北京西门子中国一级代理商触摸屏供应商
  • 北京西门子中国一级代理商触摸屏供应商
  • 北京西门子中国一级代理商触摸屏供应商
  • 北京西门子中国一级代理商触摸屏供应商

产品描述

产品规格模块式包装说明全新

北京西门子中国一级代理商触摸屏供应商

1 引言 

作为可再生能源的重要分支,太阳能以其清洁,相对便利的使用也得到了飞速发展,其中的硅材料太阳能电池在近几年的发展尤为。硅片清洗机是硅材料太阳能电池生产过程中的重要设备,通过清洗机对原料硅片以及半成品电池的清洗保证了终产品的性能稳定和优良的质量。作为一种高度智能并且功能多样的设备,plc配合上位机的控制方式就成为这类设备的。 

2 系统组成及功能 

整个太阳能电池的生产是一个十分复杂的工艺过程,即使清洗工艺也需根据工序、产品的区别存在多种不同配方。同时作为工业化连续生产和产品生产状态连续传递的需要,硅片清洗机应准备足够的软硬接口与erp系统和前后工序设备进行数据通讯以保证生产状态的连续性。 

硅片清洗机的控制大致分为4部分: 

·机械手动作控制 

·清洗槽水温控制 

·清洗槽工艺控制 

·药品定量添加控制 

所有的工艺参数和状态记录全部存储于上位机,上位机可以对plc进行工艺参数的上传下载控制;并可以通过工业以太网接受上级设备传送的硅片相关产品编号,工艺标准,工艺配方等多种信息,同时将产品的相关信息传送至下道工序和erp系统。plc通过profibus上的外围模块进行模拟量、数字量数据的采集和相关执行器件的工作控制。 

3 系统网络结构 

3.1系统的组成 

系统由上位计算机wincc、s7-400 plc控制器、外部i/o链路组成。wincc和s7-300之间通过industrial ethernet网络连接,外部i/o、伺服驱动器、化学药品流量仪表通过profibus总线进行连接。s7-400通过编程软件step 7进行编程和机架模块及profibus总线网络的组态配置。 

系统结构图如图1所示。 

 
图1 系统结构图

3.2控制系统的特点 

安装有wincc软件的scada(supervisory control and data acquisition:数据采集监控系统)上位机通过工业以太网和plc(cpu-416-2dp)进行连接,利用工业以太网的高速特性将大量的设备实时数据从plc中读取,同时在生产的任何时刻都可以高速稳定的依据操作员的操作进行工艺配方的重新下载。具有大量数据的多个工艺配方存储在上位机的硬盘中,其数量只取决于pc机硬盘的内存空间,任何时刻plc只运行的工艺配方。这样可以大大节省plc的内存空间。各种设备的实时状态通过高速以太网从plc及时地传回上位机,通过wincc的报表系统将各种数据分类存档,供erp及下游下设备进行访问。plc通过profibus的各种外设i/o、伺服驱动器、流量计收集各种设备状态并对设备进行控制。 

(1)控制器 

系统使用的plc控制器为s7-400系列的cpu 416-2dp,cpu 416-2dp具有2.8mb的大容量运算内存,指令执行周期0.04us,大寻址空间16kb,其背板k总线提供了高速。强大的自诊断功能可以帮助现场调试的找到故障点并及时解决故障,通过扩展ip功能模块cp-443-1,cpu 416-2dp实现了工业以太网接口功能,使系统的实时通讯能力大大加强。 

(2)i/o模块 

系统并未选用西门子公司的分布式i/o模块,而是选择了德国倍福公司的分布式i/o模块,主要原因是同样点数的分布式系统,倍福公司的现场总线端子具有紧凑的布局和强大的功能。 

通过现场耦合器的一次简单运算可以帮助cpu完成一些基本的数学、逻辑运算,这样大大减轻了处理器的运算量,使系统的反应速度大大提高。其总线端子对模拟量的处理也有其闪光之处,强大的故障诊断功能,短线保护的判断,系统运行的稳定性都是选择其作为现场基础总线端子的原因。 

(3)上位机系统 

系统上位机scada界面软件采用西门子的wincc系统软件,此软件为西门子公司开发的基于bbbbbbs的上位机软件,用于开发和运行人机界面的应用程序。scada系统用来显示输送系统状态/报警信息。操作员可以凭此监视和控制设备的运行。 

scada系统经由industrial ethernet网络经由cp-443-1和cpu-416-2dp交换系统信息。scada 系统主动从plc信息,而plc是被动的,也就是说,当一个事件产生时,plc不会主动的发送信息到scada系统。所以,scada系统利用它本身的软件功能来实现事件信息记录和报警功能。 

(4)编程及组态软件 

cpu 416-2dp控制器编程采用step 7编程软件包,具有完善的数据处理、易于使用的i/o寻址方法、自由灵活的程序编辑环境、图形化的控制管理器及i/o组态对话框。 

3.3 系统网络设置 

系统所使用的profisbus是一个实时的现场总线控制网络,用于高速传送实时的i/o数据和控制指令,profisbus是不依赖生产厂家的、开放式的现场总线,各种各样的自动化设备均可通过同样的接换息,适用于传输中小量的数据。其物理传输介质可以是屏蔽双绞线、光纤或无线传输。而工业以太网是为工业应用专门设计的,而且已经广泛的应用于生产和过程自动化,适用于大量的和长距离通信。其物理传输介质可以是同轴光缆、双绞线、光纤或无线通信。西门子工业以太网可以将控制网络无缝集成到管理网络和互联网。本例就是如此。 

通过西门子step 7的netpro网络组态软件进行profibus现场总线的组态配置,通过被组态器件厂家的gsd说明文件可以很方便的将其进行组态,经过简单的参数设置就可以完成系统的组态。在实际编程中设计人员可以将伺服驱动器、远端阀岛、流量计的参数可控制指令当作简单的数字量、模拟量进行编程,大大的简化了设计人员的劳动强的,缩短了设计周期。 

上位机的网络组态通过wincc和西门子公司的simaticnet软件实现对industrialnet支持,通过固定ip地址对plc,erp客户机上、下游几台客户机等ip站点的访问。和相关客户机归档数据的传输通过opc控件的使用实现,这大大减轻了程序员编程的时间;通过wincc自定义的通讯协议及外部变量实现同plc的实时通讯。 

4 控制系统工作描述 

上游设备在载片篮随传送带传送至清洗机上料台后,其上位机会将相关工艺选项号,加工号,批号等基本信息通过工业以太网实时传送给清洗机的上位机,清洗机上位机通过工艺选项号从硬盘数据库中调出相应配方并将其通过工业以太网传送至plc。 

plc在接到新的配方并进行确认后进行与设工艺流程。设备分为多种清洗槽,每个槽又可以实现一个或多个清洗功能,其工作顺序由配方决定,在清洗槽中的水温按照预设的配方工艺进行加温并保持,其pid控制使用西门子系统pid功能块实现。在清洗过程中水流的循环流速是通过水泵的变频控制器实现的,变频控制器的输出频率由plc按照配方要求运算后,通过profibus总线传送,变频器的状态和实际输出频率通过plc的系统功能块进行定期读取。机械手的位移是通过festo公司提供的s7功能块运算控制,控制方法是位置控制,通过将各槽的装、卸载位置通过相应功能的运算后传送给伺服控制器控制伺服电机运转,在程序里对机械手的状态进行控制和监视。反应时间、所使用的配方、工艺选项号、工号、批号通过opc模块传送给相关客户机。整个控制协调流畅,从而完成高度的自动化任务。


冷媒水是工厂公用工程的基本系统。基于plc和变频器的冷媒水压力控制系统具有自动化程度高、节能、卫生、维护方便等优点;采用frofibus总线技术,扩展性高;上位计算机控制系统具有过程画面动态显示、流程管理及打印等功能。 

2 系统原理设计 

2.1 系统总体 

(1) 目标设计 

系统设计的目标是在生产岗位冷媒用水需求变化的情况下,使用plc自动控制技术保持管网供水压力稳定,以达到节能减排,减的目标。 

(2) 方案设计 

每台冷冻机配有2台泵,正常运行时其中任一台运行于调速状态,而另一台泵备用,也可随时投入状态运行。两台泵的运行状态的切换采用手动方式,并要求两台泵互锁,不能同时投入运行。为使各泵平均工作时间相同,需要设置定时换泵功能。设定定时换泵功能后,当一台泵连续工作时间过设定值后,且备有泵处于“休息”状态,则系统提示换泵,以保证各台水泵运行时间均等,延长水泵使用寿命。当变频器发生故障时,能够自动转换至工频继续运行,以确保供水不间断。 

(3) 功能设计 

系统具备报警功能、实时监控和数据存储等功能。报警显示包括越限报警和故障报警。当预置监视的模拟量过所规定的界限值或开关量状态跳至报警位,即产生越限报警。当预置监视的设备或工艺过程发生故障,控制系统发生故障即产生故障报警。一旦发生报警事件,报警信号上传上位机,同时接入蜂鸣器进行报警,报警记录显示不同的颜色。上位工控机对各水泵的开启、关闭或故障等实时状态,以及温度、出口压力、调节阀开度和水泵转速等实时数据进行存储,并可进行快速报表查询及打印。 

2.2 系统组成 

本系统设计包括上位机、就地触摸屏和下位机三部分。上位机显示工艺流程显示图、参数成组显示图、设备运行状态显示、动态显示冷媒水的温度、压力和水泵转速等数据。同时具有高速历史数据的存储和查询、报警等功能。就地触摸屏上也可以动态的显示冷媒水的温度、压力和水泵转速等数据。下位机plc实现冷媒水自动控制过程。 

下位机系统采用西门子s-7 200 plc、abb变频器、压力传感器、温度传感器、模拟调节阀门及其他控制设备组成。plc控制部分,因系统有6个模拟量输入,4个模拟量输出,需使用扩展单元,所以选用主机为cpu224plc一台,加上两台模拟量输出模块em232,再扩展一个模拟量i/o模块em235。采用em277 frofibus-dp 模块与上位机进行通讯[1]。该模块用于接受上位机指令并上传报警信号。 

2.3 控制原理 

系统采用两路pid闭环控制,根据压力表测得的数据分别调整比例阀和水泵转速,保岗位上冷媒水压力稳定,并使整个系统达到节能。系统原理框图如图1所示。

 
图1 系统原理图

在冷冻机开启运行时,控制系统控制冷媒水循环泵按照恒流量,此时水泵转速置为大,压力传感器管网压力,输出4-20ma的电流信号到plc。该压力反馈信号与压力给定信号经模糊pid控制程序计算,输出控制信号给模拟调节阀。当压力不足时,减小模拟调节阀的开度,减少冷媒水回流,从而提高出水压力;反之则增大模拟调节阀开度,增加冷媒水回流,降低出口压力。当冷冻机停止运行即冷媒水温度达到设定温度时,控制系统自动控制冷媒水泵切换到变流量恒压。此时模拟调节阀关闭,压力反馈信号与压力给定信号经plc内部另一路模糊pid控制程序计算,输出一个转速控制信号给变频器。当压力不足时,变频器增大输出频率,水泵转速加快,供水量增加,迫使出口压力上升。反之水泵转速减慢,供水量减小,出口压力下降,从而保证冷媒水压力稳定。该系统保持出口压力稳定在0.4mpa,从而保证冷冻机的工作效率。压力调节精度为设定值的±5%,即±0.02mpa,并能在0.5-2秒内变化的压力恢复正常。 

3 冷媒水温度模糊pid控制器 

3.1 模糊pid控制特点 

经典pid闭环算法难于实现冷媒水压力调节系统控制收敛。模糊pid控制利用当前的控制偏差,结合被控过程动态特性的变化,并针对具体过程的实际经验,根据一定的控制要求或目标函数,通过模糊规则推理确定控制参数,实现对系统的控制。 

模糊控制对数学模型的依赖性弱,不需要建立过程的数学模型。模糊控制对系统动态过程有较好的控制作用,但对系统的静态误差无法。因此针对模糊控制和pid控制的各自特点,应用pid控制结合模糊控制的方法实现对系统的阶梯分段控制将会良好的控制效果。 

3.2 模糊pid控制过程 

本系统由于用户用水需求不确定,管网水压波动较大,数学模型很难确定,而模糊控制不需要的数学模型,因此压力控制算法采用模糊pid控制方式[2]-[4]进行设计。 

模糊pid控制以误差e和误差变化ec作为输入,经模糊化后用模糊语言描述,利用模糊控制规则来判断控制量的真实值, 输出变量为u,为4~20ma的控制电流。模糊控制器的工作过程可以描述为:将模糊控制器的输入量转化为模糊量,以供模糊控制逻辑决策系统用,模糊决策器根据控制规则决定模糊关系r,应用模糊逻辑推理算法得出控制器的模糊输出量,后经计算得出控制量控制被控对象。模糊pid控制图如图2所示。

 
图2 模糊pid控制框图

对压差e、压差变化率ec和控制量u的模糊语言变量分别为e、ec和u,其模糊语言变量的模糊语言值均为:{nb、nm、ns、zo、ps、pm、pb},表示{负大、负中、负小、零、正小、正中、正大}。一般模糊论域中所含元素个数为模糊语言词集的2倍,所以模糊论域为{-6、-5、-4、-3、-2、-1、0、1、2、3、4、5、6}。根据比例因子ke和kec将e和ec模糊化。 

其中n=6,管网压力变化范围为0. 3~0.5mpa ,而设定值为0.4 mpa,得出误差的基本论域e∈[ - 0. 1、0.1];由经验得知,在正常情况下压力变化不会过0.05 mpa/s,故误差变化量的基本论域ec∈[ - 0. 05、0.05];因此可得误差e和误差的增量ec的比例因子分别为60和120。考虑对论域的覆盖程度、灵敏度和鲁棒性原则,本系统隶属函数选择为三角形隶属函数。 

模糊控制规则是模糊控制的,它能够模拟人的基于模糊概念的推理能力,也就是利用语言归纳手动控制策略的过程。模糊控制的确定,实质上是将控制经验加以总结而得出一条条模糊条件语句。用复合条件语句表示为:if 
e=nl andec=nl 
then u=nl,从而使系统输出响应的动态特性和静态特性都达到。本系统中,由于e和ec各有7个语言输入值,故共有7×7=49条if-then语句,可归纳为模糊控制规则表,具体如附表所示。 

4 结束语 

本文设计一种基于plc和变频器的且具有远程监控功能的冷媒水自动控制系统,具有响应快速、准确,操作方便,维护便利,节能等特点。将模糊pid控制器应用于该恒压控制系统,弥传统pid控制的不足,改善了系统的非线性、大滞后性等特征,提高了系统的鲁棒性



1 引言 

工业生产和城市生活中会产生大量的烟气粉尘,如火力发电,供热等,污染环境危害健康。 

随着袋除尘技术的发展和环保要求的日益提高,袋式除尘器的应用范围越来越广泛,目前已能利用袋式除尘器来处理高温、高湿、粘结、爆炸、磨蚀性烟气,甚至过滤含有细粉尘的空气。在袋式除尘器控制领域,plc占据主要技术地位。随着现在控制技术的不断发展,plc与触摸屏在工业控制领域的应用越来越广泛。触摸屏替代传统的控制面板和键盘的智能化操作,可用于参数的设置、数据的显示和存储、并以曲线、动画等形式描绘自动化控制过程。plc与触摸屏的配套组合使用,一方面扩展了plc的功能,使其具有图形化,交互式工作界面的立系统,另一方面大大减少了操作柜上的开关、按钮、仪表等的使用数量,使操作加简便。目些控制要求较高、参数变化多、硬件接线有变化的场合,触摸屏与plc组合起来应用的形式已经占据主导地位。 

但是根据传统的除尘器plc点对点制形式,不仅设计及其现场布线复杂,外部信号干扰还使得系统运行不稳定,而且成本昂贵。本文组合应用西门子s7-300plc与台达a系列触摸屏,采用矩阵控制的方法来实现除尘器脉冲阀动作,通过profibus dp工业总线实现主站与分布式i/o设备交换数据,了优化的控制效果。 

2 系统组成及主要功能 

2.1 系统组成 

袋式除尘器的控制系统如图1所示。 

 
图1 系统要求

该袋式除尘系统主要由除尘器本体、卸灰系统以及其管道的温度、压力与故障报警等几部分组成。其中在除尘器本体主要完成在线差压的清灰控制,除尘器总共有6个室,每室13个脉冲电磁阀,共计78个;以及每个室1个出口控制阀,共计6个。 

2.2 功能设计 

(1) 清灰控制 

控制方式:在线差压/定时、离线差压/定时、手动控制(调试或检测时用);脉冲间隔:1~60s连续可调;脉冲宽度:0.02~0.2s连续可调;定时清灰周期:0~99分钟连续可调;压差清灰设定范围:0~3000pa连续可调;温度设定范围:0~300℃连续可调;当除尘器到达高阻力(设定的高压差)值时,启动1#除尘室脉冲阀开始喷吹清灰,依次是4#、2#、5#、3#、6#除尘室,脉冲阀依组进行工作;至6#除尘室后一组脉冲阀工作结束止,清灰结束;到下一个高阻力到达,按同样的方式进行清灰。 

(2) 卸灰控制 

高低料位:每台除尘器只在一个灰斗上设高低料位各一只用于报警(高料位提示要卸灰,低料位提示卸灰可结束)。当高、低料位时声、光报警,过一定时间不处理则自动停止除尘系统;卸灰采用控制室和现场两地;给hmi传输信号,显示系统运行状态。 

(3) 温度与压力检测 

系统中需要对进出口差压、进口温度、出口温度以及各个室内滤袋检漏压力的检测。 

(4) 控制关系(自动方式) 

烟温(指进口烟温)正常(100~165℃)时,进口、出口阀门全部打开,旁路阀门关闭;(100℃)或过(165℃)设定温度时,控制系统报警;当(170℃)设定温度时,先打开旁路阀然后依次关闭1~6#出口阀门即可;进口阀门现场手动关闭。 

3 硬件配置及软件实现 

系统由德国西门子s7-300系列加上一些中间继电器组成矩阵形式对输入输入点进行检测和控制。通过台达触摸屏来设定脉冲阀动作宽度和间隔时间以及定时周期,还可以查看各室脉冲阀动作。利用plc的输出与中间继电器构成行列结构,输出控制点放在行列结构的交叉点上,这样可使得系统硬件成本比点对点输出控制要降低很多,如广西明阳6室13组在线/离线喷吹脉冲反吹布袋除尘器plc自动控制系统采用点对点控制方式则plc控制系统至少需要78个输出点,而采用由plc的输出点与中间继电器组成的矩阵式plc控制系统仅仅需要19个输出点就可以完成同样的工作。 

本系统通过人机界面,系统工作在几室几个脉冲阀喷吹一目了然,差压指示与压力上下限报警输出一应俱全,控制系统可以与就地控制箱实现连锁控制,可以方便现场设备维修工作,如图2所示。系统运行稳定,操作简单,维护方便,很大程度上减轻了操作人员的劳动强度。



1 引言 

无负压供水是在变频恒压供水的基础上发展起来的,它的之处在于将系统直接与自来水管网串联对接,而不用建立水池和设置水箱,供给用户的水在一个密封的环境中,避免了饮用水在供水过程中的二次污染。这种供水方式实现了无池供水与变频恒压供水的结合,能够达到比其它供水方式环保节能的效果。此外在供水过程中,充分利用自来水原有的压力,因此可节电50%以上。不仅如此,无负压供水系统结合真空抑制、稳流补偿、预压平衡补偿、能量储存释放、变频调速和智能控制等技术,在供水的同时不,会对**管网产生压降,从而保证了**管网的正常运行。 

2 无负压供水工艺概述 

无负压供水控制系统的概念就是通过变频器控制水泵的运行频率,达到节能供水的效果,同时系统还加入了**管网保护功能、水泵保护功能以及故障处理等功能。为了节约成本,目前人们大多采用一个变频器控制多个水泵的变频运行方式,也就是我们常说的一拖二、一拖三或一拖四等控制系统。采用这种方式,变频器轮流控制各个水泵变频运行。 

水泵的运行方式有两种,一种是变频运行,一种是工频运行。水泵的运行方式由控制器根据用户用水量的多少自动控制。系统启动后,水泵变频运行,当用水量增加时,变频水泵转换为工频运行,并启动下一台水泵变频运行。用水量减少后,工频水泵退出运行,水泵的投切过程如此循环反复。 

在用水量很少,或没有用水时,为了节能与延长水泵的使用寿命,水泵还可以进入休眠状态。当用水量增加时,水泵会自动从休眠状态中被唤醒。当一台水泵长时间运行时,为了使各个水泵均衡运行,系统会自动选择运行时间短的水泵运行。当有水泵出现故障时,系统会自动跳过该水泵,不会影响其他水泵的投切过程。 


3 无负压供水控制系统结构设计 

在传统的无负压供水设备中,控制器大多采用单片机设计,这种控制器一般都不允许用户对其内部的程序进行修改。如果想增加一些功能,则找控制器的供应商帮助完成。这就导致了系统的灵活性较差,而且这种控制器一般都没有经过性测试,在性方面可能存在或多或少的问题。 

采用PLC作为控制单元,在性上得到了保证,其开放的编程环境也使系统开发和维护加方便。不仅如此,和利时还为无负压供水设备提供了标准的例程,用户可以直接使用这个例程搭建无负压供水控制系统,或者可以根据需要对例程进行简单的修改,这样大大提高了系统的建立效率以及系统的开放性。 

本次设计针对1拖3无负压供水控制系统。系统主要由PLC、变频器、离心泵、压力传感器、水位传感器、缺相保护器、故障报等组成。PLC负责三个水泵的投切控制算法,根据管网出口的设定压力动态调节变频器的输出频率,以及实现倒泵、休眠、故障处理、无负压补偿等功能。本系统采用和利时LM系列PLC作为系统控制器,并且通过LM系列PLC自带的RS232接口连接现场的触摸屏HT6720T,触摸屏程序具有系统参数设置、显示系统运行状态、查询系统报警等功能。为了便于用户查询控制系统的运行状况以及设置出口压力等参数,这里还用LM系列PLC自带的RS485接口连接了一个短信数传模块,用户可以通过手机随时查询水泵的运行状况以及设定管网的出口压力。

0 引 言 

钛渣电炉借助于电通过大电流,以电阻热和电弧热的形式加热物料完成冶炼。从电炉的功率曲线可知,不同电弧电流对应不同的电弧功率,当弧流过有利的调节电流时,输入炉内的功率并不会因为电流的增加而增大,反而线路上的电耗将增大,难以获得目标中的经济效益,同时可能损坏炉衬,加大电的消耗量。如何将电流控制在一个合理范围,并地控制,使其达到既保护设备又具有可观经济收益,是电炉实现控制的目标。 

在攀钢钛业公司钛渣厂,25.5MVA钛渣电炉(国内大的钛渣电炉)采用控制液压系统电磁阀得电时间,来实现电升降动作从而达到对单相电熔炼过程的恒流控制。为达到炉内电三相功率平衡,在以电流为主进行控制的同时辅以二次电压的调节,来保证输入炉内的三相功率在一定范围内达到平衡。 

在钛渣冶炼工艺中,使用西门子S7-400 PLC对电调节过程进行控制能够保证设备、准确运行,能满足钛渣冶炼过程电控制要求。 

1 电电流控制工艺要求及控制原理说明 

常规的电升降控制,被控量计算取决于电升降调节方式,有阻抗控制、功率控制和电流控制。而钛渣冶炼是按功率曲线的设定和优化进行控制。 

一个完整的工作过程是系统投运前,自动检查各设备运行状态,使其置于设定的初始位置,并由PLC系统发出确认指令,电的升降控制由预先输入到PLC的功率曲线来完成。 

在钛渣冶炼过程中由于同时存在电阻炉和电弧炉的工作过程,所以我们应按2个阶段来考虑。在埋弧时,电下部埋在炉料中,其加热来自电和炉料之间的电弧热,但主要是电流通过炉料时产生的炉料电阻热,此时负荷量很小,电流从零逐渐上升,电流变化快,功率因数高,三相负荷电流控制较难实现。当炉料逐渐熔化,熔体的导电性增加,电阻值下降,明弧放电现象加明显,常易出现塌料翻渣现象,此时须快速提升电,以防短路。炉料熔化后,电根据设定参数与炉料保持一定高度,该过程通过调节电的升降,控制电电流和相电压的变化,使电功率按给定曲线运行。相对于整个工艺过程,此阶段进入冶炼“平稳区”,同时,电与时间及炉内熔体中的FeO含量一起作为控制终点的辅助控制。在冶炼终点钛渣出炉时,电随熔体液面下降,保持一定的电流电压值,当出渣时间接近设定值,切断电炉供电电源。一个冶炼周期完成,电炉按预设程序恢复到开炉前状态。 

因冶炼工艺的特点,对炉子的控制和运行要采取相应的保护措施,主要有短路保护和断电保护。系统设有级:单相手动、三相手动、短路或断电时快速提升。设的计算和给定在上位机完成。 

短路保护:监控高压侧相电流,当其过一预设大值时,电上升。如翻渣时,电流成倍增大,计算机输出电信号给液压系统,给大力缸供液,在5s内使电达到2.5~3m/min的速度提升,并使电流下降,甚至为零。如电流值仍不下降,则延时T秒后系统供电系统自动切断。 

断电保护:在起弧阶段,当出现三电不同时与物料接触时,若仍采用正常调节方式,将因设定值和实际值之间偏差使电下降,导致电折断。因此对这种情况采用“电压-电流”控制方式,当单个电与炉料接触时,虽电流为零,但弧压也为零,该相输出为零,电停止下插。 

在冶炼中,我们期望以小的输入功率换取冶炼效果,但在冶炼过程中,电电流和电压的变化与炉料反应及炉况息息相关。因此要实现恒电流控制就要找出一个参照系来做被控参数。考虑到冶炼工艺与化工控制中精细性的区别,在本方案中恒流控制的参照系是在PLC中输入的一条设定功率曲线,它按时间段设定电电流的大小,在一个冶炼周期中的不同冶炼时间,对电电流设定值加以调整。 

电炉变压器高压侧如A相电流互感器检测到A相电流变化,通过电流变送器转化成4~20mA的电信号。电压信号经I/O卡板整形滤波,并与设定值比较、运算及放大处理后,去控制液压系统的电磁阀,由电磁阀控制液压换向阀导通时间,从而升降液压缸以改变电位置,终达到控制电流的目的,原理图见图1。做为电炉本体的控制,炉体温度、炉内压力、变压器数也是要检测控制的。 

用PLC装置实现电控制主要由硬件和软件2部分组成。 

2 硬件组成 

钛渣控制系统硬件组成如图2所示。根据现场控制点数、控制的性,电炉控制系统采用SIEMENS公司的S7-400系列控制器。控制系统主要由S7414-1和S7414-2组成,并配有2套西门子工控机做为上位机,1台做操作员站,1台通过权限设置平时做操作员站,修改程序时做工程师站。S7414-1主要完成电炉电的升降控制、压放控制,热参数控制及电炉本体数据的采集、计算及控制等;S7414-2主要完成原料称量输送数据的采集、计算及控制。2台主控制器与其远程I/O模块之间通过Profibus-DP通信实现数据的交换与共享。S7414-1及S7414-2控制器与上位机之间通过工业以太网通信,2台上位机互为冗余。计算机操作站主要完成对电炉系统的运行状态监控,通过网络总线采集电升降、电炉本体等各种模拟量、开关量信号,并在操作站实时显示工艺过程动态画面、设备运行状态及故障报警等信息。

2.1电炉本体S7 414-1控制器 

电炉本体S7 414-1控制器主要由以下400系列模块组成: 
数字量输入模块DI,数字量输出模块DO,模拟量输入模块AI,模拟量输出模块AO,通信接口模块461-0,电源模块等。 

I/O主要用于采集现场模拟量及数字量信号,参与控制。 

2.2主要检测控制参数及检测元件 

2.2.1电信号 

电流互感器(配电室内的MCC柜内),电流互感器装于电炉变压器的高压侧,主要检测二次电流,检测后将0~电流信号,接入综合自动化系统,通过以太网送入PLC完成算法控制,并在操作站实时显示。 

电压互感器,检测电炉变压器二次侧电压,并将电压输出信号转化为4~20mA模拟信号送入控制系统。 

其它需要的电信号包括有功功率、无功功率、功率因数,电度量等。 

2.2.2非电量信号 

(1)电位置检测。采用声波物位计将电的相对位移量转换成电信号,经PLC控制器比较,用于输出显示,并设置电位置限位。 

(2)炉内负压检测。采用压力传感器检测炉内负压,将其输入PLC参与控制。炉内负压一般保持在-2~0Pa,当出现渣沸腾时,根据炉压高低判断,决定尾气是否放散,以保证人身及设备。 

(3)执行机构。钛渣电炉电升降采用的是液压装置,每根电被2个大力油缸支撑,当上下缸内充满带压油时,即可完成升降动作。大力缸充油方向和时间决定电的升降及其幅度。 

当压力油进入油缸杆腔时,电上升,电下降靠电自重,泵打出的油和杆腔排出的油进入油缸的无杆腔,电下降速度由调速阀确定。因此控制换向阀上2组电磁阀的通断时间及通断顺序即可控制电的升降。液压系统采用双油源,以确保性。 

3 PLC软件组成 

本系统采用西门子STEP7编程软件,软件采用LAD图、STL语句表及FDB功能块图三者相结合的编程方式,实现冶炼过程的逻辑控制。通过硬件采集弧压、弧流及档位等信号,按恒功率恒电流控制原理,将终输出到液压控制系统以实现电升降自动控制,并按照供电曲线自动调节输入炉内的电弧参数。 

电炉系统操作站采用拥有开放协议、集成ODBC/SQL数据库的WinCC组态软件实现画面监视和设备状态显示。 

4 控制过程 

在钛渣电炉操作过程中,冶炼电气制度受到以下干扰:供电电压波动、负荷电阻系数变化、炉内渣铁面的变化、电负荷、电焙制的损耗、渣沸腾等。 

与工艺要求相一致,电炉有功功率和电流变化时间表中给定了每个电气参数的死区(也即偏差),如表1所示。

在整个冶炼过程中,电气制度控制算法的主要任务就是保持电炉有功功率和电流的预设值恒定,来限制强加在电炉变压器高压侧的相电流。在PLC中,对采集的电电流进行转换处理后即进入控制过程。电自动控制在工况相对稳定时投运,每相电按预设曲线自动调整升降高度,直到电流检测值达到设定值。在实际运行中为防止电频繁动作,可设置1~5KA的动作死区。在炉料熔化,熔池打通或冶炼进入到精炼区时,电电流波动较大,此时仅当电电流测量偏差大于死区值时,电方才移动,控制功能实现较稳定;当冶炼初期及补加碳时,因炉内反应剧烈,伴随塌料现象,电电流会大幅度上升,此时控制动作频繁,系统的抗干扰要求提高,在控制上要多方考虑。 

图3是钛渣电炉实现电控制的一个算法流程。 

当A相选择自动控制投运时,系统自动检测高压侧电电流,并送入PLC,经处理,在T时间内对采样值取平均值,并与设定值进行比较。当检测电流值II大于设定值,但尚未达到电工作上限HS1,且电内、外装置已处于自动EC1方式下,则PLC发出电磁阀ELIC1接通指令,电磁阀得电,换向阀上行油缸充液,电将提升,当延时T时间后,检测电前后位置的变化,并转入下个循环。当检测电流值II小于设定值,但尚未达到电的工作下限LS1,且电内、外装置已打在自动EC1方式,则PLC发出电磁阀ELOC1接通指令,电磁阀得电,换向阀返回油缸,阀打开,电靠自重下降,延时T时间后,检测电前后位置的变化量,并转入下个循环。 

在电控制算法中要考虑3个因素:在升降的同时不能完成电的压放控制;在系统中要延时检测电的位置,以区别于其它因素导致的电流变化;将不正常因素以报警信号形式输出。 

根据工艺特点, 在三相电的电流调节中,每个电电流控制都可立进行,任一电都可根据工况运行在自动或手动状态。当炉内出现翻渣或塌料时,控制系统能出电流大幅上升,此时电快速提升,直到电电流达到设定值时,停止上升。若电已提升至上限值,电流还未下降到设定值,则电炉变压器的电源将被切断,正常冶炼被中止。 

整个冶炼过程电的控制均由操作工在控制室的操作台上完成,因项目中变压器采用35kV电源供电,系统的用电等级要求较高,在控制屏外单设置了操作台,以钥匙开关的方式将停送电权限交给操作工专人管理。 

5 的成效 

自钛渣电炉生产PLC控制系统投运以来,所有信号集中处理,采用模块化结构易于调整和换,备品备件量下降。为重要的是采用PLC自动控制电的升降,取代了以往电升降手动操控方式。 

采用检测元件,能有效、准确地反映现场情况,实现控制。 

在钛渣冶炼中电升降采用液压系统,使电调节直观,响应速度快,能满足钛渣正常冶炼过程控制要求。 

针对钛渣电炉的多变量、非线形、大滞后、强耦合、时变、工作环境及随机干扰较强的特点,采用PLC可实现电炉电升降的全自动闭环控制,并能满足三相电流平衡及温度的稳定。 

6 存在的问题及下步改进措施 

虽然PLC在电电流控制上已良好效果,但由于采用PLC控制的25.5MVA容量特大型钛渣电炉尚属国内例,在控制的设计和程序的编制上还存在一些缺陷,如目前暴露出电的升降死区范围设得较大以及操作中获得的曲线与设定曲线差距较大的问题。造成这种影响主要原因是电升降的液压系统未采用伺服调节阀控制,使升降动作启停有较大机械死区。 

此外钛渣冶炼控制的终目标是输入炉内的总功率平衡。但目前还尚未摸索出一个合适的算法来将电电流与三相功率的平衡在PLC中统一起来。 

但PLC系统在电控制中的成功运用及其强大功能,将使我们在控制精度、性、经济上找到多的切入点去适应钛渣冶炼的生产控制要求。 



http://zhangqueena.b2b168.com

产品推荐