产品描述
上海西门子中国代理商DP电缆供应商
PLC好学吗?有的人说好学,多的人说难学。我的看法是入门易,深造难。入门易,总有它易的方法。很多人都买了有关PLC的书,如果从头看起的话,我想八成学不成了。因为抽象与空洞占据了整个脑子。
学这方面的知识要有可编程控制器和简易编程器才好,若无,一句话,学不会。因为无法验证对与错。如何学,我的做法是直奔主题。做法如下:
1、认识梯形图和继电器控制原理图符号的区别:
继电器控制原理图中的元件符号,有常开触点、常闭触点和线圈,为了区别它们,在有关符号边上标注如KM、KA、KT等以示不同的器件,但其触头的数量是受到限制。而PLC梯形图中,也有常开、常闭触点,在其边上同样可标注X、Y、M、S、T、C以示不同的软器件。它大的优点是:同一标记的触点在不同的梯级中,可以反复的出现。而继电器则无法达到这一目的。而线圈的使用是相同的,即不同的线圈只能出现一次。
2、编程元件的分类:编程元件分为八大类,X为输入继电器、Y为输出继电器、M为辅助继电器、S为状态继电器、T为定时器、C为计数器、D为数据寄存器和指针(P、I、N)。关于各类元件的功用,各种版本的PLC书籍均有介绍,故在此不介绍,但一定要清楚各类元件的功能。
编程元件的指令由二部分组成:如 LD(功能含意)X000(元件地址),即 LD X000,LDI Y000......。
3、熟识PLC基本指令:
(1)LD(取)、LDI取反)、OUT(输出)指令;LD(取)、LDI(取反)以电工的说法前者是常开、后者为常闭。这二条指令常用于每条电路的个触点(即左母线个触点),当然它也可能在电路块与其它并联中的个触点中出现。
这是一张梯形图(不会运行)。左边的纵线称为左母线,右母线可以不表示。该图有三个梯级;1梯级;左边个触点为常开,上标为 X000,X表示为输入继电器,其后的000数据,可以这样认为它使用的是输入继电器中的编号为000的触点(下同)。其指令的正确表示应为(如右图程序所示):0、LD X000 (的0 即为从0步开始,指令输入时无须理会,它会自动按顺序显示出)。
2梯级;左边的个触点为常闭触点,上标为T0,T表示定时器(有时间长短不同,应注意),0则表示定时器中的编号为0的触点。其指令的正确表示应为:2、LDI T0(如程序所示)。
3梯级;左边个触点为常闭,上标为M0, M为辅助继电器(该继电器有多种,注意类别),其指令的正确表示应为:4、LDI M0(如程序所示)。本梯级的2行个触点为常开,上标为Y000,Y表示输出继电器,由于该触点与后面Y001触点呈串联关系,形成了所谓的电路" 块",故而其触点的指令应为 5、LD Y000。总之LD与LDI指令从上面可以看出,它们均是左母线每一梯级触点所使用的指令。而梯级中的支路(即3梯级的2行)有二个或二个以上触点呈串联关系,其触点同样按LD或LDI指令。可使用LD、LDI指令的元件有:输入继电器X、输出继电器Y、辅助继电器M、定时器T、计数器C、状态继电器S。OUT为线圈驱动指令,该指令不能出现在左母线位。驱动线圈与驱动线圈不能串联,但可并联。同一驱动线圈只能出现一次,并安排在每一梯级的后一位。如上图中的1、OUT Y000,3、OUT Y001,Y为输出继电器,其线圈一旦接获输出信号,可以这样认为,线圈将驱动其相应的触点而接通外部负载(外部负载多为接触器、中间继电器等)。而上图 8、OUT T0 K40 为定时器驱动线圈指令,其中的K为常数40为设定值(类似电工对时间继电器的整定)。可使用OUT指令元件有:输出继电器Y、辅助继电器M、定时器T、计数器C、状态继电器S。
(2)触点的串联指令AND(与)ANI(与非);前者为常开,后者为常闭。二者均用于单个触点的串联。二指令可重复出现,不受限制,。如下图所示。
1梯级来看;X000、T0、Y001三触点成串联关系,即T0的常闭串接于X000的后端,而Y001的常闭则串接于T0常闭的后端。由于都是常闭故用ANI指令。现来看2梯级;X000、M0、Y001,同样三触点也是串联关系,M0的常闭接点串接于X001的后端,而Y000的常开接点则串接于M0的后端。故M0的指令用ANI,而Y000的指令则用AND(具体编程详上图),一句话只要是串联后面是常开的用AND,是常闭的则用ANI。可使用AND、ANI指令元件有:输入继电器X、输出继电器Y、辅助继电器M、定时器T、计数器C、状态继电器S。
(3)触点并联指令OR(或)、ORI(或反);触点并联时,不管梯级中有几条支路,只要是单个触点与上一支路并联,是常开的用OR,是常闭的则用ORI。如下图所示。
1梯级来看;X000、T0、Y001三触点成串联关系,即T0的常闭串接于X000的后端,而Y001的常闭则串接于T0常闭的后端。由于都是常闭故用ANI指令。现来看2梯级;X000、M0、Y001,同样三触点也是串联关系,M0的常闭接点串接于X001的后端,而Y000的常开接点则串接于M0的后端。故M0的指令用ANI,而Y000的指令则用AND(具体编程详上图),一句话只要是串联后面是常开的用AND,是常闭的则用ANI。可使用AND、ANI指令元件有:输入继电器X、输出继电器Y、辅助继电器M、定时器T、计数器C、状态继电器S。
可以看出上图的X000、X001、M0三者处于并联关系。由于X000下面二条支路均为单个触点,因X001是常开触点,故用OR指令。而M0是常闭触点,则用ORI指令。三接点并联后又与M1串联,串联后又与Y000并联,而Y000也是单个触点,所以仍采用OR指令。可使用OR、 ORI指令元件有:输入继电器X、输出继电器Y、辅助继电器M、定时器T、计数器C、状态继电器S。
(4)串联电路块的并联指令ORB(或);任一梯级中有多(或单支路)支路与上一级并联,只要是本支路中是二个以上的触点成串联关系(即所谓的:串联电路块),则应使用ORB指令。如下图所示。
上图可以看出,支路X003的常开触点与M1的常开触点成串联关系(在这样的情况下,形成了块的关系),它是与上一行的X000与M0串联后相并联,此时程序的编写,如步序号0、1、2、3、4所示。4所出现的个ORB指的是与上一行并。而二支路,常闭Y001与M2同样是串联关系。也是一个块结构,其串联后再与支路并。故步序7再次出现ORB。ORB指令并无梯形图与数据的显示。可以这样认为;它是下一行形成电路块的情况下与上一行并联的一条垂直直线(如图中所示的二条粗线)。
(5)并联电路块与块之间的串联指令ANB;如左下图虚线框内所示的二电路块相串,各电路块先并好后再用ANB指令进行相串。左图的梯形图可以用右图进行简化。程序的编写如下图所示。ANB指令并无梯形图与数据的显示。可以这样认为;它是形成电路块与电路块之间的串联联接关系,是一条横直线。
(1)液晶显示器;在编程时可显示指令(即指令、元件符号、数据)。在监控运行时,可显示元器件工作状态。
(2)键盘;由35个按键组成,有功能键、指令键、元件符号键和数据键,大多可切换。各键作用如下:
①功能键:RD/WR......读出/写入,若在左下角出现R为程序读出,若出现W则为写入,即程序输入时应出现W,否则无法输入程序。按下如为R,再按一下则为W。INS/DEL......插入/删除,若在程序输入过程中漏了一条程序,此时应按该键,显现I则可输入遗漏程序。若发现多输了一条程序,同样按该键,显现D则可删除多余或错误的程序。MNT/TEST......监视/测试,T为测试,M为监视,同样按该键,可相互切换。在初学时要学会使用监视键M, 以监视程序的运行情况,以利找出问题,解决问题。
② 菜单键:OTHER, 显示方式菜单
③键:bbbbb,按此键,可当前输入的数据。
④帮助键:HELP,显示应用指令一览表,在监视方式时进行十进制数和十六进制数为转换。
⑤步序键:STEP,监视某步输入步序号。
⑥空格键:,/SP,输入指令时,用于元件号和常数。
⑦光标键:↑、↓,用这二键可移动液晶显示屏上光标,作行(上或下)滚动。
⑧执行键:GO,该键用于输入指令的确认、插入、删除的执行等。
⑨指令键/元件符号键/数字键(虚线框内):这些键均可自动切换,上部为指令键,下部为元件符号键或数字键。一旦按了指令键,其它键即切换成元件符号或数字,可以进行选择输入。其它Z/V、K/H、P/I均可同一键的情况下相互切换。
5、熟习编程器的操作
按规定联接好PLC与简易编程器。PLC通入电源,小型指示灯亮。将PLC上的扭子开关拨向STOP(停止)位置。
操作要点
①清零:扭子开关拨向STOP(停止)位置,会出现英文,别管它。直接按RD/WD(使显示屏左侧出现W即写的状态),此时先按NOP,再按MC/A中的A,接着按二次GO予以确认即可(即:W→NOP→A→GO→GO)。
②输入指令:如指令 LD X000 , 按以下顺序输入 LD→X→0→GO 即可,屏上自动显现 LD X000。其它指令类推。对于ORB、ANB、MPS、MRD、MPP、END、NOP等指令,输入后只要按GO确认即可(ORB→GO)。
③定时器的输入:如指令 OUT T0 K 40 按如下顺序输入即可 OUT→T→0→,/SP→K→40→GO(T0为100ms为单位,其整定值为:100×40=4000ms=4S)。
④ 删除指令:移动光标对准欲删除的指令,将INS/DEL键置于D,再予以GO确认即可。即 :移动光标对准欲删除指令→D→GO。
⑤插入指令:若欲在步序4、5之间插入新的步序,移动光标对准5,将INS/DEL键置于I,予以确认,再输入新的程序再次确认即可。如欲插入AND Y001即:移动光标对准欲插入部位→I→GO→AND→Y→1→GO。
⑥GO键:每一步序输入完毕均应输入GO予以确认。
⑦结束指令:每一程序输入完毕在结束时应输入END指令,程序才可运行。
⑧输入指令完毕应将PLC上的扭子开关拨向RUN于运行状态。若有音响、灯亮则说明输入程序有问题。
6、输入简单的可运行程序在监控状态下运行:初学时要学会使用监视键M,可以从液晶显示上监视程序的运行情况,加深对PLC各接点运行的认识。并利于找出问题,解决问题的办法。
具体操作如下:按MNT/TEST键置于M监视运行方式,移动光标即可观查整个程序的运行情况。若程序中出现■标记表示元件处于导通状态(ON),若无■标记则元件处于断开状态(OFF)。
7、试着编绘简易梯形图:简易梯形图的编绘,一般以现有的电工原理图,根据其工作原理进行绘制,由浅入深,先求画出,再求简单明了,慢慢领会绘制梯形图心得。要理解电工原理图的工作原理,根据电工原理图的工作原理,再按PLC的要求进行绘制。应把握的是,不能简单地将PLC各接点与电工原理图上的各接点一一对应(这是初学者的通病),若是这样的话就有可能步入死胡同,绘制的梯形图只要能达到目的即可。
一、机组技术概况概述永宏PLC以它的、高稳定性及高的性价比,使其在工业电炉行业中得到广泛的应用;此上引法连铸机组使用永宏PLC作为控制,使其稳定性得到大大的提高
1 前言
在电力系统研究中,由于物理动态模拟不但能够产生各种各样的故障,而且能够随机产生丰富的谐波、涌流、直流偏置和电火花,因而能够真实地反映电力系统的故障情况,提供合理的手段对电力系统进行分析和严格地考查保护装置的动作性能。
在动态模拟实验中,重要的是产生类似于电力系统中各种各样的故障类型及故障过程,以便对故障状态下的电力系统进行研究、分析以及检验继电保护装置动作的正确性。电力系统故障模拟控制系统就是为实现这样一个目的而设计的。应用PLC可编程控制器,可以方便地再现电力系统中的各种故障,如AN、BN、CN、ABN、BCN、CAN、AB、BC、CA、ABCN、ABC故障及各种发展性故障,同时可以模拟保护跳闸以考验保护相继动作及逆功率下的动作性能(可以模拟保护的任意动作时间)。还可以调节故障相角(0°~90°)以便考查保护在不同初始条件下的动作特性。具有灵活、的优点。
2 硬件组成
在该故障控制系统的开发过程中,深入地研究了实际电力系统的各种故障情况,将目前工业控制中工作为的PLC应用到本系统中,利用其输入接口与计算机通讯,达到了既使用灵活、又运行的控制效果,地模拟出电力系统的各种故障形式,并可实现多条线路的故障联动。
该故障控制系统由PLC可编程控制器、故障点选择器、故障形态选择器、合闸角控制器和故障开关组成,如图1所示。
系统选用C60可编程控制器外加扩展模块,具有64个输入点和48个输出点。它根据操作人员的指令,产生一系列的故障控制信息,控制故障发生单元产生各种故障。
这些控制信息包括:故障预录波时间、故障持续时间、故障位置、故障形态(故障相别及是否接地故障)、转换性故障转换时间、转换性故障重叠时间、模拟线路跳闸、模拟线路重合闸等等。
故障点选择器根据PLC可编程控制器指令决定故障点的位置,也就是确定在哪条线路以及确定在该线路的何处(出口、末端或者中间)进行短路故障。
故障形态选择器则根据PLC可编程控制器指令决定故障的形态,即单相短路、两相短路、三相短路及各种对地故障。
合闸角控制器在接受到故障信号后,选择合适的短路角度,再控制故障开关动作。
3 软件编程
程序的流程图如图2所示。考虑到电力系统故障的特点及对故障记录的要求,编程时做到了以下几点:
1)预留100 ms故障录波时间。为了能够进行故障前后的分析、对比,先启动录波器,再进行故障,以便得到故障前的波形。这样,即使使用光学录波器,也能得到满意的波形。
2)故障时间可以随意调整,这样即使没有接入保护跳闸信号也能自动断开故障。故障时间为100ms(瞬时故障)至1500 ms或长时间(故障)。
3)具有两组立的故障系统,可以准确模拟电力系统发展故障。两组系统的故障起始时间、结束时间能够立调整,这样可以模拟重叠或间隔状态的发展性故障。
4)能够模拟保护的跳闸及重合闸。这既可以研究由于继电保护装置不同的动作行为对电力系统带来的影响,尤其是不正确动作行为的影响,还可以考察继电保护装置相继动作以及逆功率状态下动作的正确性。
5)故障指令输入分为自动和手动两种情况。自动时,由程序内预置了常用的简单故障、复杂故障共四十余种故障形式,通过PC机或控制面板等指令输入设备可方便地任意选择故障,实现故障全过程的模拟。手动时,则通过手动选择故障状态和故障位置。这样可以组合出上百种的故障情况,满足复杂实验的需要。
本故障控制系统已应用于山东省电力系统动态模拟与实验室。到目前为止,该系统完成了包括瑞典ABB公司、德国SIEMENS公司及国内南京自动化研究院、四方哈德威公司等厂家在内的十几个厂商的三十余次实验测试,为厂家对保护的改进提供了重要的依据,避免了有缺陷的保护装置进入电力系统而造成经济损失。
5 结论
电力系统故障模拟控制系统是电力系统动态模拟与实验室中不可缺少的重要部分。本文研究开发的控制系统能应用于物理动态模拟系统,模拟产生电力系统中各种各样故障,能够对故障预录波时间、故障持续时间、故障位置、故障形态、转换性故障转换时间、转换性故障重叠时间等故障参数进行调节。同时还可以模拟保护对线路的跳闸、重合闸等操作,使用灵活,显著提高了实验室的实验水平与工作效率,具有很大的应用。 1、概述
莱钢1#1000m3高炉2005年投产,矿槽炉上料系统设计采用施耐德公司昆腾系列PLC,该控制系统实现了对矿石、球团、烧结、焦碳等原料的自动称量,并完成称量误差的自动补偿;实现了炉各阀门的顺序自动开关,α、β、γ的角度自动设定以及其他相关辅助设备的自动控制;实现了对高炉矿槽炉上料系统的数据采集、数据显示与数据控制。该系统投运以来,运行稳定,效果良好。
2、高炉矿槽炉上料系统工艺流程简述
2.1 槽上控制工艺流程:
高炉槽上设计13个料仓,4个烧结矿仓(3#、4#、5#、6#),2个焦炭仓(7#,8#),3个球团仓(9#、10#、11#),2个杂矿仓(1#、2#),1个焦丁仓。
槽上有3条打料皮带机,每条皮带机对应一辆卸料小车,采用卸料小车可以将胶带机输送的原料卸至不同的料仓,当采用卸料小车进行卸料时,卸料小车先开至所选择的料仓上方,然后启动胶带机,原料就经卸料小车卸到小车下方的料仓内。
2.2 槽下控制工艺流程:
高炉槽下设两个大烧结矿仓,两个小烧结矿仓,两个杂矿仓,三个球团仓,一个备用仓。每个矿仓下都有振动筛,筛除小于5mm的碎矿,大烧结矿仓的矿经过筛分后分别进入料坑的左右中间称量斗,小烧结矿仓的矿经筛分后分别进入各自配套的称量斗,然后经矿石皮带机集中运送,经料坑上方的翻板进入料坑中的矿石中间斗,经筛分后的5mm烧结矿经返矿皮带机运到碎矿仓。
焦炭设左右两个焦仓,仓下装有振动筛和振动给料机,焦炭经筛分后,大于20mm的块焦,分别直接进入料坑内的左右焦炭称量斗,筛下小于20mm的碎焦经SJ1、SJ2胶带机倒运到SJ3碎焦胶带机上,送至碎焦仓上振动筛,将碎焦分级成8mm以上和8mm以下两种产品,大于8mm的焦丁由SJ4胶带机运至焦丁仓,再经焦丁给料机到焦丁称量斗,然后到供料胶带机与烧结矿一起进入料坑中间斗。小于8mm的碎焦落入焦粉仓等待汽车外运。当料车到底后,相应的矿石中间斗或焦炭斗向料车装料。
2.3 炉控制工艺流程:
莱钢1#1000m3高炉炉采用无料钟串罐式炉,分为受料斗、料罐、气密箱等组成部分。在上料过程中,炉料先投进受料斗里,随后放入料罐中,在这个过程中,由于高炉不能和大气相通,通过控制炉放散阀、均压阀、上密阀、柱塞阀、下密阀的顺序开关来实现高炉的正常下料,通过控制α、β、γ来实现高炉布料。料面检测设备采用机械探尺与雷达探尺相配合。
装料流程:焦炭、烧结矿等各种入炉原料由料车运到炉,倒入受料斗中,受料斗多可装4车料。料罐放散完毕后打开上密阀和柱塞阀向料罐装料。装料完成后料罐进行均压。一旦高炉准备接受下一批炉料就进行布料,打开下密阀并将料流调节阀打开至设定开度,料罐中的炉料通过料流调节阀流到旋转的布料溜槽上。在布料期间,通过γ射线探测料流,该装置可发出料罐清空信号。一旦料罐清空,关闭料流调节阀和下密封阀,打开放散阀进行放散,准备下一次装料。
布料流程:一批料中,允许焦矿设定两个不同的料线位置。当探尺达到规定的料线位置后,自动提升到位,发出布料信号,下密封阀打开,布料溜槽进行启动。β角旋转到设定速度并且到达布料位置,开启料流调节阀,按照批重及规定的布料程序,调节料流调节阀开度和溜槽倾角,使每圈料流均匀、重量相等和尾相接的向炉喉任意布料。为了减少料头料尾不均匀现象,每批料布完后,布料角度自动步进60度。 4.1.2矿石称量斗的称量控制
当排料程序发出后,矿石称量斗闸门开,料排出。当称量值为控制值(初始时为设定值的95%)的5%时,发出料空信号并关闭闸门,当闸门关好并称空好后,振动筛或给料机开始启动。称量值到控制值(经补正)时,振动筛或给料机停机,进行满称量。若达110%控制值(经补正)时发出声光报警信号。振动筛或给料机启动Ts后,还未发出斗“满”信号,就发出上卡料报警信号。
4.1.3矿石称量斗的排料顺序
根据预先选定的装料程序,矿石中间称量斗一“空”且闸门关好,槽下翻板翻到位,矿石皮带机启动后,开始排料。
排料顺序:球团、杂矿单装时按料单内所填仓号的先后顺序进行排料(矿石称量斗排料多不同时过三个)。混装时先排一斗的球团或杂矿(排料单内球团或杂矿对应仓号的个斗),再排小烧或振大烧。当个称量斗闸门开启,发出空信号后,发出下一个斗排料指令。排料斗的闸门开到位延时Ts后,还未发出斗“空”信号,则发出下卡料报警信号。
4.1.4矿石中间称量斗称量控制
矿石中间称量斗称量控制分三种情况:
①大烧结矿振动筛供料:
当矿石中间称量斗“空”,闸门关好,设定好则发出同侧烧结筛运转指令,称量值达到控制值(初始时为设定值的95%)时,烧结筛停机,称量结束。称量值达110%控制值时发出音响报警信号。振筛启动延时Ts后,还未发出斗“满”信号,则发出“上卡料”信号。
②矿石皮带机供料:
当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当排料斗均放过料后,发出矿石中间斗装好信号,并发出皮带机停机指令。
③矿石皮带机和大烧结振动筛完成混装
当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当相应的一个矿石排料斗放过料后,发出大烧结振筛启动指令,同时发出皮带机停机指令。当称量发出“满”信号时,发出矿石中间斗装好信号。
4.1.5焦炭称量控制
当焦炭称量斗一“空”,闸门关好并设定好后,发出焦炭振动筛运转指令,开始称量,称量值达到控制值时(初始时为设定值的95%),发出振动筛停机指令,称量结束,若达110%控制值时,发出报警信号。振筛启动延时Ts后,还未发出斗“满”信号,则发出“上卡料”信号。
4.2 炉控制部分
4.2.1炉控制范围及内容
(1)炉上至料罐下至探尺各设备的顺序控制。
(2)无料钟串罐式炉的装料及均压、放散控制。
(3)料流调节阀开度(γ角)、布料溜槽倾动角(α角)、布料溜槽旋转角(β角)的控制。
4.2.2炉装料控制
上次布料结束且下密阀关到位后,程序发出申请装料信号,料车开始装料,受料斗满且料罐空,放散阀打开,在放散过程中,一旦打开放散阀并料罐内压力等于大气压力,则认为放散OK。放散OK后开上密阀,上密阀开到位后开柱塞阀,料车开始下料。延时一定时间后柱塞阀关闭,关放散阀,关上密阀,炉料装入料罐中后开均压阀开始均压。这时受料罐发允许料车上行信号。
4.2.3炉布料控制
料罐满且上密关到位后,程序发出申请布料信号,此时探尺探测到设定料线后提探尺至零位。均压好后关均压阀。探尺提到零位后开始转动α、β。布料溜槽倾动的正常工作角度范围是13-53度。就地操作可以使溜槽倾角达到70度以便于拆卸溜槽。当溜槽倾角小于12度或大于54度时,溜槽停止移动和转动并发出报警,只有在报警后才可以继续移动。一旦降下探尺或探尺在高炉中时,溜槽倾角如果大于45度,锁定溜槽。为了使溜槽的定位精度达到±0.2度的要求,在程序中对溜槽的倾动速度进行处理,溜槽开始以大速度倾动,当与目标位置只相差2度时,以大速度的三分之一倾动,这样可以的定位到目标位置。溜槽的旋转由变频器驱动的交流电机驱动。正常情况下溜槽不停的旋转,如果溜槽的倾角位置达到了上限或下限,或者探尺在炉内时溜槽倾角大于45度,溜槽要立即停止旋转并报警。溜槽每4小时改变一次旋转方向,这样可以确保溜槽磨损平衡。PLC根据炉料单和槽下传送来的布料代号给出料流调节阀γ的设定开度,控制料流调节阀打开到设定开度开始布料,当接受到料罐清空信号,料流调节阀打开才能关闭。清空信号由射线检测和PLC的定时器共同完成,如果在料流阀打开后规定的时间后发出清空信号,则认为料罐已经清空,如果在规定的时间之前发出清空信号则认为是料罐堵塞,PLC将发出报警信号,该信号一直保持,只有料流阀打开并且确保料罐排空后才能解除。料流阀关闭后关下密阀,降下探尺检测料面,布料结束。
5、结论
本文讨论了基于施耐德昆腾系列PLC的高炉矿槽炉上料系统的控制系统的控制情况,本控制系统已经在高炉生产得到了实际应用,满足了现场的生产工艺要求。操作画面简单方便,通过对料单设定画面的修改可以实现对矿石、焦碳配料参数及布料参数的设置与修改,并显示工艺所需要的数据。操作方式灵活,操作方式有自动、画面手动和现场就地操作。在该系统中,PLC充分发挥了其配置灵活、控制、编程方便和可现场调试的优点,给整个系统的稳定给整个高炉生产带来了较大的作用
产品推荐