产品描述
西门子中国一级代理商|触摸屏总代理商公司
PLC组成的网络结构稳流控制PLC按照N+1的原则配置,对4台整流机组各配置PLC,以实现小闭环控制;配置一套总调PLC,以实现大闭环控制。整流机组小闭环控制PLC用于单台机组的稳流控制,其目的是用PLC的PID控制器实现单台机组的直流输出与给定值相一致,以达到单台机组的稳流,并通过调节饱和电抗器偏移绕组的电流来实现同一台机组两个整流柜之间输出电流的平衡。采用一套总调PLC完成大闭环控制,调节所有的整流机组,大闭环总调的PID输出作为整流机组小闭环PID的给定值,使所组的直流输出相同。当产生阳效应时,可同时调节所组饱和电抗器的控制绕组电流,如无法满足稳流要求时,可自动判断降档升压。另外,大闭环还可实现恒安时控制、大需要控制、整流机组启停等功能。SLC-5/04 PLC具有PID运算功能和指令,可对系统做动态控制;有DH+和RS-232两个通讯口;机内配有高速计数器,以适应对机外高速信号的计数要求,CPU带有两个计数频率达2kHz的高速计数器,每个计数器可用程序复位,并可设置成加法计数、减法计数或相位差90°的两个脉冲序列;为系统备有的数字扩展模块(EM),可以很方便的对系统的输入输出点做扩展;具有灵活的中断输入,以快的速度响应中断请求信号。
3 自动稳流控制3.1 信号取样由于目前国产直流互感器的温漂做的不好,信号失真大,磁放大时间常数太长,不利于即时准确的控制等原因,稳流系统小闭环反馈信号取自于整流一次侧交流信号;稳流系统大闭环反馈控制信号取自于总直流互感器,经变送器把小信号传至总调PLC;整流系统总的输出电流由上位计算机系统通过通讯方式来设定。3.2 控制功能在自动稳流系统中,PLC主要完成整个系统的逻辑顺序控制及所有PID回路控制。其主要包括以下几个部分:(1) 恒流控制恒流控制是将机组的直流输出电流经变送器变换后反馈到PLC的输入端,与给定信号作比较后送给PI调节器进行控制。控制转换成控制输出脉冲并经功率放大后,去触发晶闸管整流电路的占空比,改变饱和电抗器的控制电流,从而达到机组电流稳定的目的。(2) 平衡控制由于饱和电抗器的特性不一致,经常造成机组之间以及同一台机组两个整流柜之间输出电流有较大的差别,使整流机组达不到额定出力。因此,把一台整流柜(A柜)的输出电流作为PLC的给定,另一台整流柜(B柜)的输出电流作为PLC的反馈,两者比较的结果通过PI调节器调节后,去改变A柜饱和电抗器的控制电流(B柜的控制电流保持不变),使两个整流柜的直流电流始终保持平衡。此时,PLC输出2个4~20mA的信号,分别控制整流机组的A/B柜稳流。(3) 总调控制前已提及,电解槽所需总的直流电流等于几台单机组输出电流之和。由于单机组稳流可实现单机组输出电流稳定,为了使电解槽所获得的总电流加稳定,将总电流经互感器反馈至PLC输入端,与上位计算机的给定值进行比较计算,输出的作为单机组稳流的分调给定,从而提高整个电流稳定精度。总调PLC输出4个4~20mA的信号,同时用于控制4个整流机组的总调给定。一般饱和电抗器的控制深度为60V左右,当其饱和或截止时,PLC能自动调节变压器有载开关的升降,从而使总电流不论在多大的电压波动情况下,均能达到稳流的目的,扩大了调压范围。(4) 恒安时控制每3分钟实测一次电解电流值,并将在1小时内实测的电解电流值累加,累加结果与设定值进行比较,根据所求差值与小时剩余时间自动调整设定电流,以达到安时偏差自动控制。3.3 控制方式稳流系统采用了四种控制方式。(1) 自动/总调方式在此方式下,有载开关升降档指令均由计算机控制。有载开关升降操作是通过饱和电抗器控制电流来确认有载开关的升与降,这个动作不影响系统的单个有载开关位置。如果机组的一个有载开关发生升或降的要求,这要求将送入计算机并引起所组有载开关同时升或降。(2) 手动/总调方式这种方式允许操作员进行总调,同时动作向上或向下,有载开关升降档通过外部按钮来实现。机组总的调整与自动/总调方式相同。(3) 自动/分调方式此方式用于单个机组与其他机组有不同基准的情况下。此时,本机组有载开关升降不起作用。(4) 手动/分调方式此方式用于单机组与其他机组有不同基准的情况下,希望由本机组有载开关升降来调整本机组的电流。总之,不管是何种控制方式,都是通过调整饱和电抗器控制绕组的控制电流对整个整流系统进行细调。判断是否需要调控有载开关,是通过检测4台机组的有载开关档位来确定应动作哪台机组的有载开关。当需要升压时,动作级;当需要降压时,动作。通常是4台机组有载开关联动。
4 结束语原有稳流系统采用了模拟电路控制饱和电抗器来调节电流的方法,致使调试工作量大,控制精度低,在实际运行中时常发生进线闸乱动,动力变莫名其妙跳闸,数据报表与实际不符等现象。我们将原有稳流部分采用PLC控制后,使系统显示出以下几个特点:(1) 性和稳定性得到了很大的提高,故障率明显下降;(2) 由于PID调节器由PLC软件实现,使得整个系统的接线简单,易于安装,维护量减小;(3) 不需同步信号,无相序要求,系统变得易于调试;(4) 饱和电抗器的控制特性是非线性的,PLC能自动识别其工作范围,从而自动改变控制参数,提高了输出电流的稳流精度(单机组稳流精度达到了0.5%);(5) 操作简单,可方便地与计算机或其它设备通讯。
引言
自动仓库是货储的重要组成部分,它是在不直接进行人工处理的情况下能自动地存储和取出物品的系统。在仓库进货过程中,使用台车设备将物品存入仓库。主计算机与PLC之间以及PLC与PLC之间的通信可以及时地汇总信息,仓库计算机及时订货和到货时间,显示库存量,计划人员可以方便作出供货决策,管理人员随时掌握货源及需求。满足了人们速度、精度、高度、重量、重复存取和搬运等要求。
2 工艺过程动作要求
图1是自动仓库采用台车运送物品的示意,整个仓库有10台台车,用1台可编程序控制器进行控制。在台车每个对应停车位置上设置一个限位开关或光电开关,可自动复位,并分配给相应的输入地址,图中的编号是各停车位置的编号。台车可以前进(正转)、后退(反转),也可做高、低变速运行。系统设有用于起动和停机的按钮,这些均为PLC的输入元件。台车要用一台电动机拖动,电动机正转和反转各需要一个接触器,是PLC的输出执行元件。每台台车用一个数据开关设定台车停车目的位置,并以BCD码输入给控制器。台车运行的操作方法是先在数据开关上设定台车停车目的位置,然后按下运行起动按钮,则台车开始运行,并终停在所设定的目的位置。
图1 台车运物示意图
3 程序设计
3.1 I/O分配及PLC机型
用一台可编程序控制器即可完成10台台车的自动控制任务,本文中以一台台车的控制为例,来说明其控制系统的构成。系统的控制部分选用公司(Modicon)公司生产的PLC,工业输送车控制系统的I/O分配表见附表。
每台台车使用了3块开关量输入模块,以接收台车位置信号、启动操作命令和台车停车目的位置设定。同时使用一块输出模块,以驱动台车运行。表中输入寄存器30001用来寄存数据开关设定的台车停车目的位置,用BCD码表示。由于各仓库的呼车指示灯状态一致,为了尽量减少占用PLC的输入输出点个数,采用小电流的发光元件并联在一起,然后接在一个PLC输出点上。
3.2 梯形图程序设计
依据台车的工艺要求,设计出相应的控制程序梯形图,如图2所示。在程序中,设计的是一辆台车的控制程序,其中网络1用于台车停车目的位置判断,保持寄存器40101保存停车目的位置设定值。通过比较指令(SUB指令)将30001内容送给40101,如果要求台车前进,则将设定值减1送给保持寄存器40102,如果要求台车后退,则将设定值加 1送给40102。网络2是运行指令保持回路,当停止指令00102得电后,运行指令00101失效。网络3是将保存台车当前位置的工作寄存器40103复位,该步清“0”的目的是为下一网络读取新位置准备条件。网络4是位置判断和运行工况判断程序。将台车现行位置(当前值)读入工作寄存器40103,它是通过比较指令检出位置输入信号10001~10016中何者为ON,并将1~16个位置状态存入40103。然后通过SUB指令比较当前位置与设定目标位置,如果当前位置小于设定目标位置,输出线圈00017得电,表示前进指令;如果当前位置大于设定目标位置,输出线圈00018得电,表示后退指令;如果当前位置等于设定目标位置,则台车停止运行,内部线圈00102得电。网络5为台车运行时减速位置判断。台车前进时,00017为ON,如果当前位置大于或等于台车停车目标位置设定值减1,则台车开始减速运行(内部线圈00103得电)预告;如果台车是后退运行,00018为ON,当前位置小于或等于台车停车目标位置设定值减1时,台车开始减速运行(00014得电)预告。网络6为延迟电路,当得到台车开始减速运行预告信号(00103和00104)后,定时器40108启动定,经5秒钟后内部线圈00105得电.发出台车正式减速运行指令。后的网络7是高、低速运行指令产生回路。
1 引言
某厂抓矿行车采用绕线式异步电动机转子串接频敏电阻器进行启动和调速,这种继电器-接触器控制方式在实际运行中存在着以下问题:
(1) 行车工作环境恶劣,工作任务繁重,电动机所串频敏电阻器烧损、断裂和接地故障时有发生,造成电动机频繁烧损;
(2) 由于机体震动及导电性粉尘环境,继电器-接触器控制系统的性差、故障率高、维护困难、维护费用高、检修工人疲于维护;
(3) 转子串频敏电阻器调速,机械特性软,负载变化时,运行不平稳,且运行中频敏电阻器长期发热,电能浪费严重;
(4) 各接触器在大电流状态下频繁分断、吸合,造成电网高次谐波污染严重,电网功率因数低。
于是该厂采用了PLC代替了继电器-接触器控制,将变频器代替电动机转子串频敏电阻器的调速方式,改造后,运行效果显著,解决了以上问题。
2 PLC控制的行车变频拖动系统组成
2.1 系统组成
行车的大车、小车、抓斗提升、抓斗开闭电机都需立运行,大车有两台电机同时驱动,小车、抓斗提升、抓斗开闭各为一台电机驱动,整个系统有5台电机。为了保证各部分运行互不影响,采用了4台变频器拖动,并用4台PLC分别加以控制,系统组成如图1所示:
图1 PLC控制变频拖动系统组成
PLC接收主令控制器的速度控制信号,该信号为数字量控制信号,信号电平为AC220V。这些信号包括:主令控制器发出的正、反转信号、电机过热保护信号、限位信号及启动、急停、复位、零锁等信号,全部信号采用汇点式输入。PLC针对这些信号完成系统的逻辑控制功能,并向变频器发出起、停、正、反转及调速等控制信号,使电动机处于所需的工作状态。
变频器接收PLC提供的控制信号,并按设定向电机输出可变频、变压的电源,从而实现电机的调速。操作人员按实际需要通过主令控制器向PLC发出各种控制信号。
提升电机在下放重物时,电机反转,由于重力加速度的原因,电机处于再生制动状态,拖动系统的机械能转化为电能,并存储在电压型变频器的滤波电容器的两端,使直流电压不断上升,甚至能够击穿电器绝缘,当电压上升到设定值时,接入泄能电阻来消耗直流电路的这部分能量,保证变频器运行。
2.2 变频器与PLC通信
系统采用现场总线方式代替传统的模拟量或开关量方式控制变频器。系统中,小车及提升变频器通过选件模块连接至Profibus-DP总线上,综合考虑的实时性及稳定性,系统选用PPC-3作为格式,波特率选择387.5kbps。采用总线结构后,系统进一步优化,具体表现如下:
(1) 布线简单
只需1根两芯的屏蔽双绞线,而采用别的方式至少要4根电缆,从而减少了维护工作。
(2) 给定稳定
避免了因信号的漂移、电磁干扰等诸多因素而引起模拟量给定抖动,因此系统速度给定加。
(3) 速度连续
相对于采用开关量作为速度给定的系统,速度给定由离散量变成了连续量,使得变频器可以接受来自PLC的速度微调指令,以实现抬吊作业平衡。
2.3 备用应急系统
当总线干缆或总线上某点出现损坏时,有可能使系统无法正常工作。因此,系统中设有一套备用的系统,以防止紧急情况下总线不能正常使用,但又不能停止作业的工况。变频器设有两套控制方式,一套采用总线通信,用于正常控制;一套采用开关量控制,用于应急状况。通过PLC切换两套参数,两套参数在手柄档位的速度给定上一致,因此从使用角度感觉不出两套参数的切换。
2.4 同步与纠偏
行车在抓斗提升抬吊作业时,系统进入自动纠偏模式,以保证吊钩在抬吊时钢丝位置同步。由于机械安装时磨擦阻转矩,机械抱闸的调整不可能一致,因此系统不采用动态实时纠偏,而采用一种折衷方案,其工作原理为:,系统在PLC中设置2个阈值,阈值1用于启动吊钩的自动纠偏,阈值2用于结束自动纠偏;其次,PLC读入安装在起升卷筒上编码器的数据并实时计算起升高度;再次,PLC比较所读入的2个起升高度,当2个高度之差大于阈值1时,PLC将一个微小的速度偏差量叠加在由手柄确定的基准速度上,当两个高度之差小于阈值2时,取消该偏差量,通过惯性进一步减少起升高差;后,PLC将计算合成后的速度值能过Profibus-DP下载至变频器中,作为抓斗提升电机的速度给定。
3 PLC软硬件设计及应用
3.1 PLC的硬件设计
行车大车、小车、抓斗提升、抓斗开闭电机分别由不同的PLC控制,大车、小车、提升、开闭电机都运行在电动工作状态,变频器及PLC的控制结构及软、硬件实现基本相同。提升电机运行状态有电动、反接制动、再生制动等状态,变频器及PLC之间的控制结构较大车、小车复杂。以提升电机为例,其PLC的I/O接线如图2所示,变频器接线图如图3所示。
PLC控制的变频拖动系统应用到行车,各电机各档速度、加速时间、制动时间都可根据实际工况条件设定,而且十分方便。从运行结果来看,负载变化时,电机速度运行平稳。设备的故障率大幅度降低,电机烧毁明显减少,同时减少了到电网高次谐波的影响。设备检修时排除故障的速度明显加快,设备维护量大大减少。
1 引言
近几年随着我国经济建设的快速发展,在能源供应上很多地区都出现电力资源紧缺的状况,因此许多电厂纷纷进行新建或扩建改造。深圳西部电厂原有4台(#1-#4)300MW 机组,为提高发电能力又续建#5、#6机组(2×300MW)。西部电厂原有两列化学水处理系统,续建工程的化学水处理系统扩建一列100~140m3/h化学除盐系统,其余设备与已有化学水处理系统共用。原有化学水处理系统使用传统的模拟屏方式进行监控,自动化水平不高并且效率很低。续建2台机组后,废除原有化学水处理系统的控制系统,将原有化学水处理系统和扩建的一列化学水处理系统统一采用一套冗余PLC控制系统进行集中控制。
2 化学水处理系统工艺流程
2.1 化学水处理系统流程
原有化学水处理系统流程为:自来水→蓄水池→升压泵→活性炭过滤器→阳离子交换器→除二氧化碳器→中间水箱→中间水泵→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵。通过对现有系统运行状况的现场调查和对水质分析报告分析,自来水中的悬浮物含量较高,严重地污染了活性炭和离子交换树脂。因此,续建工程增加3台纤维过滤器对自来水进行深度过滤处理。
续建化学水处理系统流程为:自来水→蓄水池→升压泵→纤维过滤器→活性炭过滤器→阳离子交换器→除二氧化碳器→中间水箱→中间水泵→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵。
2.2 续建工程与原有系统的连接及运行方式
原有120t/h出力的一级除盐+混床设备2列,续建工程仅再扩建1列出力为120t/h的同样设备。除盐水泵、再生水泵、压缩空气系统、酸碱再生系统和废液处理系统与原有系统共用。
3台过滤器采用并联运行方式,正常工况2台运行,1台备用。过滤器不仅对续建工程所需的自来水进行预处理,而且对原有系统的自来水也进行预处理。
2台活性炭过滤器和一级除盐设备构成一个系列,采用串联运行方式,正常工况2列运行,一列备用。其中每系列的2台活性炭过滤器,当水质好时1台运行(去除游离余氯),1台备用;当进水水质恶化时2台同时运行(去除物)。
混床采用并联,正常工况2台运行,1台备用。
3套一级除盐单元与3台混床之间设有切换阀门,受已有系统的限制,仅#1一级除盐设备和#1混床与#2一级除盐设备和#2混床可以同时交叉运行,#1一级除盐设备和#1混床与#3一级除盐设备和#3混床可以同时交叉运行。机组启动时,上述3列设备同时投入运行,满足大的补给水量。
3 系统配置
系统由两台上位计算机和一套冗余PLC系统构成。上位计算机系统采用工业级计算机构成功能强大的监测与控制系统,计算机上安装Inbbtion公司的FIX7.0工业监测与控制系统软件,通过合理的系统设计和系统组态,实现对整个化学水处理工艺流程的动态监视和控制。通过上位计算机系统和强大的工业控制传输网络,实现对整个生产工艺工程的自动化管理和控制。
PLC选用Siemens公司S7400冗余控制器,控制系统采用双机热备冗余方式,通过远程I/O的方式连接现场需要监测与控制的点,远程I/O由EM200通讯处理器和S7300系列I/O模块组成。冗余的主控制站可以保证系统的停机维护时间为零,大限度的减少人对系统的干预。主控制系统热备系统和远程I/O控制站之间采用的冗余Profibus工业总线传输网络,实现信息的、、稳定的传输。Profibus是一种高速和的现场总线,它专门设计为自动控制系统和设备级分散的I/O之间进行通信使用,大传输速率可达12Mbps。
上位计算机系统安装CP1613通讯卡,与PLC控制单元之间采用工业以太网传输网络。以太网属标准,工业以太网已达到高传输性和性要求,现已广泛用于程序维护、向MIS和MES系统传递工厂数据、监控、连接人机界面、记录事件和告警。工业以太网具有高传输速率(目前达到100Mbps)、集线器技术的确定性、不需考虑网络的拓扑结构、传输物理介质多样(双绞线、光纤、同轴电缆)、集线器的应用可不考虑网络的扩展等优点。
通过以太网络将上位计算机系统和现场监测与控制点紧密的结合为一个整体,构成一个完整的系统。在这样高速传输网络上,可以很方便的利用PLC系统所特有的功能,实现对整个控制系统的计算机在线远程诊断功能。图1为系统网络结构图。
4 控制功能
水处理系统所有控制阀采用就地和远程控制方式,即使在程控系统故障的情况下还可以通过就地控制实现手动制水,保证机组锅炉的用水。控制箱上选用3位选择开关,分别为就地开、就地关、远程控制。选择远程控制时,控制阀由操作员在操作站上控制。操作员可以在操作站对控制阀进行状态监视和动作控制,对控制阀的控制可分选择自动和手动方式。在自动方式时控制阀受PLC逻辑程序控制,在手动方式时控制阀由操作员直接在操作界面上点击控制。
一级除盐设备的投运和再生由PLC实现自动控制,也可通过键盘和鼠标在控制室内的操作站上进行远方操作。一级除盐设备的出水导电率过规定值或周期制水量达规定值时,自动解列并报警,然后自动投入再生程序。混合离子交换器的投运和再生由PLC实现自动控制,或者通过键盘和鼠标进行远方操作。当混合离子交换器出水导电率和二氧化硅过规定值,或周期制水量达规定值时,自动解列并报警,然后自动投入再生程序。过滤器和活性碳过滤器由PLC实现自动控制,也可采用键盘和鼠标在控制室内的操作站上进行远方操作。当其进出口压差过规定值,或周期制水量达规定值时,自动解列并报警,然后自动投入反洗程序。以上操作以前都由操作人员执行,执行新系统后上述操作都可以不需要操作人员干预。图2示出操作界面。
图2 操作界面
中间水箱水位由PLC实现自动控制(通过调节阳床入口调节阀),使一级除盐系统投运时中间水箱水位稳定在正常位置。中间水泵启停与中间水位联锁,低液位启泵、高液位停泵,保证中间水泵的使用。
阀门、泵等的控制状态显示,自动/手动/就地操作和选择联锁。系统所有流量、压力可在操作界面上实时监视,原水流量、阴床出口流量、混床出口流量显示积算并作历史纪录,可分别查看一级除盐、混床再生制水量。
系统控制每列除盐装置的投运、停止和再生程序、自动加酸加碱程序、自动/半自动启动另一列除盐装置程序等。对于顺控设置必要的分步操作、成组操作或单操作等,并有跳步、中断或旁路等操作功能。系统投运以及活性炭清洗、一级除盐再生和混床再生可由系统自动完成或操作员步延、步进手动干预,在操作站界面上显示各步骤设定时间和剩余时间以及步进、步延指示等。
5 结束语
深圳西部电厂化学水处理系统全部改造完成后于2003年7月正式投运,经过改造后自动化控制水平明显提高,制水量由原先的平均每小时120m3提升到平均每小时140~160m3,保证了6台发电机组的用水需要。由于控制水平的提高,制水过程中产生的废水量明显减少,起到了一定环保节能效果。系统高度的性和直观简易的操作性使得控制值班室由原来的2人值班该为1人值班,大大节约了人力成本。该系统建成后运行,生产效率明显提高,因此受到用户的,并经常成为其它电厂**参观效的对象。
1 引言
在工业生产过程中,由于操作不当或设备故障等原因,各种过程参数会出正常工作范围,为了及时发现越限的过程参数,须要设置信号报警控制系统,采用可编程序控制器可以实现信号报警控制系统。设置信号报警控制系统的主要目的是生产,因此,对信号报警控制系统需要有与一般控制系统不同的要求。在系统设计时,常用的信号报警和联锁系统,按照信号系统分为一般闪光报警系统和能区别事故原因的报警系统等。
2 一般闪光信号报警系统设计
一般闪光信号报警系统是当过程参数过限值时,操作人员要根据信号灯的标志来识别是哪一个过程参数过限值, 该报警信号表示什么性质的限值。在操作人员了解报警信号的性质后,按动确认按钮, 信号灯由闪光变为平光,声响报警。当故障排除后, 该过程参数恢复到正常工作范围, 平光的信号灯熄灭, 信号报警系统回复到正常状态。
采用可编程序控制器进行一般闪光信号报警系统设计时, 先应根据闪光的要求, 采用振荡电路完成信号的定时接通和断开, 得到闪烁的效果。其次, 确认按钮按动后应有平光和消声的要求, 可采用一般控制电路的开停方式来完成确认按钮信号的保持。后, 分配输入输出点并进行编程。
图1是实现一般闪光信号报警系统的梯形图,其中过程参数限值时的报警信号分别为X1、和X2,确认按钮信号是X3。如果需要对信号报警系统的信号灯和声响进行检查,应设置试验按钮信号X4。选用由2个计时器TIM1和TIM2组成的振荡电路,2个信号灯的输出分别为Y1和Y2,声响的输出为Y5。另有2个确认信号保持的内部继电器为Y3和Y4。
图1 一般闪光信号报警系统的梯形图
图1中,和二梯级用于产生振荡信号,计时器时间K可以设置为0.5s,计时器指令可根据不同的产品用相应指令;三和四梯级是信号灯电路;五和六梯级用于确认信号,并提供各确认信号的自保;七梯级用于声响报警。一般闪光信号报警系统的动作表如表1所示。
可以看出,在多个信号同时报警时,一般闪光信号报警系统不能对原因事故信号进行识别。
3 能识别事故原因的信号报警系统设计
要设计能区别事故原因的信号报警系统,应对事故原因进行识别。由于各信号报警的时间相当接近,而操作人员很难在这段短时间内分辨出哪一个信号是事故原因信号。因此,要把事故原因信号设计为其他事故报警信号的复位信号。
在一般闪光信号报警系统的梯形图的基础上,为了使事故原因的信号能够保持,对2个报警信号设置2个存储继电器,设为M1和M2。能区别事故原因的信号报警系统的梯形图如图2所示。表2列出了能区别事故原因的闪光报警信号系统在不同工况下的动作状态。
图2中, 为识别事故原因的信号所设置的2个存储继电器, 当X1是事故原因的报信号时, 在五梯级中将存储继电器M1置位, 其接点将存储继电器M2复位, 从而保证了事故原因信号被记忆。当按动确认按钮后, 经Y3自保, 其接点将M1复位, 而另一接点用来使信号灯Y1变成平光。
4 调试方法及注意事项
4.1 调试方法
调试时,用于工艺操作人员注意的报警信号、保护生产设备和防止事故发生的联锁信号、由于故障而造成的二故障信号和直接由故障造成的故障信号等,在控制台上应设置自检按钮,由操做员依次按下或接通控制板面上的按钮开关,以测试各闪光信号报警信号灯是否有效。通过输入输出等效器,由控制程序进行测试。
另外,信号报警点的设置不应过多,要筛选并确定信号报警和联锁信号点数。过多的联锁信号会使生产过程不能有序进行,并造成稍有操作不当就停车的频繁事故状态,反而对生产不利。同时,在调试信号报警和联锁信号点时,操作人员还要熟知工艺过程和信号的报警限值和联锁限值,这样有利于对故障的分析和判断,有利于减少事故的发生、扩展,缩小因事故造成的对生产过程的影响。
4.2 注意事项
(1) 依据信号报警控制系统在事故发生前提供的报警信号,尽可能地减少避免事故的发生,事故发生时,立即切除与事故有关设备的运行,减少事故对生产过程的影响;
(2) 在选择终执行机构的类型时,应根据电源或气源等故障时能保证系统处于的工作状态,必要时也可以设置UPS或其他供电方式,也可采用冗余部件或系统,以保证系统的正常高运行;
(3) 设置必要的检查和诊断部件,以便对系统进行定期的检查和维护,对于系统中性较低的部件应便于定期换和维护;
(4) 应特别注意PLC的电气接线,保证符合要求。
5 结束语
上述以2个报警信号系统为例,简单探讨了采用可编程序控制器设计的信号报警控制系统,当信号数量较多时,设计时应注意存储和确认继电器的接点要采用串联或是并联连接,同样可使用类似的线路设计组合即可完成。
产品推荐