动机故障:利用PLC及触摸屏监视水泵电机过电流、漏电、低电压等电气故障,并参与控制。
        电动闸阀故障:由电动机综保监视闸阀电机的过载、短路、漏电、断相等故障,并参与水泵的联锁控制。
        (9)系统控制具有自动、半自动和手动检修3种工作方式。自动时,由PLC检测水位、压力及有关信号,自动完成各泵组运行,不需人工参与;半自动工作方式时,由工作人员选择某台或几台泵组投入,PLC自动完成已选泵组的启停和监控工作;手动检修方式为故障检修和手动试车时使用,当某台水泵及其附属设备发生故障时,该泵组将自动退出运行,不影响其它泵组正常运。PLC柜上设有该泵的禁止启动按钮,设备检修时,可防止其他人员误操作,以保证系统。系统可随时转换为自动和半自动工作方式运行。

    202202221739073176584.jpg20220222173907301904.jpg202202221739072455394.jpg

    1 引 言
    矿山行业,采矿区往往距离矿石加工或堆放地很远,通常利用胶带传输机将矿石从采矿区送往加工或堆放地。老式的胶带传输方式,采用继电控制,人工操作,操作人员劳动强度大,运行效率低,且易引起操作失误,造成设备损坏,甚至人员伤亡。另外,远距离传输机胶带负荷较大,传输机使用的电动机功率也因此较大,特别是重载情况下起动过程对电网冲击很大,电压跌落严重,对机械设备和胶带的寿命也有很大损害。同时,由于胶带为弹性体,起停过程张力的变化将使胶带沿着纵向产生伸缩变化,并且沿着胶带传播,造成系统工作不稳定。
    本文介绍的这种新型矿山胶带传送系统使用PLC控制器集中监控胶带各种工作状态,提高了系统运行效率,避免了操作失误引起的故障。由于系统采用了一种新型的起动装置—软起动控制器,有效地解决了起动冲击问题。
    2 运行工况
    完整的传输系统由8条传送胶带组成,设计传输能力为每小时1000t,其中,1#、8#胶带为平胶带,长度在100m以内,负载较轻;2#和3#胶带长达1km以上,负载重,2#胶带略有下放势能,3#胶带有大的下倾角度(30°),因此有较大的下放势能;4#和6#胶带略有下坡,5#、7#胶带为平胶带,长度在100~600m之间。根据各胶带运行工况,配备一台285kW电机拖动2#胶带,两台185kW电机拖动3#胶带,其余各胶带均由90kW电机拖动。
    3 系统结构
    根据系统运行工况,系统构成框图如图1所示。
    物料流向如图中头所示,开车时应按照物料流向的反方向顺序起动各条胶带,停车应按照物料流向顺序停止各条胶带。按照错误的顺序操作,将造成压仓等严重事故,设置联锁:胶带运行过程中,有时会发生跑偏,纵撕,打滑等情况,予以保护,这些工作都由PLC来完成。另外,3#胶带较长,相应载料量也较大,而且有大的下倾角度,因此,有的刹车装置,系统为此配备了一套KJZ型动力制动装置和一套电磁抱阐装置。还有,为保证在故障或停电情况下停车,避免“飞车”等严重事故,系统配备了后备电池,提供后备制动电流,PLC控制电路配备了UPS作为后备控制电源。
    4 各部分主要功能
    如图1所示,整个系统中,3#胶带机和2#胶带机工况为恶劣,控制部分也为复杂,其余各胶带机控制部分与之相似,工况相对要好,因此,下面以3#胶带机控制部分为例详述系统各部分控制功能。4.1 起动控制部分
    因胶带机为柔性系统,具有明显的动力学特征和动态响应过程,起动及停车过程将产生胶带张力的变化,并沿着胶带传播,形成张力波,且3#胶带长度较大,负载较重,总体呈大惯性负载,因此,不可控的起动和停车过程,将产生很大的加速度及冲击,直至造成机械设备损坏和胶带机寿命降低。而本系统使用的软起动装置可提供可控的起动加程。此装置使用单片机作为控制内核,程序中预置“S”型起动曲线,通过光编码器测速,电流互感器测电流,送入单片机,通过PID调节程序进行调节,实现电流、速度双闭环控制。控制胶带机按照“S”型曲线起动。如图2所示,胶带机起动过程实际上是一变加程,在胶带机起动时刻和起动完成时刻,胶带机的加速度都为0,而中间段,胶带机以预先设置的加速度不断加速,加速度可控制在0.08m/s2以下,因此,可有效地抑制张力波及其有害传递。
    4.2 动力制动部分
    由于3#胶带负载重,而且有大的下倾角,为保证系统停车和满足停车曲线,系统不仅配备一套慢动机械抱阐装置,还配备一套动力制动装置。该装置应用可控整流原理,向电机施加可控的直流电流来提供可控的制动力矩。由程序控制使胶带以反“S”曲线停止,从而胶带机的张力波影响。
    4.3 故障制动部分
    系统发生故障时,触发可控硅全导通,提供大制动电流。
    为了停电时保证系统停车,另外备有后备电池,当系统发生突然停电时,皮带立即停车,此时直流制动电流由后备电池提供。蓄电池屏的主要参数为电压等级及安时数。由于能耗制动的直流电源电压采用48V直流电源,故蓄电池屏的电压也采用48V,容量选用100Ah,考虑故障制动时间为10~20s,放电电流控制在300A,则蓄电池的放电时间可持续:100Ah=300A×t,t=1/3h=20min。蓄电池的放电能力能够充分保证。
    故障制动部分由蓄电池组及充电控制等部分组成,内含有镉镍蓄电池组、充电装置、浮充电装置、控制开关、转换开关、切换开关等元器件。考虑到系统工作的性,两台电机配备一套故障制动装置。蓄电池配备直流浮充电装置,浮充电装置包含有充电及浮充电两种充电方式。在蓄电池发生一次停电制动后,应将蓄电池组充电至额定电压等级,此时方可使系统重新运行。正常情况下,装置处于浮充电状态,制动电流仅由动力制动装置提供。
    4.4 PLC控制部分
    4.4.1 PLC配置
    系统选用OMPON公司生产的C200H系列PLC,其点数密度高,结构紧凑,具有SY**AC NET和SY**AC bbbb功能,构建网络方便。
    鉴于系统采样点数和输出点数众多,约有38个输入点和33个输出点,PLC配置一个CPU机架,一个电源模块,5个输入模块,3个输出模块,如图3所示。4.4.2 PLC软件设计
    PLC控制系统是3#站的控制,OMRON PLC使用运行于DOS环境下的梯形图编程软件SSS,完成梯形图编程和调试,并且可在现场方便的“在线”调试和修改。
    1) 根据系统运行工况和相应系统结构,设计PLC程序完成以下功能。
    正常开车停车:系统发出开车信号时,逆料流方向顺序起动各条皮带,这样可保证不发生压
    仓情况。停车时,则顺料流方向逐步卸完每条皮带上的物料后停车,这样可保证在正常工
    作状态下,皮带不带料起动。皮带
    起动时,释放电磁抱阐机构,起动过程中,软起动器按设定的起动方式平滑起动,当电机进入亚同步范围内时,立即投入旁路接触器,此时由于皮带的下放运行,电机速度逐渐增加并过同步转速,进入同步发电状态,此时,电机产生回馈制动转矩,当回馈制动转矩与皮带下放势能转矩平衡后,系统进入平稳运行状态,交流电机向电网回馈能量。当系统收到停车命令后,根据胶带长度及速度,系统作适当延时,当皮带上的物料全部卸完后,系统进入电动运行状态,软起动器按停车曲线平缓停车。故障停车:当系统发生故障,如主机过流、过载、缺相故障或胶带机发生距偏、纵撕、打滑、速、拉绳等紧急停车时,软起动器立即从系统中切除,同时在交流电磁过程结束后,投入能耗制动停车,当控制系统到电机速度小于30%的额定速度时,电磁抱阐制动投入,胶带停止运行。
    运行方式:系统可以选择“本机”/“”/“现场”等各种控制方式。
    起动/制动装置的投切,后备电池的管理都由PLC完成。
    2) 依据应完成功能,设计的PLC程序包括以下各程序段。
    现场采样段:该段程序采样现场各状态量,包括急停,电源上电,拉绳开关,速接点,打滑接点,纵撕接点,闸机过载开关,控制方式,上下级胶带连锁等信号,并且使相应的状态位置位,驱动相应灯光指示。
    控制命令采样段:系统具有3种控制方式,/柜控/现场。柜控方式下,采样控制柜上按钮命令。现场控制方式下,采样现场操作箱按钮命令。在方式下,采用上位计算机命令,该命令可以是接点形式,也可以通过串行通信接受上位计算机命令。
    命令执行段:检查各状态位,如故障状态置位,则禁止起动,转入故障处理程序。接到起动信号后,如果连锁信号位未置位,则为错误的起动操作,也视为故障,转入故障处理程序。如果故障,PLC输出驱动闸电机松阐,同时,驱动电铃10s警示,等待松到位后,灯光指示,并驱动软起动器起动,起动结束,运行灯指示,给下级胶带发出连锁信号,同时,再响铃10s。正常停车时,收到停车信号时后,程序延时一段时间,当胶带上的物料卸完后,驱动软起动器停止,并投入软制动器(3#胶带),当速度降到30%的额定转速时,驱动阐机抱阐。
    故障处理段:当故障状态位置位时,PLC驱动相应的状态指示灯,并立即给软起动器发出停车指令,同时,驱动阐电机抱阐,软制动器(3#胶带)施加大制动电流,并声光报警。程序设有故障存储区,可保存近10次故障状态,可供维修人员方便的检查和排除故障。当故障发生时,故障状态以堆栈操作的方式压入故障存储区,同时,删去早一次故障状态。故障产生后,程序予以保持,此时,各项操作均失效,复位后,方可另行操作。除了外部故障以外,程序还设置了内部故障保护,如正常运行期间,下级胶带突然停止,也视为故障,执行故障处理程序。程序预先设定起动时间,实际起动时间过设定值,也视为故障,执行故障处理程序。如电源突然中断,也视为故障,执行故障处理程序,并且投入后备电池制动。PLC程序流程图如图4所示。
    5 应用效果
    本系统应用在国家水泥骨干企业—耀县水泥厂皮带廊改造项目中,该条传送线长达4km以上,负责全厂用料从矿山到联合储库的输送任务。
    本系统应用以来,实践证明,效果理想,起动时压降由原先的130V减少到30V,大的减轻了操作人员的劳动强度,避免了操作失误引起的故障,性明显提高,运行效率明显提高,运行成本明显下降

    一、简述
        多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。
    二、PLC的应用领域
        目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化等各个行业,使用情况主要分为如下几类:
    1.开关量逻辑控制
        取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。
    2.工业过程控制
        在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。PID调节是一般闭环控制系统中用得较多的一种调节方法。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
    3.运动控制
        PLC可以用于圆周运动或直线运动的控制。一般使用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。
    4.数据处理
        PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。
    5.通信及联网
        PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。
    三、PLC的应用特点
    1.性高,抗干扰能力强
        高性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了的抗干扰技术,具有很高的性。使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统将高的性。
    2.配套齐全,功能完善,适用性强
        PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
    3.易学易用,深受工程技术人员欢迎
        PLC是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。
    4.系统的设计,工作量小,维护方便,容易改造
        PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,重要的是使同一设备经过改变程序而改变生产过程成为可能。这特别适合多品种、小批量的生产场合。
    四、PLC应用中需要注意的问题
        PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。因此在使用中应注意以下问题:
    1.工作环境
    (1)温度
        PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。
    (2)湿度
        为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。
    (3)震动
        应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,采取减震措施,如采用减震胶等。
    (4)空气
        避免有腐蚀和易燃的气体,例如、等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。
    (5)电源
        PLC对于电源线带来的干扰具有一定的抵制能力。在性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。
    2.控制系统中干扰及其来源
        现场电磁干扰是PLC控制系统中常见也是易影响系统性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此知道现场干扰的。(1)干扰源及一般分类
    影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。
    (2)PLC系统中干扰的主要来源及途径
    强电干扰
        PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。
    柜内干扰
        控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。
    来自信号线引入的干扰
        与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。
    来自接地系统混乱时的干扰
        接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。
    来自PLC系统内部的干扰
        主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。
    变频器干扰
        一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。
    3.主要抗干扰措施
    (1)电源的合理处理,抑制电网引入的干扰
    对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。如图1所示

    (2)安装与布线
    ● 动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。将PLC的IO线和大功率线分开走线,如在同槽内,分开捆扎交流线、直流线,若条件允许,分槽走线,这不仅能使其有尽可能大的空间距离,并能将干扰降到限度。
    ● PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。在柜内PLC应远离动力线(二者之间距离应大于200mm)。与PLC装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC消弧电路。
    ● PLC的输入与输出分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10。
    ● 交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。
    (3)I/O端的接线
    输入接线
    ● 输入接线一般不要太长。但如果环境干扰较小,电压降不大时,输入接线可适当长些。
    ● 输入/输出线不能用同一根电缆,输入/输出线要分开。
    ● 尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。
    输出连接
    ● 输出端接线分为立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。
    ● 由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。
    ● 采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。
    ● PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。
    (4)正确选择接地点,完善接地系统
        良好的接地是保证PLC工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。
        PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将大。
        此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
    ● 地或电源接地
        将电源线接地端和柜体连线接地为接地。如电源漏电或柜体带电,可从接地导入地下,不会对人造成伤害。

    ● 系统接地
        PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。
    ● 信号与屏蔽接地
        一般要求信号线要有的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室接地,防止形成“地环路”。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。
    (5)对变频器干扰的抑制
    变频器的干扰处理一般有下面几种方式:
        加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。
        使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。
    使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。
    五、结束语
        PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能够使PLC控制系统正常工作。随着PLC应用领域的不断拓宽,如何的使用PLC也成为其发展的重要因素。21世纪,PLC会有大的发展,产品的品种会丰富、规格齐全,通过的人机界面、完备的通信设备会好地适应各种工业控制场合的需求,PLC作为自动化控制网络和通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用。


    http://zhangqueena.b2b168.com
    欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。 主要经营电气相关产品。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。