产品描述
南京西门子PLC模块交换机供应商
1 引言
据不统计,目前我国城市里的十字路通系统大都采用定时来控制(不排除繁忙路段或高峰时段用交警来取代交通灯的情况),这样必然产生如下弊端:当某条路段的车流量很大时却要等待红灯,而此时另一条是空道或车流量相对少得多的道却长时间亮的是绿灯,这种多等少的尴尬现象是未对实际情况进行实时监控所造成的,不仅让司机乘客怨声载道,而且对人力和物力资源也是一种浪费。
智能控制交通系统是目前研究的方向,也已经不少成果,在少数几个国家已采用智能方式来控制交通信号,其中主要运用GPS定位系统等。出于便捷和效果的综合考虑,我们可用如下方案来控制交通路况:制作传感器探测车辆数量来控制交通灯的时长。具体如下:在入路口的各个方向附近的地下按要求埋设感应线圈,当汽车经过时就会产生涡流损耗,环状绝缘电线的电感开始减少,即可出汽车的通过,并将这一信号转换为标准脉冲信号作为可编程控制器的控制输入,并用PLC计数,按一定控制规律自动调节红绿灯的时长。
比较传统的定时交通灯控制与智能交通灯控制,可知后者的大优点在于减缓滞流现象,也不会出现空道占时的情形,提高了公路交通通行率,较定位系统而言。
2 车辆的存在与通过的检测
(1) 感应线圈(电感式传感器)
电感式传感器其主要部件是埋设在公路下十几厘米深处的环状绝缘电线(特别适合新铺道路,可用混凝土直接预埋,老路则需开挖再埋)。当有高频电流通过电感时,公路面上就会形成中虚线所形成的高频磁场。当汽车进入这一高频磁场区时,汽车就会产生涡流损耗,环状绝缘电线的电感开始减少。当汽车正好在该感应线圈的正上方时,该感应线圈的电感减到小值。当汽车离开这高频磁场区时,该感应线圈电感逐渐复原到初始状态。由于电感变化该感应线圈中流动的高频电流的振幅(本论文所涉及的检测工作方式)和相位发生变化,因此,在环的始端连接上检测相位或振幅变化的检测器,就可得到汽车通过的电信号。若将环状绝缘电线作为振荡电路的一部分,则只要检测振荡频率的变化即可知道汽车的存在和通过。
电感式传感器的高频电流频率为60kHz,尺寸为 2×3m,电感约为100μH.这种传感器可检测的电感变化率在0.3%以上[1,2]。
电感式传感器安装在公路下面,从交通和美观考虑, 它是理想的传感器。传感器选用防潮性能好的原材料。
(2) 电路
检测汽车存在的具体实现是在感应线圈的始端连接上检测电感电流变化的检测器, 并将之转化为标准脉冲电压输出。其具体电路图由三部分组成:信号源部分、检测部分、比较鉴别部分。
(3) 传感器的铺设
车辆计数是智能控制的关键,为防止车辆出现漏检的现象,环状绝缘电线在地下的铺设我们设采取在每个车行道上中的出口地(停车线处)以及在离出口地一定远的进口的地方各铺设一个相同的传感器,方案如图3(以典型的十子路口为例),同一股道上的两传感器相距的距离为该股道正常运行时所允许的长停车车龙为好。
3 用PLC实现智能交通灯控制
3.1 控制系统的组成
车辆的流量记数、交通灯的时长控制可由可编程控制器(PLC)来实现。当然,也可选用其他种类的计算机作为控制器。本例选用PLC作为控制器件是因为可编程控制器是一台计算机,它是专为工业环境应用而设计制造的计算机。它具有高性丰富的输入/输出接口,并且具有较强的驱动能力;它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程;它采用模块化结构,编程简单,安装简单,维修方便。
利用PLC,可使上述描叙的各传感器以及各道口的信号灯与之直接相连,非常方便。本设计例中,其输入端接收来自各个路口的车辆探测器测得的输出标准电脉冲,输出接十字路口的红绿信号交通灯。信号灯的选择:在本例中选用红、黄、绿发光二管作为信号灯(头方向型)。
3.2 车流量的计量
车流量的计量有多种方式:
(1) 每股行车道的车流量通过PLC分别统计。当车辆进入路口经过个传感器1时,使统计数加1,经过二个传感器2出路口时,使统计数减1,其差值为该股车道上车辆的滞留量(动态值),可以与其他道的值进行比较,据此作为调整红绿灯时长的依据。
(2) 先统计每股车道上车辆的滞留量,然后按大方向原则累加统计。如,将东西向的左行、直行、右行道上的车辆的滞留量相加,再与其它的3个方向的车流量进行比较,据此作为调整红绿灯时长的依据。
(3) 统计每股车道上车辆的滞留量后按通行大化原则(不影响行车的多道相向行驶)累加统计。如,东、西相向的2个左行、直行、右行道上的车辆的滞留量全部相加,再与南北向的总车流量进行比较,据此作为调整红绿灯时长的依据(下面的例子就是按此种方式)。
以上计算判别全部由PLC完成。可以把以上不同计量判别方式编成不同的子程序,方便调用。
3.3 程序流程
本例就上述所描述的车流量统计方式,就十字路口给出一例PLC自动调整红绿灯时长的程序流程,其行车顺序与现实生活中执行的一样,只是时间长短不一样。
(1) 当各路口的车辆滞留量达一定值溢满时(相当于比较严重的堵车),红绿灯切换采用现有的常规定时控制方式;
(2) 当东、西向路口的车辆滞留量比南、北向路口的大时(反之亦然),该方向的通行时间=小通行定时时间+自适应滞环比较增加的延时时间(是变化的),但不大于允许的大通行时间。其中小定时时间是为了避免红绿灯切换过快之弊;大通行时间是为了公平性,不能让其它的车或行人过分久等。进一步的说明在后面的注释中。
(3) 自适应滞环比较(本例的控制规律)增加的时间的确定若东、西向车辆滞留量≥南、北向一个偏差量σ(如30辆车或其它值)时,先让东、西向的左转弯车左行15s(定时控制,值可改),再让直行车直行30s(直行时间的小值,值可改)后再加一段延时保持,直至东、西向的车辆滞留量比南、北向的车辆滞留量还要少一个偏差量σ,才结束该方向的通行,切换到其它路上,否则一直延时继续通行下去,直至到达大通行时间而强制切换。滞环特性如图6所示。实际应用时σ的值需整定,过小则导致红绿灯切换过频,过大又不能实现适时控制。
4 结束语
比较传统的定时交通灯控制与智能交通灯控制,可知后者的大优点在于减缓滞流现象,也不会出现空道占时的情形,提高了公路交通通行率,较定位系统而言,特别适合繁忙的、未立交的交通路口,适合于四个以上的路口,也可方便连网
触摸屏是一种新型可编程控制终端,是新一代高科技人机界面产品,适用于现场控制,性高,编程简单,使用维护方便。在工艺参数较多又需要人机交互时使用触摸屏,可使整个生产的自动化控制的功能得到大大的加强。
PLC有着运算速度高、指令丰富、功能强大、性高、使用方便、编程灵活、抗干扰能力强等特点。近几年,随着科学技术的不断进步,各行业对其生产设备和系统的自动化程度要求越来越高,采用现代自动化控制技术对减轻劳动强度、优化生产工艺、提高劳动生产率和降低生产成本起着很重要的作用。触摸屏结合PLC在闭环控制的变频节能系统中的应用是一种自动控制的趋势。
触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。一般PLC结合触摸屏的闭环调节的变频节能系统如下图所示。
闭环控制的变频节能系统用途很广,各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。下面列举一些:
空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。
恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等
锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、DCS或多冲量控制系统给出。
汽轮机:循环泵、凝结泵等,其控制调节预处理信号由汽轮机自动控制系统及DCS给出。
纯水处理系统:软化水泵、增压泵等。
洁净室:增压风机、FFU等等。
整个闭环控制的变频节能系统的组成设备及其作用:
(1)PLC选用SIEMENS公司的S7-200系列:由CPU224XP、DI/DO模块、AI/AO模块组成。PLC作为控制单元,是整个系统的控制。其主要的作用要体现以下几方面:
①完成对系统各种数据的采集以及数字量与模拟量的相互转换。
②完成对整个系统的逻辑控制及PID调节的运算。
③向触摸屏提供所及处理的数据,并执行触摸屏发出的各种指令。
④将PID运算的数据转换成模拟信号,作为调节变频器的输出频率的控制信号。
⑤通过通信电缆及USS4协议完成对变频器内部参数读写及控制。
(2)触摸屏采用SIEMENS公司MP370,其主要作用如下:
①可实时显示设备和系统的运行状态。
②通过触摸向PLC发出指令和数据,再通过PLC完成对系统或设备的控制。
③可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能加强大。
(3)变频器:采用SIEMENS公司440系列,通过USS4协议可由触摸屏通过PLC设置其内部的部分参数,根据PLC发送过来的数据(模拟量)值调节水泵或风机的转速,并将其内部运行参数反馈到PLC。
(4)压力、温度等传感器:将被控制系统(水系统或风系统)的实际参数值转变成电信号上传至PLC。
(5)电气元件:给PLC、触摸屏、变频器及传感器等供电,完成各种操作及驱动等。
触摸屏画面设计
触摸屏画面由ProTool等软件进行设计,然后先通过编程电脑调试,合格后再下载到触摸屏。触摸屏画面总数应在其存储空间允许的范围内,各画面之间尽量做到可相互及强制切换。
(1)主画面的设计
一般的,可用欢迎画面或被控系统的主系统画面作为主画面,该画面可进入到各分画面。各分画面均能一步返回主画面。若是将被控主系统画面作为主画面,则应在画面中显示被控系统的一些住要参数,以便在此画面上对整个被控系统有大致的了结。
(2)控制画面的设计
该种画面主要用来控制被控设备的启停及显示变频器内部的参数,也可将变频器参数的设定做在其中。该种画面的数量在触摸屏画面中占的多,其具体画面数量由实际被控设备决定。
(3)参数设置页面的设计
该画面主要是对变频器的内部参数进行设定,同时还应显示参数设定完成的情况,实际制做时还应考虑加密的问题。
(4)实时趋势页面的设计
该画面住要是以曲线记录的形式来显示被控值、变频器的主要工作参数(如输出频率)等的实时状态。
(5)信息记录页面的设计
该画面主要是记录可能出现的设备损坏、过载、数值范围和系统急停等故障。另外该画面还可记录各设备启停操作,作为凭证。
(6) 节能画面的设计
该画面主要是记录和显示变频器的累积用电数及实时节电状态,以便向用户展示变频节能的好处,也可用来与其它的节电测量作比较。
PLC程序设计
PLC程序由S7-200编程软件进行设计,然后通过编程电脑下载到PLC进行联机调试,合格后即可使用。PLC在编程前应先对各功能程序段的进行规划,以免重复使用同一,造成误动。
(1)逻辑功能的设计
这部分程序主要是完成各变频水泵(或风机)的启动停止、联动、联锁及自动投切等等功能,一般在离线状态下就能完成软件逻辑功能的测试。
(2)PID功能的设计
通过S7-200中的PID向导可完成PID调节程序,具体应用时需根据实际被控设备及采样设备决定其配置。
(3)采样程序的设计
采样元件使用标准配置时,应注意采样A/D转换后的具体数据是否与PID及显示等程序配套,实际制做时还应考虑采样是多路且相关联的情况。
(4)PLC与变频器通信程序的设计
SIEMENS S7-200PLC与SIEMENS 430等变频器的通信一般使用USS4协议程序来完成,该程序的主要目的是监控变频器的实时运行状态。
(5)其它辅助程序的设计
PLC程序在实际编程过程中,需考虑对一些程序进行修补,尽量减少程序漏洞,反复推敲,不断的总结完善。
结束语
在闭环控制的变频节能系统中采用触摸屏可以使用户简单直观监控整个空调变频节能系统及与其相关联的设备和系统,提高了整个被控系统以及企业的自动化程度和硬件档次。随着微电脑技术的不断发展,触摸屏本身的成本也在不断的降低,再与PLC在系统中使用,实现了整个被控系统自动化程度的质的飞跃,这必将使触摸屏与PLC被多的应用在未来的各种生产系统中,并成为自动化控制发展的一个亮点。
1 系统功能
1.1 系统组成
热电站装机容量13000KVA,全部采用煤发电,安装了四台大型锅炉,小的75吨,大的165吨,燃煤量大,运输皮带长,级数多,运输控制保护闭锁多。
热电站燃料准备系统主要有桥式抓斗起重机、给煤机、皮带输送机、皮带鼓风机、除铁器、刮板输送机、棒条筛、环锤式破碎机、煤位传感器、锅炉位置开关等组成。图1为四级皮带运输系统框图。
图1 四级皮带运输系统框图
1.2 控制要求
热电站燃料准备系统,是一个大型的皮带运输系统,工作任务重,带锅炉多,用煤量大,上燃料的性、性、准确性、及时性,直接关系和影响着全厂的供电质量和生产效益,所以这套系统在运作过程中的性。
要求皮带运输系统从后一条皮带按四、三、二、一逆序启动,加的互锁环节。条皮带都是气垫式皮带运输机,在皮带启动前要求启动它们各自的鼓风机,把皮带吹起,以减小皮带运行时的摩擦,如果鼓风机没有开动,不允许皮带开动,皮带和鼓风机之间要加互锁。四号配仓皮带给锅炉下料,用电动推杆犁式卸料器进行手动和自动下料控制。
用煤流传感器、行程开关控制皮带运行时间。为了提高了系统运行的性,正常运行时进行集中自动控制,在故障或特殊情况时可以现场手动控制。
在每级皮带上都装有除铁器,由于煤中混有杂物,如铁器、易燃易爆的金属物质,特别是,若随煤混进锅炉,将会引起爆炸等危险事故的发生。外面是铁皮裹着,除铁器可以对其起作用,阻止等进入锅炉,引起事故,造成不必要的损失。所以除铁器不开动,皮带不允许开动。
皮带运输机没有开动,不允许开振动给煤机,若给煤机先开,会压死皮带,使其无法正常启动。同样,振动给煤机没有开动,不能启动抓斗起重机往给煤机中送煤,否则会压死给煤机,使其无法启动。
两台振动给煤机,一台正常使用一台备用,相互立不可同时开,要求加互锁。
所有的皮带运输机设备都运作起来后,系统正常工作,使用自动下料,电动推杆犁式卸料器动作抬起放下,要靠锅炉的位置开关控制,自动抬起放下。出现故障,使用手动下料,加一个手动电葫芦使电动推杆犁式卸料器动作抬起放下。
系统要求皮带按一、二、三、四顺序停车,在皮带上装有煤流传感器,要求煤流传感器精度要高,当煤流走完后,通过煤流传感器把皮带停下来。先停给煤机,再停一号皮带,按煤流走完的顺序停皮带,上一级皮带煤流未走完,下一级皮带不允许停下,不能误动作,加必要的互锁保护。
在考虑集中控制的同时,也要考虑现场控制,以免现场发生故障,不能停车,要设现场故障停车开关。设有故障检测及报警系统,对皮带运输机运行状况进行监控,若系统某一部分发生故障,要有报警信号,传入控制室,运行设备在室设指示灯,正常运行工作,指示灯亮;故障时指示灯闪烁,电铃响;停止状态指示灯灭。
2 系统硬件设计
2.1 气垫带式输送机
采用气垫带式输送机,既将通用带式输送机的支承托辊去掉,改用设有气室的盘槽。
由于气垫带式输送机没有滚筒和承载托辊及其阻力,由盘槽上的气孔喷出的气流在盘槽和输送带之间形成非接触支承气膜,在通过盘槽时不出现挠曲和摩擦,从而显著地减小了摩擦损耗,气垫输送带的磨损和撕裂现象比槽形托辊输送带少得多,有效地克服了通用带式输送机的接触支承缺点,因此摩擦力小。功率消耗比普通带式输送机低,也不需要换和修理托辊费用。不发生盘槽与输送机接触而损坏胶带的现象,鼓风机的维修费仅为槽形托辊修费的一小部分,控制设备也较为简单。
2.2 PLC选型
用PLC进行控制,外围设备少,占地空间小,是实现的良好设备,三菱可编程控制器(PLC)功能强,控制精度高,运行速率快,控制功能性好,可以较好地实现集中控制和就地分散控制。
现场的输入信号有起动、停止、煤流传感、南北线选择、锅炉位置、自动卸料、卸料器抬起和放下位置、给煤机选择等20个;输出信号有振动给煤机、皮带鼓风机、皮带除铁器、皮带运输机、棒条筛、破碎机、刮板输送机、卸煤器抬起和放下、故障报警、起动/停车预告等42个,为了减少成本并留有充分的余量,选基本单元FX2N-48MR和扩展单元FX2N-48ER。
3 系统软件设计
PLC常用的编程语言有梯形图语言(LD)、顺序功能图语言(SFC)和功能块语言(FBD),四级皮带输送机控制系统属于典型的顺序控制,所以主要采用顺序功能图(SFC)编程。图2为系统程序流程图。
图2 程序流程图
顺序功能图主要采用步进梯形指令编程方式,为了编程方便,程序中采用了许多中间继电器进行程序的记忆、转换,同时程序中还使用许多内部定时器完成延时功能。
3.1 起动程序
,在准备工作时,把就地集中转开关闭合,北线开关闭合,给煤机选择开关闭合,要自动卸料,把自动卸料开关闭合,做好启动前准备工作。准备工作完备后,按下开车按钮,皮带运输机按编写好的程序在PLC的控制下一步步的启动。图3为起动程序流程图。
图3 起动程序流程图
3.2 工作程序
当所有的设备启动后,皮带运输机就开始正常的运煤工作,自动卸料的电动推杆式卸料器在锅炉位置开关的控制下自动工作。
3.3 停止程序
工作完毕之后,锅炉注满了,按下停止按钮,然后皮带运输机按程序逐步停止。后所有设备全部停下,等待下一次的工作开始。
3.4 故障程序
在该四级皮带运输机的故障回路中用了下降沿微分输出指令,在设备正常工作时它遇到上升沿不起作用,当故障时设备停止运行,它就接通故障继电器线圈,使故障输出,故障报警,设备停止运行。在正常的停车情况下,它被停车预告输出断开无效,使其不误报故障。
若运行中出现故障,使某一设备不能正常运行,只要该设备因故障而停车,一个下降沿到了,就会接通PLC中的故障中间继电器,故障线圈闭合,把运行电路断开全部停车,发出故障报警声。等到故障解除然后恢复正常。
4 结 语
综上所述,本系统方案不仅选择了成熟、的软/硬件,并充分考虑了系统的扩展性,符合控制管理一体化潮流,对今后控制功能和管理功能的扩充提供了很好的基础。本系统自投入运行以来,运行状态良好,自动化水平达到国内**业的水平,了良好的经济效益和社会效益。此项目的经济效益约20万元。
本系统的点主要有:改用气垫带式输送机,没有滚筒和承载托辊,减小了摩擦损耗和功率消耗;电气控制采用PLC与接触器结合,解决了传统的继电器接触器控制的诸多问题,提高了系统的抗干扰能力,降低了故障率,使运行
产品推荐