7
西门子PLC代理商/电源供应商
引言
在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的启停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,而PLC技术是解决上述问题的有效、便捷的工具,因此PLC在工业控制领域得到了广泛的应用。下面就PLC工业控制系统设计中的问题进行探讨。
2 PLC系统设备选型
PLC主要的目的是控制外部系统。这个系统可能是单个机器,机群或一个生产过程。不同型号的PLC有不同的适用范围。根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有余量而不浪费资源的机型(小、中、大形机器)。并且结合市场情况,考察PLC生产厂家的产品及其售后服务、技术支持、网络通信等综合情况,选定价格性能比较好的PLC机型。
目前市场上的PLC产品众多,国外有德国的SIEMENS;日本的 OMRON、MITSUBISHI、FUJI、Panasonic;美国的GE;韩国的LG等。国产有研华、研祥、合力时等。近几年,PLC产品的价格有较大的下降,其性价比越来越高。PLC 的选型应从以下几个方面入手。
2.1 确定PLC 控制系统的规模
依据工厂生产工艺流程和复杂程度确定系统规模的大小。可分为大、中、小三种规模。
小规模PLC控制系统:单机或者小规模生产过程,控制过程主要是条件、顺序控制,以开关量为主,并且I/O点数小于128 点。一般选用微型PLC,如SIEMENS S7-200等。
中等规模PLC控制系统:生产过程是复杂逻辑控制和闭环控制,I/O点数在128——512 点之间。应该选用具有模拟量控制、PID控制等功能的PLC,如SIEMENS S7-300等。
大规模PLC控制系统:生产过程是大规模过程控制、DCS系统和工厂自动化网络控制,I/O点数在512点以上。应该选用具有通信联网、智能控制、数据库、中断控制、函数运算的PLC,如SIEMENS S7-400等, 再和工业现场总线结合实现工厂工业网络的通讯和控制。
2.2 确定PLC I/O 点的类型
根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有软硬件资源余量而不浪费资源的机型(小、中、大型机器)。
根据PLC输出端所带的负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出,还是晶体管输出,或品闸管输出。不同的负载选用不同的输出方式,对系统的稳定运行是很重要的。
电磁阀的开闭、大电感负载、动作频率低的设备,PLC输出端采用继电器输出或者固态继电器输出;各种指示灯、变频器/数字直流调速器的启动/停止应采用晶体管输出。
2.3 确定PLC编程工具
(1) 一般的手持编程器编程。 手持编程器只能用商家规定语句表中的语句表(STL)编程。这种方式效率低,但对于系统容量小、用量小的产品比较适宜,具有体积小、价格低、易于现场调试等优点。 这主要用于微型PLC的编程。
(2) 图形编程器编程。图形编程器采用梯形图(LAD)编程,方便直观,一般的电气人员短期内就可应用自如,但该编程器价格较高,主要用于微型PLC和中档PLC。
(3) 计算机加PLC软件包编程 。这种方式是效率的一种方式,但大部分公司的PLC 开发软件包价格昂贵,并且该方式不易于现场调试,主要用于中PLC系统的硬件组态和软件编程。
3 PLC控制系统的设计
PLC 控制系统设计包括硬件设计和软件设计。
3.1 PLC控制系统的硬件设计
硬件设计是PLC控制系统的至关重要的一个环节,这关系着PLC控制系统运行的性、性、稳定性。主要包括输入和输出电路两部分。
(1) PLC控制系统的输入电路设计。PLC供电电源一般为AC85—240V,适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等);隔离变压器也可以采用双隔离技术,即变压器的初、次级线圈屏蔽层与初级电气中性点接大地,次级线圈屏蔽层接PLC 输入电路的地,以减小高低频脉冲干扰。
PLC输入电路电源一般应采用DC 24V, 同时其带负载时要注意容量,并作好防短路措施,这对系统供电和PLC至关重要,因为该电源的过载或短路都将影响PLC的运行,一般选用电源的容量为输入电路功率的两倍,PLC输入电路电源支路加装适宜的熔丝,防止短路。
(2) PLC控制系统的输出电路设计。依据生产工艺要求,各种指示灯、变频器/数字直流调速器的启动停止应采用晶体管输出,它适应于高频动作,并且响应时间短;如果PLC 系统输出频率为每分钟6 次以下,应继电器输出,采用这种方法,输出电路的设计简单,抗干扰和带负载能力强。
如果PLC输出带电磁线圈等感性负载,负载断电时会对PLC的输出造成浪涌电流的冲击,为此,对直流感性负载应在其旁边并接续流二管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。
当PLC扫描频率为10次/min 以下时,既可以采用继电器输出方式,也可以采用PLC输出驱动中间继电器或者固态继电器(SSR),再驱动负载。
对于两个重要输出量,不仅在PLC内部互锁,建议在PLC外部也进行硬件上的互锁,以加强PLC系统运行的性、性。
对于常见的AC220V交流开关类负载,例如交流接触器、电磁阀等,应该通过DC24V微小型中间继电器驱动,避免PLC的DO接点直接驱动,尽管PLC手册标称具有AC220V交流开关类负载驱动能力。
(3) PLC控制系统的抗干扰设计。随着工业自动化技术的日新月异的发展,晶闸管可控整流和变频调速装置使用日益广泛,这带来了交流电网的污染,也给控制系统带来了许多干扰问题,防干扰是PLC控制系统设计时考虑的问题。一般采用以下几种方式:
隔离:由于电网中的高频干扰主要是原副边绕组之间的分布电容耦合而成,所以建议采用1:1隔离变压器,并将中性点经电容接地。
屏蔽:一般采用金属外壳屏蔽,将PLC系统内置于金属柜之内。金属柜外壳接地,能起到良好的静电、磁场屏蔽作用,防止空间辐射干扰。
布线:强电动力线路、弱电信号线分开走线,并且要有一定的间隔;模拟信号传输线采用双绞线屏蔽电缆。
3.2 PLC 控制系统的软件设计
在进行硬件设计的同时可以着手软件的设计工作。软件设计的主要任务是根据控制要求将工艺流程图转换为梯形图,这是PLC应用的关键的问题,程序的编写是软件设计的具体表现。在控制工程的应用中,良好的软件设计思想是关键,的软件设计便于工程技术人员理解掌握、调试系统与日常系统维护。
(1) PLC控制系统的程序设计思想。由于生产过程控制要求的复杂程度不同,可将程序按结构形式分为基本程序和模块化程序。
基本程序:既可以作为立程序控制简单的生产工艺过程,也可以作为组合模块结构中的单元程序;依据计算机程序的设计思想,基本程序的结构方式只有三种:顺序结构、条件分支结构和循环结构。
模块化程序:把一个总的控制目标程序分成多个具有明确子任务的程序模块,分别编写和调试,后组合成一个完成总任务的完整程序。这种方法叫做模块化程序设计。我们建议经常采用这种程序设计思想,因为各模块具有相对立性,相互连接关系简单,程序易于调试修改。特别是用于复杂控制要求的生产过程。
(2) PLC控制系统的程序设计要点。PLC控制系统I/O分配,依据生产流水线从前至后,I/O点数由小到大;尽可能把一个系统、设备或部件的I/O信号集中编址,以利于维护。定时器、计数器要统一编号,不可重复使用同一编号,以确保PLC工作运行的性。
程序中大量使用的内部继电器或者中间标志位(不是I/O位),也要统一编号,进行分配。
在地址分配完成后,应列出I/O分配表和内部继电器或者中间标志位分配表。
彼此有关的输出器件,如电机的正/反转等,其输出应连续安排,如Q2.0/Q2.1等。
(3) PLC控制系统编程技巧。PLC程序设计的原则是逻辑关系简单明了,易于编程输入,少占内存,减少扫描时间,这是PLC 编程遵循的原则。下面介绍几点技巧。
PLC各种触点可以多次重复使用,用复杂的程序来减少触点使用次数。
同一个继电器线圈在同一个程序中使用两次称为双线圈输出,双线圈输出容易引起误动作,在程序中尽量要避免线圈重复使用。如果是双线圈输出,可以采用置位和复位操作(以S7-300为例如SQ4.0或者 RQ4.0)。
如果要使PLC多个输出为固定值 1 (常闭),可以采用字传送指令完成,例如 Q2.0、Q2.3、Q2.5、Q2.7同时都为1,可以使用一条指令将十六进制的数据0A9H直接传送QW2即可。
对于非重要设备,可以通过硬件上多个触点串联后再接入PLC输入端,或者通过PLC编程来减少I/O点数,节约资源。例如:我们使用一个按钮来控制设备的启动/停止,就可以采用二分频来实现。
模块化编程思想的应用:我们可以把正反自锁互锁转程序封装成为一个模块,正反转点动封装成为一个模块,在PLC程序中我们可以重复调用该模块,不但减少编程量,而且减少内存占用量,有利于大型PLC 程序的编制。
4 PLC控制系统程序的调试
PLC控制系统程序的调试一般包括I/O端子测试和系统调试两部分内容,良好的调试步骤有利于加速总装调试的过程。
4.1 I/O端子测试
用手动开关暂时代替现场输入信号,以手动方式逐一对PLC输入端子进行检查、验证,PLC输入端子的指示灯点亮,表示正常;反之,应检查接线或者是I/O点坏。
我们可以编写一个小程序,在输出电源良好的情况下,检查所有PLC输出端子指示灯是否全亮。PLC输入端子的指示灯点亮,表示正常。反之,应检查接线或者是I/O点坏。
4.2 系统调试
系统调试应按控制要求将电源、外部电路与输入输出端子连接好,然后装载程序于PLC中,运行PLC进行调试。将PLC与现场设备连接。在正式调试前检查整个PLC控制系统,包括电源、接地线、设备连接线、I/O连线等。在保证整个硬件连接正确无误的情况下即可送电。
把PLC控制单元的工作方式设置为“RUN”开始运行。反复调试可能出现的各种问题。在调试过程中也可以根据实际需求对硬件作适当以配合软件的调试。应保持足够长的运行时间使问题充分暴露并加以纠正。调试中多数是控制程序问题。一般分以下几步进行:
(1) 对每一个现场信号和控制量做单测试;
(2) 检查硬件/修改程序;
(3) 对现场信号和控制量做综合测试;
(4) 带设备调试;
(5) 调试结束。
5 结束语
PLC控制系统的设计是一个步骤有序的系统工程,要想做到熟练自如,需要反复设计和实践。本文是PLC控制系统的设计和实践经验的总结,在实际应用中具有良好的效果
0 引言
组合机床是针对某些特定工件,按特定工序进行批量加工的设备。随着PLC的广泛应用和机床电控技术的不断发展,利用PLC实现对组合机床的自动控制,无疑是今后的发展方向,而针对这种控制的PLC程序设计也显得尤为重要。这种控制属于顺序逻辑控制,有多种编程方法与语言可供选择,编程中也有一些技巧与规律可循。下面较为详细的介绍一组合机床自动控制的PLC程序设计实例。
1 实例工作过程及程序设计思路
本文给出的实例是一台立卧三面镗床,有右头、左头及上头三个工作头,有自动循环(三头同时加工)和单头调整四种不同工况。三头同时加工时,一个自动工作循环过程如图1所示。其特点是多头同时加工和多工步,体现在控制要求上是:工步之间转换条件较复杂,存在并行同步问题,记忆、连锁等问题也较多。鉴于此,应采用顺序功能流程图的程序设计方法:根据对工作过程的分析对各步、转换条件及路径进行定义,确定各步的动作,然后按照控制要求,运用指令对各步和转换进行编程。
步的定义可由顺序功能流程图描述,图2所示为本例主功能流程图。它从功能入手,以功能为主线,将生产过程分解为若干个立的连续阶段(步) 。
分解的各步可以是一个实际的顺序步,例如步1,对应的动作是起动主泵电机,也可以是生产过程的一个阶段,例如步2为自动工作过程,其功能流程图见图3。
从这两个功能流程图可以看到,它将各步的操作、转换条件以及步的推进过程简单明了地显示出来了,并体现出了具有单序列、选择序列、并行序列几种基本结构。例如步25至步27是单序列,实现了多工序的顺序工作;步12、步13、步14及步15构成了四分支选择序列结构,可实现三头同时加工、右头调整、上头调整、左头调整四种工况的选择;而步28至步30、步31至步34、步35至步38则形成了三个并行的分支,实现的是三头同时加工过程;步21、步22与步23、步24间也是并行关系,实现了工件上位降中位与主轴定位两个工序并行工作。该两个并行的过程间有同步问题,即步21 (工件上位降中位)与步23 (主轴定位)同时开始,但不同时结束,需要用并行序列的合并来同步(等待两个动作均结束) ,使之同时转入步25。三头同时加工时也有此问题。在顺序功能流程图的描述中,注意要说明各步间的转换条件、各步对应的命令与动作及相应运行状态。
2 程序实现方法
接下来的二步则需要用某种编程语言的指令对上述功能流程图进行编程,以实现其中的功能和操作。
目前已有提供直接功能流程图编程的PLC,但对于不具有该编程语言的PLC,可采用功能流程图编程的方法,这里所说的是采用梯形图、指令表等常见的编程语言实现编程的方法。根据功能流程图的描述,可将该复杂的结构分解为单序列、选择序列、并行序列几种基本环节,找出这些基本环节各自的规律、编程规则,化整为零分块编程。这样程序为结构化模块形式,编程的思路清楚,程序设计为规范。各种基本环节的程序实现可采用通用逻辑指令、置位与复位指令或移位寄存器,这几种实现方法有一个共性就是要考虑如何一步、保持该步、又如何停止一步,如果用步进指令来实现,这些问题就考虑,程序也简洁的多。下面给出运用步进指令实现的对图2、图3的编程,并就关键问题进行分析。
图4为主功能流程图的梯形图,图5为自动工作功能流程图的梯形图(只给出了一部分) 。先看步25到步27的单序列,其各步的控制规律为:若某步为活动时,则当它与下步间的转换条件一旦成立,该步即变为非活动步,而下一步成为活动步。当步为活动时,相应的动作和命令才执行,非活动步相应的动作和命令不被执行。这样步25是活动步时,会发右头快进指令(使Y442得电) ,直到快进到位(行程开关SQ4受压,转换条件X412满足) ,步25成为非活动步,右头停止快进(使Y442失电) ,步26成为活动步,工件开始从中位降下位(使Y447、Y552得电) ⋯⋯。选择序列各步的控制规律为:分支时,若一个前级步是活动的,则当它与多个选择后续步之间的哪个转换条件满足,哪个后续步就成为活动步,而前级步成为非活动步。合并时,若多个选择前级步之一是活动的,当该活动步与一个后续步之间的转换条件满足,则后续步就成为活动步,前级步成为非活动步。实例中步11为活动步时,四个分支的转换条件哪个成立则哪个分支步就会成为活动步。如果按动自动加工起动按钮,使转换条件X403满足,则会进入步12,开始自动加工过程,直到转换条件X424满足,分支合并循环到初始步,开始一个新的轮回。按照控制要求,整个加工过程中主泵电机需要一直处于运转状态,所以在步11中使用了置位Y430指令,而在步11成为非活动步后, Y430并不失电。并行序列各步的控制规律为:分支时,若一个前级步是活动的,则当转换条件满足,则多个并行的后续步同时成为活动步,而前级步成为非活动步。合并时,若多个并行的前级步均是活动的,当转换条件满足,则一个后续步成为活动步,多个并行的前级步同步成为非活动的。实例中步20为活动步时,执行装件指令,装件完毕,转换条件X425满足,步21、步23同时成为活动步,即停止装件,开始工件上位降中位和主轴定位动作。由于这两个动作不同时结束,因此插入了两个没有动作和命令的空步——步22、步24 (梯形图中相应的步进接点没有连接输出继电器) ,用于分别停止两个前级步,结束相应的动作,并等待两个动作均停止的时刻,一旦时刻来到(条件X410·X427满足) ,两并行步合并转换到步25。三头同时加工时,也有类似的同步问题,在此不再赘述。
本系统的投用使供气波动对气举系统产量的影响降低到了小,保证了大部分气举井(特别是高产井)的正常生产,解决了长期困扰气举供气系统波动频繁给油田生产带来的难题,投入产出比达1:3.1,经济效益非常可观。该技术不仅在气举采油方面具有深远的意义,在油田注水乃至其它领域也具有广泛的借鉴意义。
片梭织机的换纬是通过控制挑纬器动作来实现的。新型片梭织机由电脑控制电磁铁,进而由电磁铁驱动挑纬器工作,可实现任意比例混纬。PU130型片梭织机通过机械带动两个祧纬器工作,只能织制1:1比例混纬产品。为适应市场对多比例混纬产品的需求,针对PU130片梭织机特点,我们经过精心设计,积攻关,研制出适合PU130进口片梭织机特点的自动混纬系统。系统以气源为动力,由电磁阀控制气缸、再由气缸活塞带动挑纬器按工艺要求动作,而电磁阀由PLC可编程控制器按程序来控制,改变程序很容易实现多比例自动混纬。该系统简单、实用、性能稳定,投资少。
1问题提出
由瑞士生产的PU130型片梭织机,属于二十世纪八十年代的产品。该设备九十年代初引进时性能较为,主要生产 7*6、7*7等厚重常规品种牛仔布,产品质量稳定均能达到客户的满意,在生产中发挥着重要作用。也给企业带来了新的产品市场,创造了良好的经济效益。但是,随着社会经济的不断发展,社会需求越来越高,牛仔布品种越来越多样化。老产品已不适应人们的需求,取而代之的是不同支数、不同颜色、不同比例的多比例混纬牛仔布新产品。而且需求量越来越大,占据了市场的主流。PU130型片梭织机只能单一比例混纬,产品品种单一,严重制约了新产品开发。虽然PU130型片梭织机已经新换代,但是,新设备的自动换纬系统复杂昂贵,再次引进换新设备已不现实。
PU130片梭织机是二棉分公司的设备之一,在织造车间所占比重较大,对企业生产经营产生着举足轻重的影响,随着新型进口设备自动化程度的不断提高,该设备的不足也愈显。另外,该设备在经过十多年使用后,元器件老化,故障率增加,再加上该型号进口设备已经新换代,配件价格昂贵而且难以买到,致使维修难度增大、维修费用增高,常常因此而影响生产和产品质量。品种调整时改机时间长,投入资金愈来愈多。因此,在PU130片梭织机上实现多比例混纬,继续充分发挥该设备的作用就成了摆在我们面前的重大课题。
2研制方案的确定
PU130型片梭织机有两个挑纬器,每个挑纬器带动一根纬纱,由机械带动依次轮流工作,达到1 :1混纬。若要实现n :1混纬,则使其中一个挑纬器连续工作n次后,另一个再工作,从而实现多比例混纬的目的。通过调研和反复研究、论证,形成设计思路如下:
一、采用气源为动力,带动挑纬器工作。气源由电磁阀控制,而电磁阀由可编程控制器按程序来控制,从而控制挑纬器动作,实现多比例自动混纬。
二、通过一定程序完成停车、断纬、或其他原因造成的停车补纬工作。
三、可编程控制器控制的电磁阀动作要与织机的运动协调一致(同步)。
四、由于挑纬器每分钟要完成300个动作,要求选用的所有元件质量稳定且能满足高频率、长期工作的要求。
3系统组成及工作原理
3.1系统组成
空气压缩机:作为动力源输源驱动汽缸进而带动挑纬器工作,气压0.7—0.85MPa。(企业已有且正在用于生产,不需单购置)
可编程控制器:选用日本三菱FX1n—MR24型,其具有性能稳定,动作、价格低等特点。传感器选用频率在50HZ以上NPN型,其工作电压与所选用可编程控制器提供电压一致(24V)。
电磁阀:电磁阀的选用要满足动作频率高、响应速度快的要求,由DC12V或24V电源供电。经过多次试验,后选用闽台产型号为T180—4E1—PSL的电磁阀。
汽 缸:气缸要求具有动作频率高、润滑好、耐摩擦、温升低等特点,由生产厂特殊加工。自行设计制造了连杆接头、支架接头等系列部件。
挑纬器:采用原机上带的。
3.2工作原理:以气源为动力,驱动挑纬器按工艺要求工作,通过PLC控制而实现多比例自动混纬。系统工作过程:由电磁阀控制进入气缸的两个阀门,进入汽缸的空气驱动气缸活塞运动,气缸活塞通过连杆接头带动挑纬器动作,通过PLC可编程控制器按程序来控制电磁阀,进而控制挑纬器按要求动作,达到不同比例混纬的目的。
4系统调试及运行参数的确定
4.1 把可编程控制器开关打到运行状态,然后短接一下X2---- COM,启动布机,此时,应按2 :1工艺运行。依此类推,短接一下X3---COM, 然后启动织机,应按3 :1工艺运行。依次有:X4对应4 :1比例混纬;X5对应5 :1比例混纬;X6对应6 :1比例混纬。4.2使布机运行在6 :1状态,在运行到单纬位时停机,由值车工抽出后一纬,然后开车,或者在运行到单纬时,挑断纬纱(不须抽纬纱),然后开车,布匹上该单元纬纱应不缺失。
4.3使布机运行在6 :1状态,且在织多纬时停机或挑断纬纱,由值车工抽掉后一纬,然后再开机,多纬数应该是6根。在织多纬情况下,不论何原因停车,可编程控制器输出Y0应闭合,此时,电磁阀吸合(工作状态)带动气缸工作。
4.4工艺参数设定:D128值为工艺要求值,在运行前由常数K设定初始值。因为K值小于20n毫秒时,织多纬时容易少纬;而K值大于1秒时,又容易造成多纬。所以,定时器T201的K值设定应大于20n毫秒的2—3倍,而小于1秒。例如:表1中是2 :1比例混纬程序,T201设置为320毫秒(大于20*n=20*2=40毫秒,小于1秒)。
表1
LD X2 LD X0 ANI X1
MOV K2 OUT C16 D128 OUT Y10
D128 LD C16 LD Y10
LD X3 OR Y0 ANI X1
MOV K3 ANI Y1 OUT T201 K320
D128 OUT Y0 LDP T201
LD X14 LD X1 DECP C16
MOV K4 OUT C17 K1 END
D128 RST C16
LD X5 LD C17
MOV K5 OUT Y1
D128 LD Y1
LD X6 RST C17
MOV K6 LD X0
D128 OR Y10
5结语
基于PLC的PU130进口片梭织机多比例自动混纬系统功能完善,结构合理,性能,使用方便,达到了设计要求。我们的体会是:
1、对设备、操作、工艺进行详细的了解和摸底,特别是对设备的控制系统存在的问题及其对生产造成的影响和混纬牛仔布生产工艺的特点等进行深入的分析和市场调研是研制成功的基础。熟悉设备的工作原理、机构和性能,在充分利用原有设备特点的基础上,控制挑纬器的动作是实现多比例混纬的关键。
2、自动混纬机构动作单一,频率较高。所以,可编程控制器、动力源、电磁阀、汽缸等器件的频率特性、运行稳定性和寿命是多比例混纬系统稳定运行的保证。试生产初期,由于气缸选型不当,缸体生热,不利长期工作,易损坏。火塞杆受力不平衡,易折断。经过多种型号气缸的比较试用,同时,研究改进与气缸相联的连杆接头的结构,使运行保持平稳,满足了工艺的要求。
3、新型织机的混纬系统由电脑控制,功能、性能稳定、效果好,但系统复杂价格高。根据PU130进口片梭织机的特点,采用可编程控制器控制电磁阀,电磁阀控制气缸进而驱动挑纬器工作,实现多比例自动混纬的设计思想清晰明确,系统简单、实用、针对性强,且投资少,具有良好的推广应用前景。
PLC:OMRON多功能一体机CP1H(模拟量型)
优势:
内置四路100kHz的高速脉冲输出,控制伺服系统,实现螺杆充填的定位与速度控制,另外添加定位模块,为客户节省成本
可同时添加RS232、RS422/485两种串口,且与OMRON本厂的变频器通讯可直接调用Smart FB(功能块),省去了客户繁琐的通讯程序编写步骤
支持多种中断功能,可将一些实时性较高的程序放入中断程序使其不受整个程序循环扫描周期的影响
备有丰富的指令用语,可进行PID运算、浮点运算,可根据称重传感器的检测数据进行PID运算,控制充填量
内置4入2出模拟量,精度可达1/12000,响应速度仅为8ms,增加任何扩展模块
HMI:OMRON的的彩色触摸屏NS系列
优势:
具备丰富的画面种类
与欧姆龙控制器之间具有强的兼容性
支持41个国家的语言,一个画面多可显示16国语言
支持多达1000种配方功能
Servo:预充填电机为W系列伺服系统,填电机和喂罐电机可选配Smartstep Z系列伺服系统
优势:
W系列伺服控制牵引,具有定位时间短,定位精度高的特点。可以通过数据线与OMRON的伺服软件Cx-Driver相连,可实现参数的快速设置以及伺服运行时性能的实时监控,帮助客户在故障产生时快速准确地找到问题所在
Z系列伺服系统参数设定简单,需要设定的内容和步进马达大致相同。与步进马达相比,Z系列伺服具有高的转矩,全部的调整都是通过伺服驱动器自动完成
Inverter:高功能紧凑型变频器3G3MZ系列
优势:
支持开环矢量控制和V/f控制,可以确保电机在较低的转速能够高转矩运行,有150%的过负载能力
内置了Modbus协议通信(RS485接口),还可以选择现场总线卡适配DeviceNet、Profibus-DP、CANopen等多种高速通信
内置EMI噪声滤波器,可以有效降低3G3MZ产生的电磁干扰,达到Class B等级
欧姆龙系统方案实现性能
精度:包装重量≤500g偏差≤±1.5g,500-1000g偏差≤±2.5g,>1000g偏差≤±4g
速度:包装速度25-55罐/min
1、 引言
触摸屏是一种新型可编程控制终端,是新一代高科技人机界面产品,适用于现场控制,性高,编程简单,使用维护方便。在工艺参数较多又需要人机交互时使用触摸屏,可使整个生产的自动化控制的功能得到大大的加强。
PLC有着运算速度高、指令丰富、功能强大、性高、使用方便、编程灵活、抗干扰能力强等特点。近几年,随着科学技术的不断进步,各行业对其生产设备和系统的自动化程度要求越来越高,采用现代自动化控制技术对减轻劳动强度、优化生产工艺、提高劳动生产率和降低生产成本起着很重要的作用。触摸屏结合PLC在闭环控制的变频节能系统中的应用是一种自动控制的趋势。
触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。一般PLC结合触摸屏的闭环调节的变频节能系统如下图所示。
2、 闭环控制的变频节能系统用途很广,各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。下面列举一些:
空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。
恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等
锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、DCS或多冲量控制系统给出。
汽轮机:循环泵、凝结泵等,其控制调节预处理信号由汽轮机自动控制系统及DCS给出。
纯水处理系统:软化水泵、增压泵等。
洁净室:增压风机、FFU等等。
3、 整个闭环控制的变频节能系统的组成设备及其作用:
(1)PLC选用SIEMENS公司的S7-200系列:由CPU224XP、DI/DO模块、AI/AO模块组成。PLC作为控制单元,是整个系统的控制。其主要的作用要体现以下几方面:
①完成对系统各种数据的采集以及数字量与模拟量的相互转换。
②完成对整个系统的逻辑控制及PID调节的运算。
③向触摸屏提供所及处理的数据,并执行触摸屏发出的各种指令。
④将PID运算的数据转换成模拟信号,作为调节变频器的输出频率的控制信号。
⑤通过通信电缆及USS4协议完成对变频器内部参数读写及控制。
(2)触摸屏采用SIEMENS公司MP370: 其主要作用如下:
①可实时显示设备和系统的运行状态。
②通过触摸向PLC发出指令和数据,再通过PLC完成对系统或设备的控制。
③可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能加强大。
(3)变频器:采用SIEMENS公司440系列,通过USS4协议可由触摸屏通过PLC设置其内部的部分参数,根据PLC发送过来的数据(模拟量)值调节水泵或风机的转速,并将其内部运行参数反馈到PLC。
(4)压力、温度等传感器:将被控制系统(水系统或风系统)的实际参数值转变成电信号上传至PLC。
(5)电气元件:给PLC、触摸屏、变频器及传感器等供电,完成各种操作及驱动等。
4、 触摸屏画面设计
触摸屏画面由ProTool等软件进行设计,然后先通过编程电脑调试,合格后再下载到触摸屏。触摸屏画面总数应在其存储空间允许的范围内,各画面之间尽量做到可相互及强制切换。
(1)主画面的设计
一般的,可用欢迎画面或被控系统的主系统画面作为主画面,该画面可进入到各分画面。各分画面均能一步返回主画面。若是将被控主系统画面作为主画面,则应在画面中显示被控系统的一些住要参数,以便在此画面上对整个被控系统有大致的了结。
(2)控制画面的设计
该种画面主要用来控制被控设备的启停及显示变频器内部的参数,也可将变频器参数的设定做在其中。该种画面的数量在触摸屏画面中占的多,其具体画面数量由实际被控设备决定。
(3)参数设置页面的设计
该画面主要是对变频器的内部参数进行设定,同时还应显示参数设定完成的情况,实际制做时还应考虑加密的问题。
(4)实时趋势页面的设计
该画面住要是以曲线记录的形式来显示被控值、变频器的主要工作参数(如输出频率)等的实时状态。
(5)信息记录页面的设计
该画面主要是记录可能出现的设备损坏、过载、数值范围和系统急停等故障。另外该画面还可记录各设备启停操作,作为凭证。
(6) 节能画面的设计
该画面主要是记录和显示变频器的累积用电数及实时节电状态,以便向用户展示变频节能的好处,也可用来与其它的节电测量作比较。
5、 PLC程序设计
PLC程序由S7-200编程软件进行设计,然后通过编程电脑下载到PLC进行联机调试,合格后即可使用。PLC在编程前应先对各功能程序段的进行规划,以免重复使用同一,造成误动。
(1)逻辑功能的设计
这部分程序主要是完成各变频器、水泵(或风机)的启动停止、联动、联锁及自动投切等等功能,一般在离线状态下就能完成软件逻辑功能的测试。
(2)PID功能的设计
通过S7-200中的PID向导可完成PID调节程序,具体应用时需根据实际被控设备及采样设备决定其配置。
(3)采样程序的设计
采样元件使用标准配置时,应注意采样A/D转换后的具体数据是否与PID及显示等程序配套,实际制做时还应考虑采样是多路且相关联的情况。
(4)PLC与变频器通信程序的设计
SIEMENS S7-200PLC与SIEMENS 430等变频器的通信一般使用USS4协议程序来完成,该程序的主要目的是监控变频器的实时运行状态。
(5)其它辅助程序的设计
PLC程序在实际编程过程中,需考虑对一些程序进行修补,尽量减少程序漏洞,反复推敲,不断的总结完善。
结束语
在闭环控制的变频节能系统中采用触摸屏可以使用户简单直观监控整个空调变频节能系统及与其相关联的设备和系统,提高了整个被控系统以及企业的自动化程度和硬件档次。随着微电脑技术的不断发展,触摸屏本身的成本也在不断的降低,再与PLC在系统中使用,实现了整个被控系统自动化程度的质的飞跃,这必将使触摸屏与PLC被多的应用在未来的各种生产系统中,并成为自动化控制发展的一个亮点。