产品描述
西门子中国授权一级代理商|触摸屏总代理商代理
1 引 言
近年来,随着计算机应用水平的提高,上位机同可编程控制器(简称PLC)之间的通讯与相应的数据采集,在工业控制过程中的应用越来越广泛。在各行各业的生产过程中,随着自动化程度的提高,对现场控制信号精度要求也越来越高。PLC作为一种新兴的工业控制器,以其功能完备、编程灵活、应用面广、价格低廉等众多优越的性能在国内外越来越多的生产过程中得到实际的应用,尤其在数据的采集、控制及相应的通信方面,以其价格低廉,性能稳定得到业各个厂家的认可。
为了充分利用PC及PLC的优点,我们针对上海新奥托实业有限公司设计开发的一套“车辆运行控制策略优化“实验模型,开发出基于PC及PLC的该模型的监控系统。上位机PC中用北京亚控公司的组态王作为人机界面,完成技术人员的参数设置和手动控制,下位机PLC负责实现针对火车模型的直接控制,其中包括对火车的运行方向和速度的控制以及如何实现及时的避让和寻找优线路的策略。本系统具有编程可视化、可移植性强、系统度高、控制装置标准化、接线软件化、系统柔性化等优点,并且能够扩展到当前国内铁道车辆的监控系统中,大大优化车辆的运行策略,并为广大从事该类系统开发的广大工程技术人员了很好的借鉴。
2 系统的结构与功能2.1 硬件系统组成
整个系统硬件布置的简单示意图如图1所示。本系统的总体结构是上、下位机结构。以 PC机作为上位机,通过通信接口连接至可编程控制器,并以可编程控制器作为下位机来控制火车模型。上位机选用Pentum以上机型,组态王作为人机交互的组态软件,由于上位机是以较的CPU建立的系统,它在图形处理、复杂计算,以及人机界面上可以很轻松的达到较高的水平,相对于单片机等微处理器来说,处理速度快了好多倍。另外,它有语言的支持,有大量已经成熟且应用相当广泛的操作系统应用软件的支持。本系统上位机的监控部分选用组态王,就是充分利用它的编程简单、界面美观友好,重要的是,它支持许多常用的硬件设备,包括各主要厂家的PLC、智能模块、智能仪表、板卡和变频器等。本系统选用的PLC是日本OMRON公司的C200HE,也在组态王支持的硬件设备之列,这样通过串口依据RS232的通信协议就可以顺利的连接起来,实现组态王和下位机PLC之间准确而实时的数据交换。
下位机主要负责对火车模型的直接驱动控制,它是由OMRON的可编程控制器各模块组成。整个下位机系统包括电源模块、CPU-42-E模块、ID212模块、OD212模块、DA模块等,分别完成接收数字量的输入、实现控制算法、完成火车模型各段的顺序启停、产生数字量和模拟量的输出等功能。
2.2 符合RS232协议的电缆连接
RS232是目前常用的串行接口标准,用来实现计算机与计算机、计算机与外设之间的数据通讯。RS232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率大为20kB/s。本系统中,上位机和下位机之间通过符合RS232通信协议的串口电缆连接起来。具体连接图如图2所示。硬件的连接在于火车模型实验台和PLC各模块之间的连线。其中包括PLC的开关量输入信号线,共22根;PLC的开关量输出信号线,共23根;PLC的模拟量输出信号线,共6根。另外还要引入相应的220V交流电和24V直流电。
注意:在进行PLC的硬件设置时,DIP开关除引脚4置于OFF外,其它全置于ON,同时,PLC底板上所插的各个模块的设备单元号不能互相冲突。
2.3 软件系统组成
分析PLC的输入输出信号。由于火车模型在经过不同位置时会使该位置处的红外信号传感器产生光电认别信号的输出,因此整个实验台上的22个红外信号传感器就相应产生了22个开关量的输出(对于PLC来说是输入信号)。而对6个火车叉道的切换控制、1#站、2#站和外围轨道的电压方向控制,还包括对1#站和2#站的红绿灯控制,则靠PLC方来完成,属于PLC方的开关量输出。另外,对于车速的调节,则需要PLC方0~10的直流电压输出,这属于PLC方的模拟量输出。
软件的设计思想是将从火车模型引出的开关量信号输入至PLC内部继电器IR区域,然后根据各位的高低电平的不同判断火车模型的不同位置,再在PLC的CPU中由程序处理输出相应的开关量和模拟量信号来作出相应的控制,如切换叉道、改变方向、红绿灯亮灭、蜂鸣器报警、增减速等,同时将相应的数据上传到上位机组态王的画面中,使不同的控制方式以为直观的方式显示出来供操作人员调节。组态王中要包括监视画面和 控制画面,通过实时数据库的数据新和交互来产生画面的新和对火车模型不同控制的实现。软件中比较难实现的就是火车运行路线的优控制问题。通过分析和动态规划,我们实现了2部以上火车模型同时在轨道上运行时,如何运用不同的叉道和车站,使它们找到各自优的路线,以短的时间,节省的能源,顺利的到达各自的目的地,沿途伴随着相应的红绿灯闪烁、蜂鸣器报警、实时的启停和避让,从而在相当大的程度上模拟了火车的实际运行情况,对于实现无人自控火车的研究人员来说,是具有相当重要的参考。
3 软件的设计
3.1 PLC控制过程的程序设计
按照用户的要求,控制系统应具有自动循环、手动、单周期运行过程。其中,手动调节是指火车模型的运行速度、方向、叉道的切换以及启停等均由技术人员通过组态王的控制画面来进行手工调节,主要是为了调试各个输入信号和输出信号的实时和准确性;单周期运行则是在一定的条件下,让一辆或几辆火车模型同时在轨道上运行一个周期,主要是为了对火车模型在各运段的运行速度大小和叉道的切换进行细调,它通常结合手动调节来进行;而自动循环运行方式是在前两种调节方式无误的情况下才可以进行,由于实际的运行过程中会发生这样或者那样的干扰,因此这一过程在实际的环境中也要结合手动调节来进行,但只要环境条件不发生特别大的变化,一般不需要手动调节(由于本系统是在实验室中实现的这一过程,所以在这一过程中未考虑手动调节)。
考虑PLC程序是和上位机组态王程序相结合来实现对火车模型的控制,因此初的运行方式由技术人员在人机对话的画面上选中,然后让PLC根据输入的开关量信号执行运算产生开关量和模拟量的输出来控制火车。程序设计的流程图如图3所示。3.2 组态王监控画面的设计及它同PLC的数据交互过程
组态王是一套以实时数据库为的组态软件系统,实时数据库中含有丰富的数据类型,系统在进行刷新、趋势显示、
报警判断、历史数据记录等工作时所采用的数据皆是取自实时数据库,而实时数据库对用户是开放的,所以用户可以方便的构造适应自己需要的“数据采集系统”。同时由于组态王提供了内嵌的类C语言环境,使用起来加方便。
组态王中的每一个手动控制按钮都对应使PLC中继电器区域中的某个字变化一位或几位(即将该字中的一位或几位置高或低电平)。而该位的变化就可以产生开关量的输出,这只是程序设计的基本思想。当然在PLC的程序中,包含着对火车模型运行的各个位置的判断,并以此为根据来判断运行的策略,由此作出路线以及车速的运行状态。 注意:在调节车速的时候,不宜将车速调的过高或者过低,以免翻车或者,造成不必要的实验事故,另外,红外线传感器一定程度上受日光中红外成分的影响,所以开始时应该在火车模型实验台下面的硬件电路上调试其红外传感器相对应的放大器微调电位器,使其输出电压低端在5V以下,在20V即可。另外叉道由脉冲小于50ms的脉冲信号控制,如果脉冲时间过长,易对叉道造成损坏,这在PLC的程序中用TIMH(高速定时器)才能产生这样标准的脉冲。
4 结束语
经过一段时间的运行证明,本系统成功的实现了对火车模型的自动控制和监测,并实现了车辆及时进站、准确停车、正反行、红绿灯控制以及相向运行或同向车辆的及时避让等功能,并可借助实验盘上所设置的22个红外传感器,采用组态王实现直观跟踪,以便操作人员及时的控制车辆的运行,在控制策略的实现过程中,我们是利用了优化控制的算法,从而实现了车辆的自动避让和自动选择优化路线的智能功能。
这种基于PC及PLC和火车模型监控系统的设计,涵盖了现代控制理论中有关决策过程中的优化问题,对于当前铁路系统客车、货车的级、上水平、提益创造了技术上的前提。相信随着现代计算机自动控制技术的飞速发展,类似的系统的应用前途将会越来越广泛。
随着PLC的推广普及,PLC产品的种类和数量越来越多,而且功能也日趋完善。近年来,从美国、日本、德国等国引进的PLC产品及国内厂家组装或自行开发的产品已有几十个系列、上百种型号。PLC的品种繁多,其结构型式、性能、容量、指令系统、编程方法、价格等各不相同,适用场合也各有侧重。因此,合理选择PLC,对于提高PLC在控制系统中的应用起着重要作用。
1 机型的选择
PLC机型选择的基本原则是,在功能满足要求的前提下,选择、维护使用方便以及性能价格比的优化机型。
在工艺过程比较固定、环境条件较好(维修量较小)的场合,建议选用整体式结构的PLC;其它情况则选用模块式结构的PLC。
对于开关量控制以及以开关量控制为主、带少量模拟量控制的工程项目中,一般其控制速度无须考虑,因此,选用带A/D转换、D/A转换、加减运算、数据传送功能的低档机就能满足要求。
而在控制比较复杂,控制功能要求比较高的工程项目中(如要实现PID运算、闭环控制、通信联网等),可视控制规模及复杂程度来选用中档或机。其中机主要用于大规模过程控制、全PLC的分布式控制系统以及整个工厂的自动化等。根据不同的应用对象,表1列出了PLC的几种功能选择。
表1 PLC的功能及应用场合
对于一个大型企业系统,应尽量做到机型统一。这样,同一机型的PLC模块可互为备用,便于备品备件的采购和管理;同时,其统一的功能及编程方法也有利于技术力量的培训、技术水平的提高和功能的开发;此外,由于其外部设备通用,资源可以共享,因此,配以上位计算机后即可把控制各立系统的多台PLC联成一个多级分布式控制系统,这样便于相互通信,集中管理。
2 输入/输出的选择
PLC是一种工业控制系统,它的控制对象是工业生产设备或工业生产过程,工作环境是工业生产现场。它与工业生产过程的联系是通过I/O接口模块来实现的。
通过I/O接口模块可以检测被控生产过程的各种参数,并以这些现场数据作为控制信息对被控对象进行控制。同时通过I/O接口模块将控制器的处理结果送给被控设备或工业生产过程,从而驱动各种执行机构来实现控制。PLC从现场收集的信息及输出给外部设备的控制信号都需经过一定距离,为了确保这些信息的正确无误,PLC的I/O接口模块都具有较好的抗干扰能力。根据实际需要,一般情况下,PLC都有许多I/O接口模块,包括开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块以及其它一些特殊模块,使用时应根据它们的特点进行选择。
2.1 确定I/O点数
根据控制系统的要求确定所需要的I/O点数时,应再增加10%~20%的备用量,以便随时增加控制功能。对于一个控制对象,由于采用的控制方法不同或编程水平不同,I/O点数也应有所不同。
表2列出了典型传动设备及常用电气元件所需的开关量的I/O点数。
表2 典型传动设备及常用电气元件所需的开关量的I/O点数
2.2 开关量输入/输出
通过标准的输入/输出接口可从传感器和开关(如按钮、限位开关等)及控制(开/关)设备(如指示灯、报警器、电动机起动器等)接收信号。典型的交流输入/输出信号为24~240V,直流输入/输出信号为5~240V。
尽管输入电路因制造厂家不同而不同,但有些特性是相同的。如用于错误信号的抖动电路;免于较大瞬态过电压的浪涌保护电路等。此外,大多数输入电路在高压电源输入和接口电路的控制逻辑部分之间都设有可选的隔离电路。
在评估离散输出时,应考虑熔丝、瞬时浪涌保护和电源与逻辑电路间的隔离电路。熔丝电路也许在开始时花费较多,但可能比在外部安装熔丝耗资要少。
2.3 模拟量输入/输出
模拟量输入/输出接口一般用来感知传感器产生的信号。这些接口可用于测量流量、温度和压力,并可用于控制电压或电流输出设备。这些接口的典型量程为-10~+10V、0~+10V、4~20mA或10~50mA。
一些制造厂家在PLC上设计有特殊模拟接口,因而可接收低电平信号,如RTD、热电偶等。一般来说,这类接口模块可用于接收同一模块上不同类型的热电偶或RTD混号。
2.4 特殊功能输人/输出
在选择一台PLC时,用户可能会面临一些特殊类型且不能用标准I/O实现的I/O限定如定位、快速输入、频率等。此时用户应当考虑供销厂商是否提供有特殊的有助于大限度减小控制作用的模块。有些特殊接口模块自身能处理一部分现场数据,从而使CPU从耗时的任务处理中解脱出来。
2.5 智能式输入/输出
当前,PLC的生产厂家相继推出了一些智能式的输入/输出模块。一般智能式输入/输出模块本身带有处理器,可对输入或输出信号作预先规定的处理,并将处理结果送入CPU或直接输出,这样可提高PLC的处理速度并节省存储器的容量。
智能式输入/输出模块有高速计数器(可作加法计数或减法计数)、凸轮模拟器(用作编码输人)、带速度补偿的凸轮模拟器、单回路或多回路的PID调节器、ASCII/BASIC处理器、RS—232C/422接口模块等。表3归纳了选择I/O模块的一般规则。
表3 选择 PLC 的 I/O 接口模块的一般规则
3 PLC存储器类型及容量选择
PLC系统所用的存储器基本上由PROM、E-PROM及PAM三种类型组成,存储容量则随机器的大小变化,一般小型机的大存储能力6kB,中型机的大存储能力可达64kB,大型机的大存储能力可上兆字节。使用时可以根据程序及数据的存储需要来选用合适的机型,必要时也可专门进行存储器的扩充设计。
PLC的存储器容量选择和计算的种方法是:根据编程使用的节点数计算存储器的实际使用容量。二种为估算法,用户可根据控制规模和应用目的,按照表4的公式来估算。为了使用方便,一般应留有25%~30%的裕量,存储容量的方法是生成程序,即用了多少字。知道每条指令所用的字数,用户便可确定准确的存储容量。表4同时给出了存储器容量的估算方法。
表4 控制目的估算存储器容量的方法
4 软件选择
在系统的实现过程中,PLC的编程问题是非常重要的。用户应当对所选择PLC产品的软件功能有所了解。通常情况下,一个系统的软件总是用于处理控制器具备的控制硬件的。但是,有些应用系统也需要控制硬件部件以外的软件功能。例如,一个应用系统可能包括需要复杂数学计算和数据处理操作的特殊控制或数据采集功能。指令集的选择将决定实现软件的难易程度。可用的指令集将直接影响实现控制程序所需的时间和程序执行的时间。
5 支撑技术条件的考虑
选用PLC时,有无支撑技术条件同样是重要的选择依据。支撑技术条件包括下列内容:
(1) 编程手段
便携式简易编程器主要用于小型PLC,其控制规模小,程序简单,可用简易编程器;
CRT编程器适用于大中型PLC,除可用于编制和输入程序外,还可编辑和打印程序文本;
由于IBM-PC已得到普及推广,IBM-PC及其兼容机编程软件包是PLC很好的编程工具。目前,PLC厂商都在致力于开发适用自己机型的IBM-PC及其兼容机编程软件包,并获得了成功。
(2) 进行程序文本处理
简单程序文本处理以及图、参量状态和位置的处理,包括打印梯形逻辑;
程序标注,包括触点和线圈的赋值名、网络注释等,这对用户或软件工程师阅读和调试程序非常有用;
图形和文本的处理。
(3) 程序储存方式
对于技术资料和备用资料来说,程序的储存方法有磁带、软磁盘或EEPROM存储程序盒等方式,具体选用哪种储存方式,取决于所选机型的技术条件。
(4) 通信软件包
对于网络控制结构或需用上位计算机管理的控制系统,有无通信软件包是选用PLC的主要依据。通信软件包往往和通信硬件一起使用,如调制解调器等。
6 PLC的环境适应性
由于PLC通常直接用于工业控制,生产厂都把它设计成能在恶劣的环境条件下地工作。尽管如此,每种PLC都有自己的环境技术条件,用户在选用时,特别是在设计控制系统时,对环境条件要给予充分的考虑。
一般PLC及其外部电路(包括I/O模块、辅助电源等)都能在表5所列的环境条件下工作。
表5 PLC的工作环境
7 结束语
随着科技的不断进步,PLC的种类日益繁多,功能也逐渐增强。文章中尽管归纳了一些选用PLC的方法,但在实际工作中还一定要依据实际情况做出适当的调整,以便设计出满足期望的控制系统。
1. 概述
变频调速技术是一种新型的、成熟的交流电机无级调速驱动技术,它以其特优良的控制性被广泛应用在速度控制领域。特别是在供水行业中,由于生产和供水质量的特殊需要,对恒压供水压力有着严格要求,变频调速技术也得到了加深入的应用。
成都市自来水公司六厂日产水量60万吨,担负着成都市区及周边地区70%以上的供水任务。自1996年年底六厂的三期工程投产后开始向郫县供水,使得我厂的供水方式从单一的重力流供水变为重力流和压力流结合供水的方式。自向郫县供水以来,由于考虑到现阶段郫县的用水量较少,从节约能耗的角度出发,我厂使用一台泵同时向郫县供水和提供我厂的自用高压水。为了满足六厂自用水压力,保证厂内各个工艺环节设备(如环节中的水射器)能正常工作,我厂自用水压力须较恒定的控制在0.3 Mpa以上,采用变频调速控制是保压力恒定较为有效的方法。根据我们对郫县城区供水量的了解,发现郫县全天各时段用水量变化较大(见后图5),如果不对供水量进行调节,管网压力的波动也会很大,容易出现管网失压或爆管事故。采用变频恒压供水控制后,当郫县用水量较小时,这时相应管道和泵出口压力均较大,变频恒压控制方式将会降低泵的频率,减小泵出水量,从而降低管网压力;反之亦然。这样,小时用水量变化较大也不会造成管网压力有较大的波动。经过长期运行实践,明了变频调速手段实现恒压供水不仅保证厂内自用高压水压力足够且稳定,而且保证了郫县供水的性。
2. 控制系统构成
整个恒压供水系统有两组变频泵,每组均由一台变频器和一台水泵组成;系统以PLC为控制,由PLC采集压力信号和输出控制变频泵的运行。控制系统构成如图1所示。
图1 控制系统构成图
PLC处理器选用的是Allen-Bradley公司的PLC-5型处理器,变频泵选用的是ABB公司的SAMI STAR系列的315F 660/690型的变频器和水泵。系统由两只量程为0~1.0Mpa的压力变送器分别检测两台水泵后的输水管道的压力,压力变送器将到的压力信号转换为4~20mA的电流信号,送到PLC子站的模拟量输入模板(1771-IFE),通过PLC的PID运算,由模拟量输出模板(1771-OFE)输出4~20mA的电流控制变频泵的运行。
3. 控制原理及功能实现
3.1 PLC控制系统简介
我厂采用Allen-Bradley公司的PLC-5型处理器通过DH+通讯方式构建了全厂PLC工业控制网络,通过DH+网络上的RSView工作站实现人机对话。RSView工作站是指运行人机图形界面软件(RSView32)的计算机工作平台,该工作站建在控制室,是实现生产现场无人值守和运行集中管理的调度。利用RSView32可以有效地对控制过程进行监视和控制,可以实现图形化的人机对话界面,模拟生产运行的流程,在模拟流程上加直观地实现生产流程的全自动运行监视、远程人工直接干预操作(如PID指令运行参数远程设定)、控制环节报警监视等功能。控制界面如图2。
图2 变频恒压供水系统控制图形界面(RSView工作站)
3.2 恒压供水的控制原理
SAMI STAR变频器具有REMOTE和LOCAL两种操作方式。LOCAL操作方式下,通过LOCAL START/STOP开关启停变频器,通过f REF LOCAL bbbbb0 输入端口的电位开关人工调节变频器工作频率;通过LOCAL/REMOTE输入点可以将变频器切换到REMOTE操作方式下,在REMOTE方式下,通过REMOTE START/STOP输入点进行PLC远程启停变频器,通过f REF REMOTE bbbbb0端口输入频率控制信号(百分比)控制变频器工作频率。根据供水量情况,我们把变频器的工作频率上限设定为水泵基频,即频率变化范围控制在0~50Hz,在此范围内水泵运行频率和定子相压成正比(及与变频器输入频率成正比),这使得变频器输入、水泵运行频率和泵的输出压力成较好的线形关系,可得到较好的控制效果。SAMI STAR变频器对用户开放的I/0接口位于TERMINAL BLOCK CARD上,主要使用的有:X11-1(REMOTE START/STOP);X11-4(LOCAL/REMOTE);X11-13/14(f REF REMOTE bbbbb0、4~20mA信号输入);X11-15/16(输出4~20mA变频器运行频率信号);X11-17/18(输出4~20mA变频泵运行电流信号)。变频器由PLC远程控制时,启动是由PLC向X11-4输出信号,使变频器切换到外部设备控制方式(REMOTE方式),再向X11-1输出信号,启动变频器。在恒压调节时,PLC处理器把检测到的压力信号作为反馈值,与PID运算的压力设定值(由调度人员根据情况在REView上设定)进行比较,再经过PID运算得到调节后的修正值,通过模拟量输出模板(1771-OFE)输出到X11-13/14,作为REMOTE方式下变频器的频率控制信号,由于该信号是相对变频器工作频率上限的百分比,所以变频器将输入信号进行内部运算后转为真实工作频率。
为了使三期变频恒压供水自动控制系统与全厂自动控制网络地结合起来,实现对恒压供水系统的运行情况和设备运行进行监视和远程控制,加地实现恒压供水,我们使用PLC进行PID运算和监控。PID闭环反馈控制原理如图3:
图3 闭环控制原理图
图4 PID流程图
PLC的PID运算调节通过该型处理器PID指令完成,通过设置各参数即可由PLC完成PID运算调节。PID程序段流程如图4。PID指令以相同的时间间隔周期性地执行,可采用计时器,定时中断或实时采样的等方法,此处选用了定时方法;PV是PID指令采样的压力控制反馈值,SP是PID指令的压力控制设定值,KP为PID的比例增益,KI为PID的积分增益,KD为PID的微分增益,这五个控制参数作为主要的PID参数参与控制,确定PID参数时要兼顾系统灵敏性和稳定性,由于我们恒压控制要求和设备的性能条件,参数设定强调稳定性(及KI),由于微分环节有放大噪声的特点,我们将KD尽量设置得较小;SWM为PID指令转为手动直接调频的开关,SO设定为PID指令的在手动控制输出方式时的输出值,当变频器从PID自控调节转为手动直接调频时,SO替代PID运算作为转换时的输出值,将SO设定为控制值就可实现无缝转换,减小变频器运行频率的震荡。DB为PID指令的死区设定值,输出出死区时PID指令通过自动运算限制输出出限定范围。
3.3 相关控制功能实现
为了防止运行时由于压力变送器不可预见的故障造成PLC的PID运算调节失实,从而造成管网压力失恒引发失压或爆管的严重事故。我们分别在1#和2#变频泵后输水管上安装压力变送器,可以同时测到出厂输水管线上的压力;在PLC程序上对压力信号进行了相应的处理,在程序中设置选择软开关,调度人员可以在RSView上将其中一台压力变送器的值设定为“控制反馈值”,另一台压力变送器的值则设为“参考反馈值”(见图2:变频恒压供水系统控制图形界面(RSView工作站));对1#压力和2#压力值进行比较,相差0.1Mpa时,判断为,其中一只压力变送器出现故障,变频器控制转换为远程直接手动调频控制(通过RSView设置运行)。压力变送器正常工作时,“控制反馈值”经过平均滤波处理后,分别比较压力报警上限和下限值,如果出控制范围,变频器控制转换为远程直接手动调频控制,否则“控制反馈值”作为PID调节的参数PV。
同时为了在就地手动控制实现在控制现场对变频泵进行开停控制和运行数据监视。我们在变频泵工作现场安装了A-B公司的PanelView图形工作终端,该工作终端提供图形交互界面和触摸输入方式,以从站的方式与PLC进行通信,进行数据和控制命令的交换,提供就地监控操作的通道。
4. 运行效果分析
4.1 有效保证郫县供水和我厂自用水压力稳定,提高我厂供水性
图5为数据库采集的2001年某日我厂恒压变频泵出水压力、频率变化以及郫县供水和自用水流量、管网压力数据关系图。
图5 变频恒压控制频率、压力、供水量关系图
从图中数据可看出郫县小时供水量变化很大,如果采用定速泵进行供水必然会导致高峰供水时段内管网供水压力不足,夜间用水量较小时管网压力过高,造成爆管现象。采用变频恒压控制后,变频器的频率随郫县用水量的变化而变化,及时调节我厂对郫县供水量,从而使郫县城区管网压力在一个较小的范围内变化(0.23-0.27Mpa)。另一方面,虽然我厂自用水秒变化不大,但由于我厂自用水和郫县供水为同一水泵加压后,分作两条支流,郫县用水量的变化必然也会导致自用水压力不稳定,采用恒压变频控制方式,基本克服了这种变化因素。从上图曲线也可看出,我厂自用水压力基本恒定不变。这样保证了我厂加氯水射器等重要设备的正常工作,保证了正常的工艺流程,从而保我厂出厂水水质,提高我厂供水的性。
4.2 节能
通过采用变频调速恒压控制,可在不同季节、全天不同时段内有效即时地调控水量,这样在用水量较低时,大大节约供水量,减少电耗。
在设定压力内跟随用水量供水,避免了传统供水方式的损耗,降低吨水消耗。
4.3 提高自动化水平
根据我厂建立自动控制系统的原则“分散控制、集中管理、现场无人值守”,变频恒压供水技术的应用提高了我厂自控系统的整体水平,真正作到了操作简便,现场无人职守,运行。
1、引言
近年来可编程序控制器(PLC)以及变频调速技术日益发展,性能价格比日益提高,并在机械、冶金、制造、化工、纺织等领域得以普及和应用。为满足温度、速度、流量等工艺变量的控制要求,常常要对这些模拟量进行控制,PLC模拟量控制模块的使用也日益广泛。
通常情况下,变频器的速度调节可采用键盘调节或电位器调节方式,但是,在速度要求根据工艺而变化时,仅利用上述两种方式则不能满足生产控制要求,因此,我们须利用PLC灵活编程及控制的功能,实现速度因工艺而变化,从而保证产品的合格率。
2、变频器简介
交流电动机的转速n公式为:
式中: f—频率;
p—对数;
s—转差率(0~3%或0~6%)。
由转速公式可见,改变三相异步电动机电源频率,可以改变旋转磁通势的同步转速,达到调速的目的。额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。因此变频调速方式,比改变对数p和转差率s两个参数简单得多。同时还具有很好的性价比、操作方便、机械特性较硬、静差率小、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。
3、PLC模拟量控制在变频调速的应用
PLC包括许多的特殊功能模块,而模拟量模块则是其中的一种。它包括数模转换模块和模数转换模块。例如数模转换模块可将一定的数字量转换成对应的模拟量(电压或电流)输出,这种转换具有较高的精度。
在设计一个控制系统或对一个已有的设备进行改造时,常常会需要对电机的速度进行控制,利用PLC的模拟量控制模块的输出来对变频器实现速度控制则是一个经济而又简便的方法。
下面以三菱FX2N系列PLC为例进行说明。同时选择FX2N-2DA模拟量模块作为对变频器进行速度控制的控制信号输出。如图1所示,控制系统采用具有两路模拟量输出的模块对两个变频器进行速度控制。、
在程序中:
1) 当M67、M68常闭触点以及Y002常开触点闭合时,通道1数字到模拟的转换开始执行;当M62、M557常闭触点以及Y003常开触点闭合时,通道2数字到模拟的转换开始执行。
2) 通道1
将保存个数字速度信号的D998赋予辅助继电器(M400~M415);
将数字速度信号的低8位(M400~M407)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b1=1;
使BFM#17的b1由1→0,执行通道1的速度信号D/A转换。
3) 通道2
将保存二个数字速度信号的D988赋予辅助继电器(M300~M315);
将数字速度信号的低8位(M300~M307)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b0=1;
使BFM#17的b0由1→0,执行通道2的速度信号D/A转换。
4) 程序中的K0为该数模转换模块的位置地址,在本控制系统中只用了一块模块,因此为K0,如由于工艺要求控制系统还要再增加一块模块,则新增模块在编程时只要将K0改为K1即可。
(5)变频器主要参数的设置
根据控制要求,设置变频器的运行模式为外部运行模式,运行频率为外部运行频率设定方式,Pr.79=2;模拟频率输入电压信号为0~5V,所以,Pr.73=0;其余参数根据电机功率、额定电压、负载等情况进行设定。
3.2 注意事项
(1) FX2N-2DA采用电压输出时,应将IOUT与COM短路;
(2) 速度控制信号应选用屏蔽线,配线安装时应与动力线分开。
4、结束语
上述控制在实际使用过程中运行良好,很好的将PLC易于编程与变频器结合起来,当然不同的可编程序控制器的编程和硬件配置方法也不同,比如罗克韦尔PLC在增加D/A模块时,只要在编程环境下的硬件配置中添加该模块即可。总之,充分利用PLC模拟量输出功能可以控制变频器从而控制设备的速度,满足生产的需要。
产品推荐