企业信息

    浔之漫智控技术(上海)有限公司

  • 7
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2017
  • 公司地址: 上海市 松江区 永丰街道 上海市松江区广富林路4855弄52号3楼
  • 姓名: 聂航
  • 认证: 手机已认证 身份证已认证 微信未绑定

    济南西门子模块代理商CPU供应商

  • 所属行业:电气 工控电器 DCS/PLC系统
  • 发布日期:2024-11-07
  • 阅读量:16
  • 价格:666.00 元/台 起
  • 产品规格:模块式
  • 产品数量:1000.00 台
  • 包装说明:全新
  • 发货地址:上海松江永丰  
  • 关键词:西门子代理商,西门子一级代理商

    济南西门子模块代理商CPU供应商详细内容

    济南西门子模块代理商CPU供应商


    一、运行环境的保证 
    因为PLC为精密电子产品,自动化控制的系统是要求长时间不间断运行,因此PLC的运行环境要求高,要防尘、防火、,防高温,防雷电,因此电气控制室一般都安排在具有双层玻璃的、安装有水式制冷空调的二楼,电控室的温度一般控制在28度左右;对于防尘则是将PLC安装在1M*2.2M*0.6M的带锁板为玻璃门的控制柜中,此柜上部安装有防尘罩的抽风系统进行柜内降温。 
    二、做好日常工作 
    1、日常准备工作:要的熟悉工艺流程,其次是对PLC各种模块的说明资料的熟悉,再次现场布局的了解,后确保自已的各种检测工具要完好无误。 
    2、日常点检工作:定期进行CPU的电池的电压检测,正常常情况下为3V,定期对构成PLC系统的相关设备的点检和维护,如UPS定期维护,利用停机时机,对PLC各控制柜进行人工除尘、降温,PLC程序的定期人工备份和电池备份及各相关坏器件的换等工作。 
    三、PLC故障的诊断 
    (一)总法则: 
    对于PLC系统的故障检测法:一摸、二看、三闻、四听、五按迹寻踪法、六替换法。 
    一摸,查CPU的温度高不高,CPU正常运行温度不过60℃,因手能接受的温度为人体温度37~38℃,手感为宜;二看,看各板上的各模块指示灯是否正常;三闻,闻有没有异味,电子元件或线缆有无烧毁;四听,听有无异动,镙丝钉松动、继电器正常工作与否,听现场工作人员的反映情况;五出现故障根据图纸和工艺流程来寻找故障所在地;六对不确定的部位进行部件替换法来确定故障。 
    (二)具体步骤: 
    当PLC的软件不正常时,主要看CPU的RUN状态是否正常,不正常则进行CPU后重新下载控制程序。 
    当PLC硬件不正常时则要按以下顺序进行检查工作: 
    1、查看PLC电源是否有电:有电则测量电压是否在+24V的±5%范围之内,有电且正常,则进行下一步;有电不正常则进行电源模块的输出端与输入端进行,若输出端不正常而输入端正常,则换模块;若输入端不正常,则进行输入端的逆流法则进行相应检查,如进行24V交直流变压器的输入电压端的交流电压220V的±10%检查,正常,则换直流24V变压器。无电则按迹寻踪,借助原理图+现场布置总图+接线图纸,检查给电源模块供电的各种电器器件的输出端的接线是否正确,不正确,重新接线;正确用万用表则检查空气开关的进线端与出线端有无正常供电,无正常供电,查明是外界还是自身原因,若为外界则是电压不足还是根本无电压,或负载过重,又或严重过流等等的分析,一直到将事故排除正常供电为止;若为本身器件坏则换之。 
    2、了解过CPU工作模式及级:有STOP、HOLDUP、STARTUP(WARMRESTART、COLDRESTART);低级有:RUN、RUN-P(PG/PC的在线读写程序)。查看CPU是在RUN模式,或是在STOP模式,又或是RUN模式的闪烁状态和STOP模式兼有的保持模式或叫调试模式。如果仅是RUN模式则CPU和各板为正常进行3步。如果是保持模式出现,可能是运行过程中用户程序出现断点而处于调试程序状态,或在启动模式下断点出现,对此情况重新调试好程序,再次将控制程序下载到CPU中方可。 
    如果是STOP模式,目测引起STOP的原因分析:A、无电,分析无电原因,是因为供电部门出问题,还是异常掉电(因有有1K3AH的UPS保证很少发生异常掉情况),通常情况下为检修拉电了,待检修结束后进行人工送电。再利用PLC的在线功能将CPU的工作模式从STOP转换为RUN;B、CPU坏,换新的好的同种类型同版本的CPU;C、有板子坏了,有序进行板子的换。对于硬件换时要注意使用与原来的器件相同的产品同型号、同版本来进行,否则会造成实际的PLC配置与相应编程软件中硬件配置数据库中硬件配置不同而无法进行用户控制程序的正常循环执行。 
    3、进行各个主板和扩展板上的通迅电缆检查和各模块各LED灯的检察,看是否有坏模块出现fault灯亮,若有则该模块不正常。对于数字量输出模块上各点其实与现实生活上的电灯开关是一样的功能且为常开点,所以在线检修该模块的任一点时,只要在无接线时且该在控制程序不给输出信号时来其通不通就可以了,若通,则该点不正常,不通则正常;不正常时要进行硬件连接线的另选点重接工作;另外我们也可以用新模块进行换后,对替换下来的模块的点进行测量通断状态,通,则该点坏,不通该点为好。对于数字量输入模块的点当于导通的线圈,为常闭状态,它可以在线或下线检测,用表检测若是坏点的话则是不通的状态,则换点重接线;好点则为通状态。只要对硬件接线重新换点重接后均要用相应编程软件对控制软件进行0X或1X地址替换工作。对于模拟量输入模块是与数字量输入模块相同,每个通道都相当于一根导线形式,也就是说相当于常闭点,所以检测通道好坏的方法为用表的测通断功能来检测,当通状态时为好,断状态时为坏通道;模拟量输出模块的方法与数字量输出模块相同。若坏通道则对硬件接线需要换通道与并同时替换控制程序中的相应3X或4X地址;另外对于模拟量模块则要进行量程块的选择的检查,保险丝是否断开的检查等工作。软件配置是否正常,一般为电压1~5V或电流4~20mA,这根据所用的传感器与智能转换器类型来选择。进行过硬件点或通道换工作后条件允许的话均要STOP PLC的CPU,再重新下载程序,若条件不允许则直接用新变化来下载变化的程序而不停CPU。对于不用的输入模块的好通道/好点与后一个已用的一好通道/好点进行串联或在软件中进行特别设置。 
    4、对大量输出模块的板子上的电源模块在正常生产状态时是不能断电的,因为此时断电的话,将使继电器柜中的常开继电器变为常开状态,容易发生错误,因此要对此类的输出模块,要与现场操作人员进行联系,进行该部分相关设备进行手动操作后,再撤去数字量输出模块的供电线后对模块测点工作。 
    5、各类开关类的检测工作:如继电器、接近开关、空气开关等器件的检测工作,是根据开关的类型是常闭型还是常开型来区分,用表来检测其通与不通的状态,其状态与好器件状态相反,则该器件坏了,换之。对于电路大部情况利用常开型,它们是用来人工控制或自动控制电流的接通与断开的;对于常闭型主要用在保护电路中。借此可以知道开关类和保护类器件的正常状态为如何而正常识别器件的好坏。 
    6、通迅模块的检测则是利用简单的用好的新的通迅模块进替换来识别板上的正在使用的模块是否正常。 
    7、导线的测量方法:导线也是通过检测通断方法进行的。可以利用已知通的导线来检测不知是否好坏的导线,方法是将好的导线与未知导线连接起来后测通断状态。 
    8、电阻检测:带电状态时检测电压,不带电时检测相应的电阻。 
    四、总结 
    通过以检测可以排除工作中的大部分故障,另外由于本工作涉及到交流单相电220V与直流电24V的交叉作业,工作时要注意积累用电知识与常识,以及在工作时的防范措施和煤气规程,以确保作业。


     为了延长PLC控制系统的寿命,在系统设计和生产使用中要对该系统的设备消耗、元器件设备故障发生点有较明白的估计,也就是说,要知道整个系统哪些部件容易出故障,以便采取措施。现以我厂特种水泥1号线的PLC过程控制系统为例,对PLC过程控制系统故障分布规律进行分析,希望能对PLC过程控制系统的系统设计和U常维护有所帮助。
        1.系统故障的概念
        系统故障一般指整个生产控制系统失效的总和,它又可分为PLC故障和现场生产控制设备故障两部分。PLC系统包括处理器、主机箱、扩展机箱、I/O模块及相关的网络和外部设备。现场生产控制设备包括I/O端口和现场控制检测设备,如继电器、接触器、阀门、电动机等。
        2.系统的故障统计及分析处理
        (1)我厂特种水泥1号线过程控制系统简介
        2000年该系统改造时采用日本二菱公司的A2系列PIC为组成的PLC过程控制系统。
        该系统有2个集中控制室:窑尾控制室和窑头控制室,其中窑头控制室为主站;2个现场工作站:窑尾生料自动配料工作站和窑尾成球盘自动加水成球工作站;2个电视监控系统:预热器进口下料监控和窑头电视看火。现场工作站是立的微机自动控制系统,它与主站只进行模拟量的通讯和开关量的联锁。主站与从站间采用帧同步全双工通讯方式:
        (2)系统
        故障数据的统计
        经统计,系统故障共计126次,其中PLC的故障比例约为4.7%,现场部分故障比例约为95.3%,:对照其他PLC过程控制系统的故障数据,并考虑该系统运行时间不是很长,该比例比较接近一般PLC过程控制系统的故障分布规律,有一定的普遍性。一般来讲PIC部分的故障比例约为5%,现场控制设备的故障比例约为95%。
        (3)系统故障分析及处理
        PLC主机系统
        PLC主机系统容易发生故障的地方一般在电源系统和通讯网络系统,电源在连续工作、散热中,电压和电流的波动冲击是不可避免的。通讯及网络受外部干扰的可能性大,外部环境是造成通讯外部设备故障的大因素之一。系统总线的损坏主要由于现在PLC多为插件结构,长期使用插拔模块会造成局部印刷板或底板、接插件接口等处的总线损坏,在空气温度变化、湿度变化的影响下,总线的塑料老化、印刷线路的老化、接触点的氧化等都是系统总线损耗的原因。所以在系统设计和处理系统故障的时候要考虑到空气、尘埃、紫外线等因素对设备的破坏。目前PLC的主存储器大多采用可擦写ROM,其使用寿命除了主要与制作工艺相关外,还和底板的供电、CPU模块工艺水平有关。而PLC的处理器目前都采用的处理芯片,故障率已经大大下降。对于PLC主机系统的故障的预防及处理主要是提高集中控制室的管理水平,加装降温措施,定期除尘,使PLC的外部环境符合其安装运行要求;同时在系统维修时,严格按照操作规程进行操作,谨防人为的对主机系统造成损害。
        PLC的I/O端口
        PLC大的薄弱环节在I/O端口。PLC的技术优势在于其I/O端口,在主机系统的技术水平相差无几的情况下,I/O模块是体现PLC性能的关键部件,因此它也是PLC损坏中的环节。要减少I/O模块的故障就要减少外部各种干扰对其影响,要按照其使用的要求进行使用,不可随意减少其外部保护设备,其次分析主要的干扰因素,对主要干扰源要进行隔离或处理。 
        现场控制设备
        在整个过程控制系统中容易发生故障地点在现场,表2列出了现场中容易出故障的几个方面。
        1) 类故障点(也是故障多的地点)在继电器、接触器。如该生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,然后发热变形直至不能使用。在该生产线上所有现场的控制箱都是选用密闭性较好的盘柜,其内部元器件较其他采用敞开式盘柜内元器件的使用寿命明显要长。所以减少此类故障应尽量选用继电器,改善元器件使用环境,减少换的频率,以减少其对系统运行的影响。
        2) 二类故障多发点在阀门或闸板这一类的设备上,因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,因此在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。
        3) 三类故障点可能发生在开关、限位置、保护和现场操作上的一些元件或设备上,其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。如该生产线窑尾料球储库上的布料行走车来回移动频繁,而且现场粉尘较大,所以接近开关触点出现变形、氧化、粉尘堵塞等从而导致触点接触不好或机构动作不灵
    敏。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。
        4) 四类故障点可能发生在PLC系统中的子设备,如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。所以在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。
        5) 五类故障点是传感器和仪表,这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆,而且要在PIC内部进行软件滤波。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。
        6) 六类故障主要是电源、地线和信号线的噪声(干扰),问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。
        要减小故障率,很重要的一点是要重视工厂工艺和操作规程,在日常的工作中要遵守工艺和操作规程,严格执行—些相关的规定,如保持集中控制室的环境等等,同时在生产中也要加强这些方面的霄理。


    202202221739073176584.jpg20220222173907301904.jpg202202221739072455394.jpg


    1 引言

    近几年来,可编程序控制器(以下简称plc)因其性高、编程简单、抗干扰能力强等优点,在工业控制领域得到了广泛应用。但plc在人机交互性能方面较弱,然而工控组态软件(如组态王)具有良好的人机界面及控制决策能力。因此,将二者结合起来可有效实现整个生产过程的综合监控。东方日立(成都)电控设备有限公司生产的高压大功率变频器地将二者结合起来,实现变频器在昆钢自备发电厂高炉煤气发电机组送、引风机系统上的应用及节能计算。

    该系统采用上、下位机主从式结构,plc作为下位机通过modbus通信方式,完成工业现场数据的实时采集;上位机采用工业控制计算机,与plc之间通过工业以态网通讯方式,实现高压变频器在运行过程中的实时数据显示、故障报警等各项功能。同时,组态王又作为数据服务器,通过dde方式为节能软件提供实时数据,以助节能软件完成数据计算、动态曲线显示。

    2 系统硬件配置

    送、引风机高压变频装置通讯系统的硬件配置,主要包括mdm3000电力综合测试仪、集线器及实现远程监控的工业计算机。单元控制柜内所用的plc,选用西门子s7-200系列cpu226;通讯单元为西门子工业以太网模块cp243-1。数据采集器选用深圳亚特尔公司的mdm3000产品,实现变频器输入电压、输入电流等数据采集。工业计算机选用研华工控机ipc-610h,主要配置:cpu2.8g/256m(内存);80g硬盘;集成显卡;另置网卡;50倍光驱;1.44m(软驱)和kb104+mouse。

    3 系统软件基本原理及组态

    系统软件包括:

    (1)工控软件:组态王kingview5.1;

    (2)用于s7-200编程软件的step7-microwin4.0;

    (3)用于实现节能计算的的软件。

    送、引风机高压变频装置系统以plc为通讯管理的通讯系统的地址分配见附表。

    3.1组态王kingview5.1

    组态王是运行于microsoftbbbbbbs98/2000/nt/xp中文平台界面的人机界面软件。采用了多线程、com组件等新技术,实现了实时多,软件运行稳定。软件包从工业控制对象中数据,并记录在实时数据库中。它还负责把数据的变化以动画的方式形象地表示出来。同时还可以完成变量报警、操作记录、趋势曲线等监视功能,并按实际需要生成历史数据文件。

    为实现组态王和外部设备的通讯,组态王内置大量设备的驱动程序作为组态王和外部设备的通讯接口,扩充了组态王的功能,为用户提供为灵活的应用空间。在数据交换时,我们定义组态王作为dde服务器端,与采用java软件开发的节能计算软件相互通讯。通过dde方式用户自编的应用程序可以与组态王无缝连接,进行数据交换。

    3.2用于s7-200的编程软件step7-microwin4.0

    s7-200中plc程序用step7-microwin4.0软件进行编写,plc程序将modbus协议、tcp/ip工业以太网协议两种协议集于一身,实现变频器现场数据采集设备、上位监控设备的无缝连接。

    3.3实现节能计算的的软件

    节能计算软件为日立北京公司,该软件实现两方面的功能:

    (1)组态王数据;

    (2)对的数据进行计算并以趋势曲线的方式加以显示。根据机组送、引风机工频运行工况数据,得到通过调节出口挡板改变风量的工频运行曲线;

    (3)再根据实时监控得到机组送、引风机在变频运行工况下的运行曲线,然后将两条曲线制作到同一坐标平面下,这样非常直观地得到节能数据,并对采集到的原始及节能数据进行记录保存于工控机的硬盘上。

    4 应用情况

    送、引风机高压变频装置系统自2008年4月投运以来,启、停及智能监控性能优良。操作员从炉控室组态王监视画面可以实时监控送、引风机高压变频装置的输入电压、输入电流、输入功率等数据,大大减少了运行人员现场抄录设备运行数据的工作量;另外非常直观地得到送、引风机高压变频装置系统的节能情况。送、引风机高压变频装置系统微机化、数字化是提高了系统的性,有效地避免了机组送、引风机电动机以及电网所承受的冲击,了电动机及拖动设备的使用寿命,深受用户。

    5 结束语

    送、引风机高压变频装置是集高压电机软起动、运行监控、网络技术于一体的智能化调速、控制系统。实践证明原送、引风机采用高压变频装置后,大大地降低了厂用电,为用户带来了可观的经济效益,值得大力推广应用

    PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生。

    一、S7-200PLC内部RS485接口电路图:

    图中R1、R2是阻值为10欧的普通电阻,其作用是防止RS485信号D+和D-短路时产生过电流烧坏芯片,Z1、Z2是钳制电压为6V,大电流为10A的齐纳二管,24V电源和5V电源共地未经隔离,当D+或D-线上有共模干扰电压灌入时,由桥式整流电路和Z1、Z2可将共模电压钳制在±6.7V,从而保护RS485芯片SN75176(RS485芯片的允许共模输入电压范围为:-7V~+12V)。该保护电路能承受共模干扰电压功率为60W,保护电路和芯片内部没有防静电措施。

    二、常发生的故障现象分析:

    当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:

    ●R1或R2被烧断,Z1、Z1和SN75176完好。这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。

    ●SN75176损坏,R1、R2和Z1、Z2完好。这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。

    ●Z1或Z2、SN75176损坏,R1和R2完好。这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。

    由以析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压出允许范围。所以EIA-485标准要求将各个RS485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,地线环流!

    当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。

    连接在RS485总线上的其它设备产生的瞬态过电压或过电流同样会流入到PLC,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。

    当通信线路较长或有室外架空线时,雷电必然会在线路上造成过电压,其能量往往是的,常有用户沮丧地说:“联网的几十台PLC全部遭打坏了!”。

    三、解决办法:

    1、从PLC内部考虑:

    ●采用隔离的DC/DC将24V电源和5V电源隔离,分析了三菱、欧姆龙、施耐德PLC以及西门子的PROFIBUS接口均是如此。

    ●选用带静电保护、过热保护、输入失效保护等保护措施完善的高挡次RS485芯片,如:SN65HVD1176D、MAX3468ESA等,这些芯片价格一般在十几元至几十元,而SN75176的价格仅为1.5元。

    ●采用响应速度快、承受瞬态功率大的新型保护器件TVS或BL浪涌吸收器,如P6KE6.8CA的钳制电压为6.8V,承受瞬态功率为500W,BL器件则可抗击4000A以上大电流冲击。

    ●R1和R2采用正温度系数的自恢复保险PTC,如JK60-010,正常情况下的电阻值为5欧,并不影响正常通信,当受到浪涌冲击时,大电流流过PTC和保护器件TVS(或BL),PTC的电阻值将骤然增大,使浪涌电流减小。

    2、从PLC外部考虑:

    ●使用隔离的PC/PPI电缆,尽量不用廉价的非隔离电缆(特别是在工业现场)。西门子公司早期出产的PC/PPI电缆(6ES7901-3BF00-0XA0)是不隔离的,现在也改成隔离的电缆了!

    ●PLC的RS485口联网时采用隔离的总线连接器.

    ●与PLC联网的三方设备,如变频器、触摸屏等的RS485口均使用RS485隔离器BH-485G进行隔离,这样各RS485节点之间就无“电”的联系,也无地线环生,即使某个节点损坏也不会连带其它节点损坏。

    ●RS485通信线采用PROFIBUS总线屏蔽电缆,保证屏蔽层接到每台设备的外壳并后接大地。

    ●对于有架空线的系统,总线上设置专门的防雷击设施。

    找到了解决S7-200通讯口损坏的办法了

    在我们单位众多的S7-200PLC中,不时有通讯口损坏,致使不能连接PC或不能进行通讯,在对PLC解体时发现,在PLC通讯口出有一芯片--75176,这就是通讯接口芯片,在芯片周围有5个FB,标识FB1~FB5,这其实就是5个保险,在通讯连不上时,一般就是这5个保险中的某个烧毁了,可用同等型号的保险代替,也可用导线直接短路。一般就能解决问题。不过换时要注意,由于元件时贴片的,十分小,空间也小,所以焊接时注意不要短路。


    在过去的几十年里,可编程逻辑控制器(PLC)一直被广泛用于自动化领域,而在可预知的未来,PLC仍将长盛。面向离散控制而设计PLC的实际上已经成为工业领域一个具有伟大意义的统治性工具。

    然而,随着工业用机器和工厂系统的复杂性的增加,PLC已经很难而且也不可能成为完成所有自动化任务。现在的自动化系统已经了PLC的功能范围,使得工业机器领域的工程师在自动化系统中集成多的I/O、处理和控制策略。

    新的可编程自动化控制器(PAC)硬件系统就是这样一个非凡的PLC系统扩展方案,能够很容易整合到PLC系统中,给工业机器增加多的功能,并提高机器的效率。

    1、需求:如何提高机器的效率

    如何提高机器的效率?让我们来看看IntegratedIndustrialSystems(I2S)公司是如何做的。I2S在现有的PLC系统上实现大的改进。这是一个来自美国的私有原始设备制造商,数十年以来一直致力于制造的轧制设备和控制系统,用于全世界的铁和非铁金属行业。在这一领域的雄厚技术底蕴使之成为的。

    I2S也曾经长期使用PLC来自动化和

    控制生产的轧制设备。近几年他们一直在试图新轧制设备控制系统,以提率和质量。为了提高炼钢设备的效率和质量,他们主要对其伽马测量系统进行了改进,以便能准确地控制金属厚度。

    数年以来,伽马测量系统一直是I2S产品家族中的标志性产品,现在依然广受欢迎,但是系统的很多硬件和软件特征都已经过时了。为了新该系统并改进其机器,I2S公司需要一个具有的模拟输入分辨率的方案,以连接伽马测量传感器和信号处理,从而从传感器中模拟信号,实现高度的厚度测量,再由PLC使用在轧制机器的控制系统中。

    2、伽马测量仪技术

    伽马测量仪使用“镅”作为恒发射源,这一发射源位于“C”框架组装的较低部。结构的部是一个和前置放大器。当通过发射源和之间的间隔时,金属带会吸收一部分辐射,吸收量视其厚度和密度而定。剩下的一部分就由进行测量,并转化成带厚度测量。

    实施改造步:现有设备试验

    为了节省时间和费用,I2S先试着在已有的PLC系统中进行模拟测量和处理。但是,PLC的模拟I/O和信号处理无法达到所需的度。I2S公司要确保运行于PLC中的控制系统不会因为额外I/O和处理的增加而减少。

    因此,他们需要这么一个系统,这个系统能够从伽马传感器中模拟信号并进行处理以计算的厚度测量值,并能将这个厚度测量插入到PLC控制系统中。但是,所用的PLC不适合处理和高速模拟I/O。

    二步:如果现有设备无法奏效,就试试其它方法

    在认识到PLC无法提供连接伽马测量传感器所需的I/O和处理后,I2S转向了PAC技术。它选择了国家仪器的CompactRIOPAC,以提供改进轧制机器质量所的附加功能。CompactRI/O是一个可重置嵌入式系统,既结合了传统PLC的优点和性,又能提供多I/O和处理。国家仪器的所有PAC都可以通过其LabVIEW图形编程工具来编程,因此可以很容易进行编程和配置。

    三步:添加I/O

    CompactRIO有一个嵌入式现场可编程门阵列(FPGA)芯片和实时处理器,可通过内置的LabVIEW功能块来编程。另外,它还拥有过30个模拟和数字I/O模块,具有内置信号调节(反锯齿、隔离、ADC、DAC等)、高速计时(模拟I/O速度达到800kHz,数字I/O速度达到30MHz)和高分辨率(24bADC),可与任何工业传感器或者触发器连接。

    I2S使用CompactRIO模拟输入模块来连接伽马级厚度传感器,以提供测量所需的高速计时和分辨率。由于每个I/O模块都是直接和FPGA相连的,工程师们于是能使用LabVIEWFPGA来轻松自定义CompactRIO的模拟I/O速率。

    四步:添加处理

    从伽马传感器获得模拟数据之后,CompactRIO使用内置的NILabVIEW实时浮点功能块来在实时处理器中对数据进行处理,并将之转化成的厚度测量。

    LabVIEW的实时功能块对数据进行确定的对数处理(如下面的等式1和等式2所示),以进行计算厚度测量值。由于LabVIEWReal-Time具有内置计算和分析功能,PAC能够很容易进行这一操作。

    等式1:logI=(logI0)y/μ=(y/μ)logI0

    等式2:y/μ=logI0/logI=log(I0-I)

    CompactRIO系统在FPGA和实时处理器中进行所有的I/O和信号处理,并将高度厚度测量传输到相连的PLC上,又不会降低现有PLC控制系统的速率。借助于CompactRIO的性能,I2S的工程师可以为伽马级传感器添加这一自定义测量和分析功能,而不需要牺牲轧制机器的控制速度。

    五步:整合PAC

    每个轧制机器都带有三个形成网络的CompactRIO系统。这三个系统都是智能节点,能利用一个工业标准Modbus/TCP、TCP/IP或UDP协议进行通信。其中有两个系统与伽马级传感器连接,并进行模拟输入测量和处理,来计算厚度测量值。

    三个CompactRIO系统则从另外两个系统中厚度值,并转换成模拟输出测量值,输入到正在控制轧制机器的PLC上。所有三个系统都通过以太网连接实现了互连,并使用一个UDP以太网信息协议来传输厚度测量值计算。将PAC连接到现有PLC架构上有三个基本方法:

    1.基本模拟和数字I/O。模拟/数字信号能够从PAC输出到PLC中。这是将PAC整合到PLC的一个基本的方法。I2S公

    司就是运用这种方法来将处理过的数据从CompactRIOPAC传输到运行轧制机器控制系统的PLC上的。

    2.工业网络。大多数PAC产品都支持工业协议,如DeviceNet、Profibus、CANopen以及基于以太网的协议如TCP/IP、UDP和ModbusTCP/IP。这使得工程师在连接PAC到PLC上时有很多网络选择。I2S公司运用的是以太网协议来在CompactRIOPAC之间传输数据,并将PAC和PLC连接到形成网络的HMI。

    3.OPCConnectivityPAC还可以作为OPC客户端或者服务器,并通过OPC标签来收发网络数据到PLC或其它PAC上。OPC标准提供了一套标准的流程,让不同厂商的自动化系统之间可以很容易实现连接。

    处理过的数据会以不到20毫秒的间隔在通过以太网互连的CompactRIO系统之间传输。CompactRIO测量值的获得、处理和传输速度都很快,因此,将厚度测量值键入到PLC控制系统的过程丝毫不会降低整个系统的速度。

    I2S公司可以很容基于LAN的CompactRIO系统和10/100Mbps以太网接口将系统连接到形成网络的AllenBradleyPLC,并利用一个标准的TCP/IP协议将之连接到人机接口(HMI)系统。轧制机器中的所有仪器都通过以太网实现了连接,因此不需要在一个电器噪音嘈杂的环境下长距离地传输模拟信号了。

    3、总结

    在未来的几年,PLC仍将继续用于自动化领域。但是随着机器的改进和自动化效率提高的需求,PLC不再是的。PAC技术给PLC提供了很好的,增加了传统PLC所不能提供的I/O和处理。将PAC连接到现有PLC架构中的方法有很多,所以工程师们将能够很容易地改进其基于PLC的自动化系统。



    http://zhangqueena.b2b168.com
    欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。 主要经营电气相关产品。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。