天津西门子中国授权代理商通讯电缆供应商
  • 天津西门子中国授权代理商通讯电缆供应商
  • 天津西门子中国授权代理商通讯电缆供应商
  • 天津西门子中国授权代理商通讯电缆供应商

产品描述

产品规格模块式包装说明全新

天津西门子中国授权代理商通讯电缆供应商

1 引言 

制动器是保证摩托车行驶的重要部件,现代高速摩托车均采用盘式制动器。盘式制动器性能的好坏对摩托车的制动性起着至关重要的作用,因此,对摩托车盘式制动器性能的检测,是摩托车制动系检测系统中的重要组成部分。为了保摩托车盘式制动器的生产质量,提高摩托车盘式制动器的制动性能,对摩托车盘式制动器的性能进行的检测。由plc和上位机结合的检测系统,精度高且简单。 

2 制动器结构及工作原理 

盘式制动器摩擦副中的旋转元件是以端面为工作表面的金属圆盘,即制动盘,并被固定在轮毂上。其固定元件是由二到四个工作面积不大的摩擦块与金属背板组成的制动块。这些制动块及其助动装置都装在横跨制动盘两侧夹钳的钳型支架中,总称为制动钳[1]。 

液压制动器是利用杠杆原理和帕斯卡定律,通过传递并增大操纵力对车轮产生制动转矩和摩擦元件间的摩擦阻力,将行驶中摩托车动能转化为摩擦热能,再依靠摩擦元件吸收并释放热量,达到减缓车速或停车的目的。对制动手柄施加外力后,使手柄油缸中的制动液产生压力并通过油管传送到制动钳一端的油缸活塞上,活塞推动摩擦片夹紧制动盘而使车轮产生制动[1]。由此可见,制动钳的钳口力决定着制动器的制动能力,而钳口力与手柄位移和手柄力有关。所以从三个方面对液压盘式制动器的性能进行测试,即钳口力、手柄位移和手柄力。液压盘式制动原理图如图1所示。

 
图1 液压盘式制动原理示意图

3 检测系统组成 

本测试系统主要由检测台体、plc、上位机三部分组成,系统组成如图2所示。

 
图2 测试系统组成图

检测台体主要由检测台架、夹具、手柄力及钳口力传感器、手柄位移传感器、限开关、电机、气缸等组成[3],是检测系统的基础。 

上位机是整个控制系统的,其主要利用良好的图形用户界面,显示手柄力及钳口力的大小和手柄位移等参数和对应的曲线,并且向plc发出控制指令。 

plc是该系统的下位机,负责现场高速数据采集(控制手柄的位置),实现逻辑、定时、计数、等功能,通过串行通讯口向上位机传送plc工作状态及有关数据,同时从上位机接受指令,向警报器、打印机等发出命令,实现上位机对控制系统的管理,提高了plc的控制能力和控制范围,使整个系统成为集散控制系统。 

当按下启动按钮后整个测试过程由plc控制自动进行,气动执行机构推动制动手柄进行模拟制动,同时手柄力及钳口力传感器、手柄位移传感器获得的检测模拟信号传输到plc的模拟模块,plc通过rs485/232接口与上位机通信,plc把传感器的模拟信号转换成数字信号传输到上位机,显示器别显示手柄力及钳口力的大小和手柄位移等参数和对应的曲线,当设定电机运行时间结束时电机停止且反转使气动执行机构复位,限开关起限位保护作用,当气动执行机构推动手柄与限开关接触时,电机自动停止,若有出设定合格值,报警器会及时报警。 

4 系统设计 

主控制器采用西门子plc,s7-300系列plc功能强大,采用模块化设计,有处理单元(cpu)、各种信号模块(sm)、通信模块(cp)、功能模块(fm)、电源模块(ps)、接口模块(im)等,有多种规格的cpu可供选择。siemens s7-300,它是一种积木式结构,系统构成和扩展都十分方便[2]。 

3.1 系统硬件配置 

s7-300主要配置如下:电源模块选用ps3075a;处理模块(cpu)选用cpu313c-2dp;数字量输入模块(di)选用sm321 di16xdc24v;数字量输出模块(do)选用sm322 do16xdc24v/0.5a;模拟量输入/输出模块(ai/ao):选用sm334。 

3.2 i/o定义与编程设计 

plc的输入、输出端子分配情况如附表所示。测试过程根据程序设计在开始检测以后自动完成,根据设定的测量值的,系统自动出不合格的产品并报警,其流程图如图3所示。


1 引言 

作为可再生能源的重要分支,太阳能以其清洁,相对便利的使用也得到了飞速发展,其中的硅材料太阳能电池在近几年的发展尤为。硅片清洗机是硅材料太阳能电池生产过程中的重要设备,通过清洗机对原料硅片以及半成品电池的清洗保证了终产品的性能稳定和优良的质量。作为一种高度智能并且功能多样的设备,plc配合上位机的控制方式就成为这类设备的。 

2 系统组成及功能 

整个太阳能电池的生产是一个十分复杂的工艺过程,即使清洗工艺也需根据工序、产品的区别存在多种不同配方。同时作为工业化连续生产和产品生产状态连续传递的需要,硅片清洗机应准备足够的软硬接口与erp系统和前后工序设备进行数据通讯以保证生产状态的连续性。 

硅片清洗机的控制大致分为4部分: 

·机械手动作控制 

·清洗槽水温控制 

·清洗槽工艺控制 

·药品定量添加控制 

所有的工艺参数和状态记录全部存储于上位机,上位机可以对plc进行工艺参数的上传下载控制;并可以通过工业以太网接受上级设备传送的硅片相关产品编号,工艺标准,工艺配方等多种信息,同时将产品的相关信息传送至下道工序和erp系统。plc通过profibus上的外围模块进行模拟量、数字量数据的采集和相关执行器件的工作控制。 

3 系统网络结构 

3.1系统的组成 

系统由上位计算机wincc、s7-400 plc控制器、外部i/o链路组成。wincc和s7-300之间通过industrial ethernet网络连接,外部i/o、伺服驱动器、化学药品流量仪表通过profibus总线进行连接。s7-400通过编程软件step 7进行编程和机架模块及profibus总线网络的组态配置。 

系统结构图如图1所示。 

 
图1 系统结构图

3.2控制系统的特点 

安装有wincc软件的scada(supervisory control and data acquisition:数据采集监控系统)上位机通过工业以太网和plc(cpu-416-2dp)进行连接,利用工业以太网的高速特性将大量的设备实时数据从plc中读取,同时在生产的任何时刻都可以高速稳定的依据操作员的操作进行工艺配方的重新下载。具有大量数据的多个工艺配方存储在上位机的硬盘中,其数量只取决于pc机硬盘的内存空间,任何时刻plc只运行的工艺配方。这样可以大大节省plc的内存空间。各种设备的实时状态通过高速以太网从plc及时地传回上位机,通过wincc的报表系统将各种数据分类存档,供erp及下游下设备进行访问。plc通过profibus的各种外设i/o、伺服驱动器、流量计收集各种设备状态并对设备进行控制。 

(1)控制器 

系统使用的plc控制器为s7-400系列的cpu 416-2dp,cpu 416-2dp具有2.8mb的大容量运算内存,指令执行周期0.04us,大寻址空间16kb,其背板k总线提供了高速。强大的自诊断功能可以帮助现场调试的找到故障点并及时解决故障,通过扩展ip功能模块cp-443-1,cpu 416-2dp实现了工业以太网接口功能,使系统的实时通讯能力大大加强。 

(2)i/o模块 

系统并未选用西门子公司的分布式i/o模块,而是选择了德国倍福公司的分布式i/o模块,主要原因是同样点数的分布式系统,倍福公司的现场总线端子具有紧凑的布局和强大的功能。 

通过现场耦合器的一次简单运算可以帮助cpu完成一些基本的数学、逻辑运算,这样大大减轻了处理器的运算量,使系统的反应速度大大提高。其总线端子对模拟量的处理也有其闪光之处,强大的故障诊断功能,短线保护的判断,系统运行的稳定性都是选择其作为现场基础总线端子的原因。 

(3)上位机系统 

系统上位机scada界面软件采用西门子的wincc系统软件,此软件为西门子公司开发的基于bbbbbbs的上位机软件,用于开发和运行人机界面的应用程序。scada系统用来显示输送系统状态/报警信息。操作员可以凭此监视和控制设备的运行。 

scada系统经由industrial ethernet网络经由cp-443-1和cpu-416-2dp交换系统信息。scada 系统主动从plc信息,而plc是被动的,也就是说,当一个事件产生时,plc不会主动的发送信息到scada系统。所以,scada系统利用它本身的软件功能来实现事件信息记录和报警功能。 

(4)编程及组态软件 

cpu 416-2dp控制器编程采用step 7编程软件包,具有完善的数据处理、易于使用的i/o寻址方法、自由灵活的程序编辑环境、图形化的控制管理器及i/o组态对话框。 

3.3 系统网络设置 

系统所使用的profisbus是一个实时的现场总线控制网络,用于高速传送实时的i/o数据和控制指令,profisbus是不依赖生产厂家的、开放式的现场总线,各种各样的自动化设备均可通过同样的接换息,适用于传输中小量的数据。其物理传输介质可以是屏蔽双绞线、光纤或无线传输。而工业以太网是为工业应用专门设计的,而且已经广泛的应用于生产和过程自动化,适用于大量的和长距离通信。其物理传输介质可以是同轴光缆、双绞线、光纤或无线通信。西门子工业以太网可以将控制网络无缝集成到管理网络和互联网。本例就是如此。 

通过西门子step 7的netpro网络组态软件进行profibus现场总线的组态配置,通过被组态器件厂家的gsd说明文件可以很方便的将其进行组态,经过简单的参数设置就可以完成系统的组态。在实际编程中设计人员可以将伺服驱动器、远端阀岛、流量计的参数可控制指令当作简单的数字量、模拟量进行编程,大大的简化了设计人员的劳动强的,缩短了设计周期。 

上位机的网络组态通过wincc和西门子公司的simaticnet软件实现对industrialnet支持,通过固定ip地址对plc,erp客户机上、下游几台客户机等ip站点的访问。和相关客户机归档数据的传输通过opc控件的使用实现,这大大减轻了程序员编程的时间;通过wincc自定义的通讯协议及外部变量实现同plc的实时通讯。 

4 控制系统工作描述 

上游设备在载片篮随传送带传送至清洗机上料台后,其上位机会将相关工艺选项号,加工号,批号等基本信息通过工业以太网实时传送给清洗机的上位机,清洗机上位机通过工艺选项号从硬盘数据库中调出相应配方并将其通过工业以太网传送至plc。 

plc在接到新的配方并进行确认后进行与设工艺流程。设备分为多种清洗槽,每个槽又可以实现一个或多个清洗功能,其工作顺序由配方决定,在清洗槽中的水温按照预设的配方工艺进行加温并保持,其pid控制使用西门子系统pid功能块实现。在清洗过程中水流的循环流速是通过水泵的变频控制器实现的,变频控制器的输出频率由plc按照配方要求运算后,通过profibus总线传送,变频器的状态和实际输出频率通过plc的系统功能块进行定期读取。机械手的位移是通过festo公司提供的s7功能块运算控制,控制方法是位置控制,通过将各槽的装、卸载位置通过相应功能的运算后传送给伺服控制器控制伺服电机运转,在程序里对机械手的状态进行控制和监视。反应时间、所使用的配方、工艺选项号、工号、批号通过opc模块传送给相关客户机。整个控制协调流畅,从而完成高度的自动化任务。 

5 结束语 

本系统是高度集成自动化系统,综合了plc控制、计算机、网络信息和现场总线技术.。特别是对通信有较高的要求,同时通信一直是工业控制中的一大难点,本系统正是利用了西门子公司提出的ti(totally integrated automation:全集成自动化)技术较好地完成了控制。从而也证明tia技术的成熟和完善。相信随着国家对信息自动化产业进一步发展,对自动化装备要求会越来越高,肯定会有越来越多的高度集成自动化系统设备面市。本系统于2004年7月投入运行,目前,系统运行稳定。为公司创造了较大的社会效益和经济效益。

20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


1 引言 

冷媒水是工厂公用工程的基本系统。基于plc和变频器的冷媒水压力控制系统具有自动化程度高、节能、卫生、维护方便等优点;采用frofibus总线技术,扩展性高;上位计算机控制系统具有过程画面动态显示、流程管理及打印等功能。 

2 系统原理设计 

2.1 系统总体 

(1) 目标设计 

系统设计的目标是在生产岗位冷媒用水需求变化的情况下,使用plc自动控制技术保持管网供水压力稳定,以达到节能减排,减的目标。 

(2) 方案设计 

每台冷冻机配有2台泵,正常运行时其中任一台运行于调速状态,而另一台泵备用,也可随时投入状态运行。两台泵的运行状态的切换采用手动方式,并要求两台泵互锁,不能同时投入运行。为使各泵平均工作时间相同,需要设置定时换泵功能。设定定时换泵功能后,当一台泵连续工作时间过设定值后,且备有泵处于“休息”状态,则系统提示换泵,以保证各台水泵运行时间均等,延长水泵使用寿命。当变频器发生故障时,能够自动转换至工频继续运行,以确保供水不间断。 

(3) 功能设计 

系统具备报警功能、实时监控和数据存储等功能。报警显示包括越限报警和故障报警。当预置监视的模拟量过所规定的界限值或开关量状态跳至报警位,即产生越限报警。当预置监视的设备或工艺过程发生故障,控制系统发生故障即产生故障报警。一旦发生报警事件,报警信号上传上位机,同时接入蜂鸣器进行报警,报警记录显示不同的颜色。上位工控机对各水泵的开启、关闭或故障等实时状态,以及温度、出口压力、调节阀开度和水泵转速等实时数据进行存储,并可进行快速报表查询及打印。 

2.2 系统组成 

本系统设计包括上位机、就地触摸屏和下位机三部分。上位机显示工艺流程显示图、参数成组显示图、设备运行状态显示、动态显示冷媒水的温度、压力和水泵转速等数据。同时具有高速历史数据的存储和查询、报警等功能。就地触摸屏上也可以动态的显示冷媒水的温度、压力和水泵转速等数据。下位机plc实现冷媒水自动控制过程。 

下位机系统采用西门子s-7 200 plc、abb变频器、压力传感器、温度传感器、模拟调节阀门及其他控制设备组成。plc控制部分,因系统有6个模拟量输入,4个模拟量输出,需使用扩展单元,所以选用主机为cpu224plc一台,加上两台模拟量输出模块em232,再扩展一个模拟量i/o模块em235。采用em277 frofibus-dp 模块与上位机进行通讯[1]。该模块用于接受上位机指令并上传报警信号。 

2.3 控制原理 

系统采用两路pid闭环控制,根据压力表测得的数据分别调整比例阀和水泵转速,保岗位上冷媒水压力稳定,并使整个系统达到节能。系统原理框图如图1所示。

 
图1 系统原理图

在冷冻机开启运行时,控制系统控制冷媒水循环泵按照恒流量,此时水泵转速置为大,压力传感器管网压力,输出4-20ma的电流信号到plc。该压力反馈信号与压力给定信号经模糊pid控制程序计算,输出控制信号给模拟调节阀。当压力不足时,减小模拟调节阀的开度,减少冷媒水回流,从而提高出水压力;反之则增大模拟调节阀开度,增加冷媒水回流,降低出口压力。当冷冻机停止运行即冷媒水温度达到设定温度时,控制系统自动控制冷媒水泵切换到变流量恒压。此时模拟调节阀关闭,压力反馈信号与压力给定信号经plc内部另一路模糊pid控制程序计算,输出一个转速控制信号给变频器。当压力不足时,变频器增大输出频率,水泵转速加快,供水量增加,迫使出口压力上升。反之水泵转速减慢,供水量减小,出口压力下降,从而保证冷媒水压力稳定。该系统保持出口压力稳定在0.4mpa,从而保证冷冻机的工作效率。压力调节精度为设定值的±5%,即±0.02mpa,并能在0.5-2秒内变化的压力恢复正常。 

3 冷媒水温度模糊pid控制器 

3.1 模糊pid控制特点 

经典pid闭环算法难于实现冷媒水压力调节系统控制收敛。模糊pid控制利用当前的控制偏差,结合被控过程动态特性的变化,并针对具体过程的实际经验,根据一定的控制要求或目标函数,通过模糊规则推理确定控制参数,实现对系统的控制。 

模糊控制对数学模型的依赖性弱,不需要建立过程的数学模型。模糊控制对系统动态过程有较好的控制作用,但对系统的静态误差无法。因此针对模糊控制和pid控制的各自特点,应用pid控制结合模糊控制的方法实现对系统的阶梯分段控制将会良好的控制效果。 

3.2 模糊pid控制过程 

本系统由于用户用水需求不确定,管网水压波动较大,数学模型很难确定,而模糊控制不需要的数学模型,因此压力控制算法采用模糊pid控制方式[2]-[4]进行设计。 

模糊pid控制以误差e和误差变化ec作为输入,经模糊化后用模糊语言描述,利用模糊控制规则来判断控制量的真实值, 输出变量为u,为4~20ma的控制电流。模糊控制器的工作过程可以描述为:将模糊控制器的输入量转化为模糊量,以供模糊控制逻辑决策系统用,模糊决策器根据控制规则决定模糊关系r,应用模糊逻辑推理算法得出控制器的模糊输出量,后经计算得出控制量控制被控对象。模糊pid控制图如图2所示。

 
图2 模糊pid控制框图

对压差e、压差变化率ec和控制量u的模糊语言变量分别为e、ec和u,其模糊语言变量的模糊语言值均为:{nb、nm、ns、zo、ps、pm、pb},表示{负大、负中、负小、零、正小、正中、正大}。一般模糊论域中所含元素个数为模糊语言词集的2倍,所以模糊论域为{-6、-5、-4、-3、-2、-1、0、1、2、3、4、5、6}。根据比例因子ke和kec将e和ec模糊化。 

其中n=6,管网压力变化范围为0. 3~0.5mpa ,而设定值为0.4 mpa,得出误差的基本论域e∈[ - 0. 1、0.1];由经验得知,在正常情况下压力变化不会过0.05 mpa/s,故误差变化量的基本论域ec∈[ - 0. 05、0.05];因此可得误差e和误差的增量ec的比例因子分别为60和120。考虑对论域的覆盖程度、灵敏度和鲁棒性原则,本系统隶属函数选择为三角形隶属函数。 

模糊控制规则是模糊控制的,它能够模拟人的基于模糊概念的推理能力,也就是利用语言归纳手动控制策略的过程。模糊控制的确定,实质上是将控制经验加以总结而得出一条条模糊条件语句。用复合条件语句表示为:if 
e=nl andec=nl 
then u=nl,从而使系统输出响应的动态特性和静态特性都达到。本系统中,由于e和ec各有7个语言输入值,故共有7×7=49条if-then语句,可归纳为模糊控制规则表,具体如附表所示。 

4 结束语 

本文设计一种基于plc和变频器的且具有远程监控功能的冷媒水自动控制系统,具有响应快速、准确,操作方便,维护便利,节能等特点。将模糊pid控制器应用于该恒压控制系统,弥传统pid控制的不足,改善了系统的非线性、大滞后性等特征,提高了系统的鲁棒性。(end)




http://zhangqueena.b2b168.com

产品推荐