7
哈尔滨西门子授权代理商变频器供应商
1 引言
21世纪钢铁企业迅猛发展,企业竞争压力随之增大,低端的产品已不具有市场竞争力,这就要求我们开发出具有竞争力的产品。德国是世界上早采用RH精炼技术的国家,早在50年代末期此项技术就已出现,其中RH为当时德国采用RH精炼技术的两个生产厂家的个字母的缩写。至今,全世界已有100余台RH精炼炉。RH精炼技术在美国、日本、西欧得到普遍推广,炼钢生产线对生产的成本控制以及生产节奏要求越来越高,轧钢生产线对钢水的质量要求不断提高,对钢水的温度控制以及碳含量也提出了新的要求。RH(RuhrstahlHeraeus)系统设备是一种用于生产钢的钢水二次精炼工艺装备,广泛用于钢水的脱碳、脱氧、脱气、升温、成分调整及低碳钢冶炼等方面。传过程控制技术发展到今天,在控制方式上经历了人工控制和自动控制两个发展时期。在自动控制时期,过程控制系统经历了三个发展阶段,它们分别是:分散控制阶段,集中控制阶段和集散控制阶段[13]。RH真空处理自动控制系统从上世纪的六、七十年代的继电逻辑控制系统、电动单元组合仪表系统发展到了目前PLC网络控制系统。RH钢水真空处理采用二级计算机控制系统。基础自动化包含电控和仪控,是电仪合一的PLC控制系统;二级自动化采用奔腾PC机,编制数学模型实现过程控制。随着工业自动化技术的不断发展,企业内部信息网、客户/服务器模式、现场总线技术的出现,对RH真空处理自动化和计算机的结构也产生影响。现在RH真空处理自动控制系统采用PLC制系统,在现场控制级采用现场总线技术,在基础自动化级和过程控制管理级采用计算机网络技术,在传动系统方面,全数字化的可控硅整流装置和全数字化的交流逆变装置已经替代了原来的模拟控制的交/直流供电装置。在现场检测仪表方面,具有现场总线通讯能力的智能仪表已经替代了原来的模拟检测仪表。
2 RH真空处理基本工艺
RH系统设备是一种用于生产钢的钢水二次精炼工艺装备,整个钢水冶金反应是在砌有耐火衬的真空槽内进行的。真空槽内部砌有耐火砖衬,以确保真空槽不会被高温钢水烧穿。真空槽的下部带有两个浸渍管,用来插到钢水里,浸渍管内壁砌有耐火砖,热弯管安装在真空槽的上部。被抽走的气体通过真空槽上部的热弯管经过气冷器排放到大气中。
在钢水进行处理之前,浸渍管要浸入即将进行处理的钢水包中。随着真空泵不断抽走真空槽内的气体,钢水表面的大气压不断减小,真空槽内外的气压差迫使钢水由浸渍管流向真空槽。真空槽下部的两个浸渍管,分别为上升管和下降管。钢水处理期间真空环流系统不断向上升管中吹入氩气,相对于下降管产生了一个较高的静压差,这个差迫使钢水从上升管进入真空槽而后在自身重力的作用下从下降管流出,如此使钢水不断循环流动。而在真空泵的作用下真空槽钢水中的氩气、氢气、等气体不断被抽走,使真空槽内始终保持抽真空的状态。同时,真空槽内的钢水在循环流动时还进行着一系列的化学反应,比如脱氢反应脱氧反应加热反应等。通常,为了达到满足某钢种的要求、使钢水成分得到控制的目的,RH在循环脱气过程中还加入了合金处理过程。
3 控制系统的理论分析
在RH真空处理过程中,冶金反应主要基于热力学和动力学的理论。真空冶金时,真空对脱气、碳脱氧、脱碳等反应产生教为明显的影响。
3.1 钢液循环原理
RH的主体设备是一个圆柱体型状的真空室,高度可达7~10m,底部有两根耐火材料做成的管子,其中一根称为上升管,另一根称为下降管,都称插入管,处理时插入到钢水中。当真空室抽成真空状态后,钢水在大气压作用下,升高约1.4m,通过插入管进入真空室。由于在上升管通入氩气,氩气进入钢水后受热膨胀,推动液面上涨,使真空室内上升管一侧的钢水液面显著下降管一侧,钢水向下降管一侧流动,经过下降管回流到钢包,由此产生钢水的循环流动,钢包中钢水就这样在真空室反复循环。
3.2 代控制方法
可编程控制器是一台计算机,它是专为工业环境应用而设计制造的计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。它实质是一种于工业控制的计算机,其硬件结构基本上与微型计算机相同。
4 架构设计
RH控制系统采用两级控制系统组成,分别为一级基础自动化系统和二级过程计算机控制系统,两级系统分别承担不同的功能:
一、基础自动化系统(L1级):管理整个RH生产过程,由PLC(包括分布各操作台的远程I/O)、OMS(人机接口)、工程师站、编程站及工业以太网络组成。采集现场信号,完成电气设备的逻辑顺序控制、过程回路控制、设备运转操作、设备监视和报警等基本功能。
二、过程计算机控制系统(L2级):是以L1系统为基础的相对立的系统。对整个RH系统生产过程进行管理和过程优化,并为炼钢厂的管理信息系统及攀钢ERP系统的建立留接口。
RH系统的控制分为两部分,基础自动化控制(L1)和过程计算机控制(L2)。一级控制主要负责基础自动化的一些控制,包括现场执行元件的控制,参数检测的反馈以及电机的交流传动控制等,主要采用西门子工业控制计算机系统和西门子PLC系统实现;二级控制负责一些数据模型的建立,模型动态控制,生产计划编制和流程跟踪,报表系统等,主要采用工业以太网实现。
所有电气和仪表设备安装在单控制柜里,信号连接到过程控制单元的I/O模块。通过安装在PLC继电器输出端或辅助继电器控制所有电磁阀和电机控制。要求的I/O数量是由驱动、仪表和其他用电数量所确定。因此由程序结构确定I/O数量,并考虑所有要求的驱动和控制功能包括20%的备用能力。为了内存要提供30%的备用能力。每机架至少预留一个空槽。除了顺序控制和联锁外,所有重要任务如监视、管理、过程值控制将在基础自动化系统(1级)CPU里实现。
RH基础级控制系统主要用来对炼钢过程进行实时的监测与控制。实现了采集现场信号、进行数据处理、逻辑判断以及现场设备控制的功能。PLC中的控制软件是采用西门子提供的Step7V5.4编程工具实现的。画面软件采用WinCC6.2,为实现对监视和控制生产过程以及对生产数据进行归档和进一步处理提供了良好的HMI。
4.1 环流气体流量调节的PID控制
环流气体流量PID调节的难点在于如何使得操作人员设定的环流气体总的流量,通过PID程序控制分布到4个支管上各自的调节阀进行流量调节,同时将输出反馈给调节阀进行控制。经过仔细研究,在实际生产过程中我们采用了PID串级调节的方法。PID调节主要包括3个主要参数:设定值SV、反馈值PV和输出值MV,把SV与PV进行比较得到MV的值。把操作人员设定的环流气体总的流量除以4后,平均分配到4个支路上的PID控制器的SV值。4个支路上采集到的流量计的过程值作为PV值,各自PID调节的输出为MV值控制各自的调节阀。但是在实际的生产过程中我们发现,偶尔出现个别管路堵塞的情况时,真空槽环流气体的总量与设定值差别很大,环流效果非常差。在控制上做了一些改进,主控制器为我们虚设的一个控制器,它不直接对现场设备进行控制,操作人员设定的环流气体总的流量为主控制器的SV值,把4个支路上采集的流量变送器的气体流量之和为主控制器的PV值,这样这两个值进行比较得出主管路上的MV值。把这个MV值除以4后作为4个分支路上PID控制器的SV值,与本分支路上的流量变送器反馈值做比较进行PID调节控制本分支路上的流量调节阀。
5 系统测试及应用
L1子系统有2套西门子PLC控制站,2台HMI服务器,2套三电可共用的客户机,服务器及客户机安装WinCC软件,用于现场设备的控制及状态监控等。1套L1软件开发和系统维护用的工程师站,工程师站安装Step7编程软件,2台L1用报警报表和编程维护打印机,控制站的主站与分站之间通过PROFIBUS网络通讯,控制站与服务器之间务器与客户机之间通过以太网通讯。
(1)系统软件测试
由于服务器、客户机及工程师站均采用bbbbbbsXP操作系统,且服务器和客户机安装有WinCC软件,工程师站安装有Step7编程软件,所以安装完上述软件后,分别进入bbbbbbsXP和WinCC、Step7进行各项操作实验,检查系统软件运行是否正常。
(2)通讯功能测试,通过下装PLC控制程序和观察监控画面设备动作及状态变化情况判断上位机与PLC之间的通讯是否正常,通过画面操作判断工程师站与上位机之间的通讯是否正常,通过CPU、电源、通讯模板及I/O模板上的指示灯判断主站与分站之间的通讯是否正常。
(3)数字量输出信号测试
利用Step7软件提供的强制功能,强制各输出点,观察模板上对应点的指示灯是否亮,如果通过继电器控制现场设备,观察继电器是否吸合,还要与现场人员联系,确认设备动作是否正常,这样既可测试出数字量输出摸板上各输出点输出是否正常,还能检查出现场设备接线是否正常。
6 结论
本文对新建的RH真空处理的三电自动控制系统的的控制要求、控制理论、控制水平、控制系统的构造、控制功能进行了深入的分析和研究。RH真空处理的自动控制系统选型遵循了、、实用的原则,节约投资的原则;设备选型和装备水平达到了当前的水平。这些工作对于攀钢以后的新建工程及改造工程的自动控制系统选择有一定的借鉴意义。
1 物联网宽带PLC家电系统及网络构成
物联网宽带PLC电力线载波通信家电是将家电本身的一些信息,通过电力线发送到PLC网关,PLC网关再将家电发送的数据信息通过互联网发送到所需要的地方,同时又可以将用户的需求通过互联网发送PLC网关,PLC网关将需求命令数据通过电力线发送给PLC家电,家电按照用户的需求指令进行运行、反馈运行信息等。
物联网宽带PLC家电系统网络包括感知层、PLC通讯层、网络层、应用层等几部分。其中冰箱、热水器等接收用户可以通过手机、PAD、电脑等发送查询、控制命令,同时冰箱、热水器等家电再根据用户的指令信息返同用户需要的数据给手机、PAD、电脑等设备。由于网关及家电都内置PLC模块,故此处的不再通过无线或网线等传统方式,而是直接采用电力线进行传输并且由于采用了PLC通讯,热水器、空调等家电设备还可以设计成显示板与整机分离,即方便操作,又能给用户带来舒适的体验。
2 电力线载波通信(PLC)物联网家电的特点
PLC物联网家电异于普通的家电设备,也异于远程抄表系统。由于数据的传输依靠电力线,并且家电设备直接面对用户来进行操作、显示,故要求各个家电设备具有适当的感应、传输速度、较强抗干扰能力、互联互通、自动组网、较高的通讯性、适度的传输距离等。
适当的感应、传输速度针对不同的家电,传输的数据速度要求往往不同。如一般的热水器、洗衣机、冰箱、空调等不需要传输图像、声音的家电,10 k以内的传输速度足够。而针对物联电视、电脑等视频设备则需要几百k以上的传输速率。
较强的抗干扰能力一般指在一定的范围内,如果存在多个PLC设备或者电力线上存在和传输频率相同的干扰时,每个设备问能够正常通讯而不被其它影响。
互联互通(M2M)指物联网家电之间、Internet与物联网家电之间能够互相通讯,传递相关信息,只有这样才能实现“人在外家就在身边、人在家世界就在眼前”。
自动组网指通过一定的措施,使需要互联互通的家电能够自己选择组成一个网络,且不与不需组网的PLC设备组网。
较高的通讯性指联网家电有效地进行通讯,而不能像远程抄表那样,因为一次通讯成功率低而不得不多次抄读,而物联网家电则要求满足人们对操控、欣赏的舒适性要求。
适度的传输距离指一般互联互通的家电在同一住户内,如果传输距离太远,则用户数量多的时候很容易影响到其他用户,但控制在200 m以内,则不会对其他用户的使用产生太多的影响。
3 物联网宽带PLC家电系统的设计
基于PLC物联网家电的特点,技术是PLC通讯的技术,本设计实现方案主要从以下几方面来讲述在物联网家电中如何通过PLC通讯实现家电的互联互通。
3.1 物联网PLC家电硬件构成
物联网家电硬件构成
本文所指的物联网PLC家电指由普通家电加上PLC通讯模块构成的家电,其硬件构成如图2所示。电视、冰箱等可将PLC通讯模块直接整合在家电的内部,而空洞、热水器等除了将PLC通讯模块整合在整机内之外,还可将操作显示板与整机进行分离,操作显示板内部也嵌入PLC通讯模块,这样就可以实现整机与操作显示板虽然是分离的,但通过PLC通讯仍然能保持显示板与整机的数据交换。
一般整机内的PLC通讯模块既负责与其对应的显示板进行通讯,也负责与PLC终端网关进行通讯。
网络交换处理IC负责接收INT6400传来的数据并将数据转化后传给RJ45接口。业务处理IC根据通讯协议解析接收到的数据,并将数据通过SPI接口或UART接口直接传送给家电PCB板上的MCU。同时将家电传来的数据打包后发送给INT6400。
3.2 物联网PLC家电通讯关键技术软件实现
(1)PLC通讯整体介绍
PLC通讯是指利用调制解调技术对信号进行调制,然后把信号加载到电力线中,在接收方通过对加载信号的解调,传输数据进行通信的技术。
目前PLC通讯按通讯的带宽可分为窄带电力线载波通讯、宽带电力线载波通讯:
由于窄带电力线通讯技术的调制方式、载波频宽限制,导致传输速度、抗同相干扰性等功能并不适合载波家电的需求。
宽带电力线载波通讯技术一般采用一种多载波调制技术,即正交频分复用(Orthogonal Frequency Division Multiplexing OFDM)技术。其技术实现为,在频域内将指配的信道分成若干正交子信道,将高速数据信号转换成并行的子数据流,在每个子信道上使用一个子载波进行调制,并且各个子载波相互正交,并行传输。其技术特点是传输速度快,理论传输速度可达200 M,抗干扰能力强。所以根据以上的这些特点,宽带PLC通讯技术较适合应用于以电力猫为代表的室内因特网接入、视频等对实时性要求较高的领域,同时也适合于物联网家电对通讯速率、抗干扰性等特性的需求。
(2)如何实现互联互通
电力线上信号的传输协议采用TCP/IP协议,采用网络密钥认的机制,不同的家电之间进行信息传输时,只要遵从相同的通讯协议,采用相同的网络密钥即可实现。
(3)如何实现自动组网
当有新的设备接入时,通过两种方式将新家电接入:
种方式,在新设备及终端服务设备上都留有有线接口,当将两者通过信号线连接到一起时,新设备自动发送注册指令,终端服务设备接收到注册指令之后,自动将网络密钥、地址、设备协议等信息发送给新设备,之后新设备再与组内设备通讯时,采用终端服务设备发送给其的设备协议进行通讯,从而完成新设备的自动组网。
二种方式,按下终端服务设备上的注册按键,终端服务设备只接收注册协议。新设备通电之后,按册按键,新设备自动发送注册信息到电力线,同时监控终端服务设备回传的注册确认信息,双方确认注册信息正确之后,即完成自动组网处理。将按键恢复初始状态,两者也采用原有系统的网络密钥进行正常通讯。
3.3 PLC通讯现场实施中问题的解决方案
(1)同相干扰的解决方案
当电力线干扰比较严重或者电力线上存在其它PLC设备时,有时会导致对传输信号的干扰,所以在软硬件方面需要采取一定的滤波措施,以滤除线路上的干扰。
由于INT6400子载波信号传输频率在2~30 MHz之间,属于高频信号,所以硬件采用能够滤除低频信号的滤波电路,使高频信号减。
在软件方面电力线载波通讯将高频信号采用OFDM技术耦合到电力线,子载波会根据线路的衰减情况,自动选择信号的调制方式,其中包括:QAM、QPSK、BPSK、ROBO等几种方式,从而保证了传输时的抗干扰性,且提供了足够的物联家电使用带宽网。同时同组载波设备采用相同的网络密钥,载波模块检验网络密钥非法时,自动丢弃收到的数据包,而相同时才对数据包进行处理。通信协议中还带有地址,同一组设备中某一设备根据地址判定是否为发给自己的数据,组内设备仅处理发给自己的数据包。
(2)跨相耦合的解决方案
通讯数据在电力线传输的过程中,信号在经过某些空气开关等设备之后会有很大的衰减,信息传输不稳定,数字家电的运行稳定性受到严重影响。当信号分属电力线上的A、B、C三相时,往往是导致3相间的信号无法传输。
为了解决以上问题,根据现场具体情况进行以下分类处理。
现场载波模块之间的连接,按照载波信号是否跨相可分为两种,即跨相与不跨相;根据载波信号是否跨空气开关又可分为两种,即跨空气开关与不跨空气开关;故可以实现四种组合方式,即有四种具体硬件实施方案:
(1)同相载波信号不跨空气开关
此种情况为简单,在一般的家庭内,电力线上传输的载波信号即使有衰减也不会太大,故直接将有需要联网的家电接入室内的电力线上即可,增加其他耦合设备、器件。
(2)同相载波信号跨空气开关
当出现此种情况时,可在空气开关的两侧接入耦合电感、安规电容等设备,从而将传输信号直接耦合到空气开关等器件另一侧的电力线上,从而保证了物联网家电所需的带宽。
(3)异相载波信号不跨空气开关
当出现此种情况时,可在异相电力线上接入耦合电感、安规电容等设备,从而将一相上传输的载波信号耦合到电力线的另一相上;如果异相电力线间隔稍微远一些,不适合使用耦合电感或安规电容,也可以在异相电力线的每一相上安装带无线模块的载波模块,通过无线将发送模块发送的到接收模块,接收模块再将数据信号耦合到电力线上,从而满足了物联网家电的带宽要求。
(4)异相载波信号跨空气开关
一般空气开关上接成本较低的耦合电感、安规电容,异相间如果条件允许也接入成本较低的耦合电感、安规电容,只有当接入无线载波模块时,才在电力线上接入无线载波模块。
4 结束语
本文给出了一种物联网宽带PLC家电系统设计实现方案,解决了应用中碰到的同相干扰、跨相耦合、自动组网等方面的问题,从而使宽带PLC实际的应用于物联网家电。今后的工作将着重研究的方案,扩大产品应用范围。
目前工控领域中广泛使用的可编程逻辑控制器(Programmable Logic Controller)大概可以分为两类:传统PLC与软PLC。传统PLC由于自身存在一些不足,例如封闭的硬件体系结构,主要由几家厂商所,而软PLC在开放性及方面潜力,目前欧美等很多西方国家已经把软件PLC作为一个对象进行研究开发。
传统PLC具有硬实时性,正因为如此它才能提供快速、确定而可重复的响应。另一方面,由于软PLC是基于PC而建立在一定的操作系统上,例如bbbbbbs NT,而这并不是一个硬实时的操作系统,这使得以PC为基础的控制引擎实时性问题成为制约软PLC发展的主要因素之一。
针对软PLC在实时性方面的不足,本项目采用基于嵌入式处理器的控制方案,软PLC执行系统作为一个任务在控制器固件内。美国TI公司推出的C6000系列数字信号处理器(Digital Signal Processor)具有很高的处理能力,特别是为其TMS320C6000TM、TMS320C5000TM和TMS320 C28xTM系列DSP平台所设计开发的一个尺寸可裁剪的实时多任务操作系统内核DSP/BIOS,提供抢占式多线程、硬件抽象、实时分析和配置工具,可实现实时线程调度与同步、主机与目标DSP间通信或实时监测。DSP是串行控制的,运算速度快。基于DSP/BIOS实时内核的PLC执行系统,具有相当好的实时性及稳定性。下面着重介绍其设计及实现方法。
1 软PLC的设计规划
1.1 软PLC的架构分析
由PLC执行系统控制的PLC程序划分为一级程序和二级程序,它们的执行周期不一致。一级程序每8 ms执行一次,处理响应快的短脉冲信号,例如外部的操作面板信号和报警信号,在程序末尾自动给出结束标记END1。二级程序为一般的PLC指令,每8n ms执行一次,n为二级程序的分割数。在开始执行二级程序时,PLC执行系统模块会根据执行程序所需要的时间自动把二级程序分割成n块,每个8 ms只执行其中一块,并在二级程序结束时自动给出结束标记END2。
1.2 PLC执行系统的工作原理
PLC采用循环扫描方式工作,进行系统初始化,然后进入循环工作过程包括输入采样、PLC指令执行及输出刷新几个阶段,
1)系统初始化:在循环执行PLC程序前,要进行执行系统的初始化,包括参数的输入及变量初值的设置;2)输入的采样:每次执行PLC程序时,要读取外部输入状态至缓冲区中,以备后面程序查询;3)执行用户PLC程序:执行用户程序,就是CPU从PLC程序的地址开始按顺序逐个执行编译后的PLC指令,过程结果暂存在相应的寄存器内;4)输出的刷新:执行完用户程序后,需要把处理后需要输出的进行外部输出。由于PLC控制的对象大都是变化缓慢的信号,而PLC每次扫描输入和逻辑运算的时间很短,本PLC执行系统设定为每执行一个循环,就进行一遍输出的刷新。
1.3 DSP/BIOS的线程调度
文中的PLC执行系统的开发均在TI公司提供的集成开发环境CCS(Code Composer Studio)中进行,CCS不仅集成了常规的开发工具,如源程序编辑器、代码生成工具及调试环境,还提供DSP/BIOS开发工具。DSP/BIOS是一个精简的实时操作系统内核,具有实时操作系统功能。它提供抢占式多线程,支持多种不同级,每种线程都有不同的执行和抢占特性,分别是硬件中断(HWI)包括时钟函数(CLK)、软件中断(SWI)包括周期函数(PRD)、任务线程()、后台线程(IDL)。线程类型的选取原则:HW1只用来处理对时间要求苛刻的关键任务;SWI用来处理相对立的函数,如果算法要求比较复杂则使用。提供了很多通信和同步的手段,并且拥有自己立的堆栈,因此比SWI灵活。IDL用于执行与时间无关的非关键任务。
在DSP/BIOS线程调度中,硬件中断与软件中断的线程可以暂停运行中的低级任务,而的任务线程用特定的API才能抢占当前运行的低级任务线程,且只有任务线程才能暂停状态。基于PLC执行是一个循环执行过程,且与其它运动线程有复杂的通讯交互,本执行系统将其建立为一任务线程,由DSP/BIOS实时操作系统进行调度。
2 PLC执行系统的具体实现
2.1 数据结构定义
1)PLC指令代码数据结构的定义。PLC用户程序在系统内部以一定的二进制格式存放,采用如下指令开辟一个a字节的内存区存放编译后的PLC指令代码,内存区大小a根据实际情况设定。
long*plc_pt;
plc_pt=(long*)malloc(a);
2)PLC执行指令结构体的定义。PLC指令代码主要包含内容为指令类型及变量地址,定义如下PLC执行指令结构体:
struct plc_code_type //PLC执行指令结构体
{
unsigned char code_type;//指令类型
unsigned short pt addr;//变量地址
};
由此,在初始化时定义一个pk_code_type类型的指针直接指向PLC指令代码区.在进行PLC指令解析时,可直接移动该指针进行指令解析并输出。
2.2 PLC指令解析
PLC执行系统的一个关键问题在于PLC指令的解析,利用DSP的C语言,建立相应的PLC指令的执行函数库。PLC用户程序可看成由多段执行块组成,每个执行块包括条件指令及执行指令。下面分为条件指令解析及执行指令解析来进行描述。
2.2.1 条件指令解析
定义一个变量来保存条件指令解析结果,以便在解析执行指令时根据此条件指令解析结果进行执行指令处理。
例如常开触点(LD)可以用如下函数实现:
void plcLD(plc_code_type&pc)
//pc表示当前指令在用户程序中的指针位置
{ if(1==pc->pt_addr)//指令的地址为1
{
plc_result&=0x01;//闭合状态置位
}
}
2.2.2 执行指令解析
执行指令则根据当前执行块条件指令结果来判断对元件地址进行相应处理。例如置位指令(SET)可以用如下函数实现:
void plcSET(plc_code_type&pc)
{ if(plc_result&1)
//判断条件指令,闭合,有输出
{
pc->pt_addr|=0xff;//对应地址置位
}
}
这样,逐个对PLC执行块进行解析,输入和输出单元的刷新同样利用函数来实现,后通过输出口送出控制量,实现对用户PLC程序的执行控制。
2.3 PLC执行系统运行流程
在DSP/BIOS配置工具下的Scheduling项目中建立一个任务线程,比如为PLC_Deal_Task,并对该任务函数的级及其它相关内容进行设置,则可直接在PLC_Deal_Task线程中进行PLC指令解析处理,并实现PLC的循环扫描功能。
总体设计思想如下:设定一级程序的执行周期为m个指令计数执行一次,m与扫描周期有关。在进入二级循环后,判断指令计数是否大于m,未到m,则进入执行二级程序。如果条件满足,跳出循环,1周期完成,
3 测试分析及应用
3.1 软PLC执行系统的测试分析
根据上述设计方法构建出PLC执行系统,设计实际应用的PLC程序并在试验机上进行测试,观察设备的逻辑动作及执行系统性能情况。C CS提供了一系列可视化工具对运行系统的性能进行测试,“CPU负荷图”用于分析CPU的利用率,“任务执行图”可以出系统是否符合实时性要求。现根据微钻刃面检测机的工艺过程设计了其PLC程序,下载到本软PLC执行系统中运行,通过CCS监测工具监测其运行性能。图3是CPU负荷图,负荷峰值在25%左右,变化平稳;图4是任务执行图,图中左边栏下面的Assertions项目用于指示某个实时性要求没有达到,或是侦测到某个无效状态,如果Assertions项目没有出现小方块则表示对应线程的调度满足实时性要求。另外,经上机调试,设备整体运行逻辑也按照程序要求运行。此实验表明,基于DSP/BIOS的软PLC执行系统能够满足实时控制的要求且工作稳定。
3.2 软PLC执行系统的应用
传统PLC的一个缺点是硬件体系结构相对封闭,并且成本高,例如日本三菱PLC FX2N系列控制器本身未集成运动轴控制功能,每增加一个运动轴的控制均需额外扩展脉冲发生器单元(Pulse Generatint Unit,PGU),如果在多轴设备上应用可能会造成成本过高并且灵活不够。本课题组开发的运动控制器IPMC8188可立控制8轴,软PLC执行系统作为一个任务运行在该控制器的固件中。对比传统PLC,有稳定强大的PLC功能的运动控制器可降低控制系统构建的复杂程度,提高控制效率及开发效率。图5所示为内嵌软PLC执行系统的IMPC8188运动控制器,目前,该型运动控制器已在全自动刃面检测机、自动贴片机及全自动微钻磨尖机等自动化设备上使用并稳定运行。
4 结束语
基于嵌入式处理器的软PLC执行系统能有效的软PLC在实时性及稳定性方面的不足,并且由于自带操作系统,有地数据存储和自恢复功能。文中论述的基于DSP/BIOS的PLC执行系统的设计,与运动控制相结合,在小中型自动化设备方面应用广泛,另外在实现大规模系统的综合性自动控制方面也有很大的发展潜力。



可编程计算机控制器,简称PCC(programmable computer controller),作为一个全新的概念于90年代中期在工控界提出,它是一种不同于可编程逻辑控制器PLC(program logic controller)及工业控制机IPC(industry personal computer)的新一代可编程计算机控制器,代表了当今工业控制技术的发展趋势。
PCC是在PLC的基础上发展起来的,它不但吸取了PLC的全点和IPC的长处,而且它自身的优势非常明显。PCC中采用了分时多任务操作系统,这样编程者可以十分灵活地利用操作系统调度管理整个系统,摆脱了PLC中单个程序对硬件的依赖,这对整个系统的运行,维护都有重要的意义。PCC模式比IPC模式同样具有优势,虽然IPC功能强大,界面友好,但IPC模式开发周期长、现场布线不够灵活、安装体积大和扩展性差,而且IPC模式主要是通过接口板转换各种信号,干扰也是一个很大的问题。
PCC中集成了PLC、IPC和大型计算机的各自优点,为工控界提供了高水平的控制平台。设计时能提供面向工业的化、标准化并符合软件及硬件的模块化的设计,PCC能够方便地处理设计中的开关量、模拟量,能够灵活地进行回路调节,而且能够使用语言编程。PCC技术,在世界上以奥地利大的跨国公司贝加莱(B&R)作为代表,在其产品中已经成功地应用了PCC技术。其他跨国大公司,如西门子(SIEMENS)、通用电气(GE)、欧姆龙(OMRON)等,近也提出将在其新产品中发展、跟踪PCC技术。
可编程控制器(Programmable Logic Controller ,简称PLC,下同)是电气自动控制的新技术,目前公开发行适用于技校的教材较少,给广生的学习带来诸多不便。本文介绍PLC的编程设计方案,使电气工程技术人员特别是初学者对PLC技术加深了解和认识;同时帮助学生好地解决学习PLC技术中难掌握的编程难题,达到能够牢固掌握、熟练运用、提高应用设计能力和加快推广应用的目的。
现在各技校相关都开设这门课程,PLC成为了电气新的技术基础课,也成为广大非电学生要了解的基础知识。目前的PLC设备以欧美日等国家的产品占主导,技术日臻成熟,在关键的软件编程技术方面却未有统一标准。现有的教材也很难对众多的都进行介绍,学生在学习中就难免无所适从。学生对PLC这一新技术都产生浓郁的学习兴趣,在学习上碰到不少难题,对编程的掌握是尤为,是缺乏技巧。
PLC控制系统是以程序的形式来体现其控制功能的,因此在学习时大量的时间将用在程序的设计上,也就是软件编程的设计上。程序设计是整个控制系统设计的关键环节,应包含设计文件(包括电气原理图、软件程序清单、使用说明书、元件明细表)的编写、编程软件的使用、程序的编写和调试。教学工作中,针对学生学习PLC编程时因缺乏实际工作经验和设计思路模糊的情况,我总结出PLC的编程设计方案。该方案流程为:设计构思、逻辑分析、硬件配置、安装接线和程序设计、总装调试、实际运行。流程如上图所示。
PLC的控制系统设计阶段是设计构思,其任务是理顺设计思路,将控制系统的要求转化为PLC的控制模式,寻求程序设计的解决方案。这正是PLC控制优越性的具体体现阶段。依据控制系统的要求,设计构思时我们只需考虑期望的逻辑功能,确定被控制系统完成的动作和动作的顺序,提出简洁、完整的功能描述,画出完整的功能表图或控制流程图,以此作为设计蓝本,也为使用说明书的编写定稿。
二阶段是逻辑分析:以设计构思作为参考,在对控制系统的程序设计进行逻辑分析时要对被控制对象的工作要求、工艺特点以及控制系统的控制过程、功能和特性进行深入分析。明确地划分出控制的各个阶段及列出各阶段的特点、各阶段之间转换的条件。弄清哪些外围设备输入信号到PLC,哪些外围设备接收来自PLC输出的信号;输入、输出量是开关量还是模拟量。确定控制系统需要的输入、输出点数量,确定内部辅助继电器、定时器、计数器等参数。后画出逻辑时序图,为程序的设计提供指引。
三阶段是硬件配置,包括器件选择和I/O设备分配。根据前两阶段的分析,参照PLC的结构与功能特性,考虑PLC的指令系统是否完善、有没有模拟量输入输出、有没有扩展能力、有没有中断能力和联网能力,以及功能范围、I/O点数、存储器容量、处理时间,以便确定PLC的型号。选择机型时要考虑性价比、备品备件及技术支持等问题,根据系统的实际需要选用合适的型号,并且选择相应的外围配件,列出元件明细表。
设计时,为减少外界干扰和提高控制精度,一般以开关量为主,并根据实际I/O点数留有20%-30%的余量作为备用。将PLC的I/O接口与之对应进行分配后,列出I/O设备分配表和画出I/O设备接线图,为编写使用说明书和安装接线提供依据。
四阶段为安装接线和程序设计,可同时进行。在控制柜中,强电和弱电控制信号应尽可能进行隔离和屏蔽,防止强电磁干扰PLC的正常运行。PLC的程序设计和现场的安装接线施工可同时进行,从而大大地缩短控制系统设计及施工的周期。
程序设计是整个系统设计的关键环节,在PLC程序设计中,可采用梯形图、指令表、SFC(程序流程图)进行编程。目前各个PLC的生产厂家都把梯形图作为用户编程语言。它是一种图形语言,由接触继电控制系统变换而来的,具有形象、直观、易懂好记的特点。设计梯形图时,一种办法是根据已知的继电器控制电路直接改画成梯形图;另一种办法是根据控制要求重新设计梯形图。对于初学者通常可采用继电系统设计方法中的逐步探索法作参考,以基本指令为基础,以步为,一步一步设计下去,一步一步修改调试,反复设计,调整逻辑关系,不断优化以达到设计要求,直到完成整个程序的设计。
我在电工中级证考核训练一体化教学中,对我校制冷0105班(中技班)学生实施PLC教学时,引用《电力拖动控制线路与技能训练》书(三版)P139图2-19(C)为例,作适当的修改后(见图A),要求学生根据它的控制逻辑关系,在满足顺序启动逆序停止的控制前提下,用基本指令进行编程设计,并画出梯形图草图。目的是检查学生对PLC知识的掌握程度和检验他们的编程技巧。结果在30分钟内,全班51名同学除5人(占10%)不会做外,只有12人(占24%)能按要求正确地完成。绝大多数人即使完成设计任务,要花费很大精力,设计出的程序出现了逻辑错误或者无法在计算机上编程的现象。
图B是有34人(占66%)设计出的程序,是具有代表性的一种错误。他们是直接将图A直接改画成梯形图,并且忽略了不能编程的电路和程序的次序等设计问题。具体解决对策如下:
①、不能编程的电路与对策:
如图B的Y1线圈支路中的5个触点构成了桥式电路,不符合从左到右、从上到下的顺序执行原则,属于不能编程的电路。
解决对策是:如图C所示,将它改变成为双向电流流动的电路,即将没有X1的电路与没有Y1的电路作并联处理。
②、程序的次序与简化对策:
在动作相同的控制电路中,借助触点的构成方法可简化程序与节省程序步数。如图B的Y2线圈支路中,由X2、X3、Y1和Y2四个触点构成的电路共需6步程序,用简化对策:即将串联电路多的电路写在上方;将并联电路多的电路写在左方进行简化后,不需要用ORB和ANB指令,节省2步程序,使程序简洁。
③、线圈的连接位置:
在画梯形图时要注意每个从左边母线开始的逻辑行终止于一个计数器、定时器或继电器线圈,且线圈不能直接与左母线相连,这一点与实际的电路图不一样。如图B的Y2线圈支路中在Y2线圈的右侧不能有Y1触点,应该将Y2线圈与Y1触点的位置对调。
通过以上的3点措施对图B进行优化修改后,如图C所示,共需要16步程序。修改后虽然能满足顺序启动逆序停止的控制要求,但采用直接改画成梯形图的这种办法所设计出的梯形图还是显得比较累赘,不够优化。若采用二种办法重新设计,依据PLC是以扫描方式按顺序执行程序的基本原理,按照动作的先后顺序,从上往下逐行绘制梯形图,如图D所示,只需要11步程序。这样设计出的梯形图比继电器控制电路改画成的梯形图加清楚、容易理解。这需要学生对PLC的概念要清晰、分析要透彻、思路要正确。
解决问题的方法可能不是的,我们在设计同一要求的程序也可能会有多个设计方案。比较这多个设计方案的优劣性可用扫描周期的长短来衡量。扫描周期=步数×每步时间,时间越短说明该程序越优越,显然二种办法设计出的程序为优越。编程设计时在符合要求的前提下要考虑尽量少占用内存,设计出来的程序也作比较和进行优化处理。在没采用本文介绍的编程设计方案之前,学生设计时片面地套用继电系统设计模式,急于求成,没有很好地深入研究电路的控制功能,缺乏对控制系统进行逻辑分析,显得设计思路不清晰,运用不够灵活,导致出现以上的错误。对于开始学PLC的学生来说,这是比较容易犯的毛病。通过对以上程序的对比分析和讲解编程设计方案的思路,的学生能很快地找到出错的原因,并意识到编程设计方案的重要性。经过一个星期的编程训练,学习交通灯控制和简单电梯的控制等比较复杂的编程设计时,运用编程设计方案对控制系统进行针对性的分析,教学讲解一遍后,85%的学生都能正确设计出来。
总装调试为五阶段,将已经设计好的程序输入到PLC用户存储器中。PLC所构成的控制电路可以先在模拟板上采用实际使用的检测元件和执行机构组成模拟控制系统进行模拟调试,以检查硬件是否完整和正确;软件是否满足工艺要求并检验控制器的实际带负载能力。满足系统控制要求后再安装到生产现场,进行现场调试,这时应对某些参数(如定时器设定时间、传感器的位置和信号大小)进行现场整定和调整。还需要对系统的所有措施(如接地、保护、互锁等环节)做的检查。经现场调试、校对无误,即可投入考验性试运行。若不满足系统控制要求,则应作相应的修改和检查,一切正常后,再将程序写入PLC的EPROM中,形成终的控制系统程序,即可完成整个设计任务,投入实际运行。
后整理设计文件,画出电气原理图、设备安装图以及接线图、列出软件程序清单、使用说明书和元件明细表,形成一整套完善的设计方案。
PLC在使用过程中当控制要求发生改变时,可不需换或较少地改变硬件设备,只要修改PLC控制程序就可以满足新的要求,具备较强的在线修改、功能扩展的能力,充分体现出其“可编、可扩展”的特性。PLC还能与计算机通讯,实现人机对话、远程控制,具有在线实时监控与故障自诊断功能,在自控领域中发挥着越来越重要的作用。
根据本人的教学经验,结合教学中学生的学习情况,从应用的角度来说,想学习好PLC技术,是要注意对以下两方面的知识掌握:即硬件系统的配置和软件的程序设计。硬件系统的配置需要对PLC的类型、结构、单元或模块、外设等特点和性能作深入了解,相对而言是比较容易掌握。难点是软件的程序设计,要掌握编程设计方案,做到熟悉PLC各个内部器件的特点、掌握指令系统(基本指令和功能指令)的运用、理解编程方法及其正确使用的要求。要提高编程技巧,在学习PLC原理的基础上,不断地进行编程操作训练、指令系统训练、程序设计训练,才能加深对各种指令的功能及其特点的理解,达到熟练地掌握编程方法,提高编程技巧,从而可以提高PLC技术的综合应用设计能力。