广州西门子PLC代理商通讯电缆供应商
  • 广州西门子PLC代理商通讯电缆供应商
  • 广州西门子PLC代理商通讯电缆供应商
  • 广州西门子PLC代理商通讯电缆供应商

产品描述

产品规格模块式包装说明全新

广州西门子PLC代理商通讯电缆供应商

采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时选择继电器工作寿命要长。

    PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。

    外部电路

    急停电路。对于能使用户造成伤害的危险负载,除了在控制程序中加以考虑之外,还应设计外部紧急停车电路,使得PLC发生故障时,能将引起伤害的负载电源切断。

    保护电路。正反向运转等可逆操作的控制系统,要设置外部电器互锁保护;往复运行及升降移动的控制系统,要设置外部限位保护电路。

    可编程控制器有监视定时器等自检功能,检查出异常时,输出全部关闭。但当可编程控制器CPU故障时就不能控制输出,因此,对于能使用户造成伤害的危险负载,为确保设备在状态下运行,需设计外电路加以防护。

    电源过负荷的防护。如果PLC电源发生故障,中断时间少于10秒,PLC工作不受影响,若电源中断过10秒或电源下降过允许值,则PLC停止工作,所有的输出点均同时断开;当电源恢复时,若RUN输入接通,则操作自动进行。因此,对一些易过负载的输入设备应设置必要的限流保护电路。

    重大故障的报警及防护。对于易发生重大事故的场所,为了确保控制系统在重大事故发生时仍的报警及防护,应将与重大故障有联系的信号通过外电路输出,以使控制系统在状况下运行。

    PLC的接地

    良好的接地是保证PLC工作的重要条件,可以避免偶然发生的电压冲击危害。PLC的接地线与机器的接地端相接,接地线的截面积应不小于2mm2,接地电阻小于100Ω;如果要用扩展单元,其接地点应与基本单元的接地点接在一起。为了抑制加在电源及输入端、输出端的干扰,应给PLC接上地线,接地点应与动力设备(如电机)的接地点分开;若达不到这种要求,也做到与其它设备公共接地,禁止与其它设备串连接地。接地点应尽可能靠近PLC。

    冗余系统与热备用系统

    在石油、化工、冶金等行业的某些系统中,要求控制装置有高的性。如果控制系统发生故障,将会造成停产、原料大量浪费或设备损坏,给企业造成大的经济损失。但是仅靠提高控制系统硬件的性来满足上述要求是远远不够的,因为PLC本身性的提高是有一定的限度。使用冗余系统或热备用系统就能够比较有效地解决上述问题。

    在冗余控制系统中,整个PLC控制系统(或系统中重要的部分,如CPU模块)由两套相同的系统组成如图2所示。两块CPU模块使用相同的用户程序并行工作,其中一块是主CPU,另一块是备用CPU;主CPU工作,而备用CPU的输出是被禁止的,当主CPU发生故障时,备用CPU自动投入运行。这一切换过程是由冗余处理单元RPU控制的,切换时间在1~3个扫描周期,I/O系统的切换也是由RPU完成的。

    在热备用系统中,两台CPU用通讯接口连接在一起,均处于通电状态如图3所示。当系统出现故障时,由主CPU通知备用CPU,使备用CPU投入运行。这一切换过程一般不太快,但它的结构有比冗余系统简单。


   工作环境

    温度PLC要求环境温度在0~55℃,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大,基本单元和扩展单元之间要有30mm以上间隔;开关柜上、下部应有通风的百叶窗,防止太阳光直接照射;如果周围环境过55℃,要安装电风扇强迫通风。

    湿度为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。

    震动应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,采取减震措施,如采用减震胶等。

    空气避免有腐蚀和易燃的气体,例如、等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中,并安装空气净化装置。

    电源PLC供电电源为50Hz、220(1±10%)V的交流电,对于电源线来的干扰,PLC本身具有足够的抵制能力。对于性要求很高的场合或电源干扰特别严重的环境,可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰。还可以在电源输入端串接LC滤波电路。FX系列PLC有直流24V输出接线端,该接线端可为输入传感器(如光电开关或接近开关)提供直流24V电源。当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。

    安装与布线

    动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。

    PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。

    PLC的输入与输出分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10。

    PLC基本单元与扩展单元以及功能模块的连接线缆应单敷设,以防止外界信号的干扰。

    交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。

    I/O端的接线

    输入接线

    输入接线一般不要过30米。但如果环境干扰较小,电压降不大时,输入接线可适当长些。输入/输出线不能用同一根电缆,输入/输出线要分开。尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。

    输出连接

    输出端接线分为立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。

    由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板,因此,应用熔丝保护输出元件。


3 基于PLC的空压机变频控制系统

    3.1系统原理设计

    控制系统由以下部分组成:变频器、可编程控制器、变频柜、电抗器、压力变送器、震荡传感器等。

    基于PLC的变频控制系统原理图如图2所示。PLC由触摸屏、电源、CPU、模拟量输出模块等组成。其中采用PLC来实现电气部分的控制。包括五部分:起动、运行、停止、切换、报警及故障自诊断。

    (1)起动:以两台电机M1,M2为例,可以通过转换开关选择变频/工频启动。

    运行:正常情况,电机M1处于变频调速状态,电动机M2处于停机状态。现场压力变送器管网出口压力,并与给定值比较,经PID指令运算,得到频率信号,动动调节转速达到所需压力。

    (2)停止:按下停止按钮,PLC控制所有的接触器断开,变频器停止工作。

    (3)切换:实现M1,M2工频、变频相互切换。

    (4)报警及故障自诊断:空压机内部一般有四个需要监测的量:冷却水压力监测、润滑油监测、机体温度监测、储气罐压力监测。

    3.2案例分析

    以某厂房空压机为例。改造前经测试参数如下:电机功率110kW,出口压力为5.9~6.5MPa,运行时间为12小时/天,一年运行320天,加载时间为15s,减载时间15s;加载电流为190A,减载电流为90A。经检测其节电率为30%以上。年节电量(按30%)计算如下:

    W节电量=12×320×110×30%=1.27×105(k•Wh)

    可见节电效果明显,此外,改造后系统还存在其它优点。,减少了机器的噪音。其次,两套控制回路可保证系统的正常、运行。后,自动化程度高,克服原系统手动调节的缺点。

    4 结束语

    利用PLC和变频器实现对螺杆式空气压缩机的节能改造方案实验结果表明,改造后系统具有节约能源,自动化程度高,降低原系统噪音,减少设备维修量等优点,具有深入研讨的实用。


 1.引言

    空气压缩机是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。作为基础工业装备,空压机在冶金、机械制造、矿山、电力、纺织、石化、轻纺等几乎所有的工业行业都有广泛的应用。空压机占大型工业设备(风机、水泵、锅炉、空压机等)耗电量的15%。由于结构原理的原因,大部分空压机自身存在着明显的技术弱点。当输出压力大于一定值时,自动打开泄载阀,使异步电动机空转,严重浪费能源;异步电动机易频繁的启动、停止,影响电机的使用寿命,压机工频启动电流大,对电网冲击大,电机轴承磨损大,设备维护量大;工作条件恶劣,噪音大;自动化程度低,输出压力的调节是靠人为调节阀的开度来实现的,调节速度慢,波动大,不稳定,精度低。

    针对以上存在的问题,设计采用PLC和变频器实现对螺杆式空气压缩机的节能改造方案,经分析,该方案自动化程度高,节能效果显著,实用性好。

    2 空压机变频改造原理

    2.1空压机的工作原理

    螺杆式空压机的工作原理图如图1所示,空气经空气过滤器和吸气调节阀而吸入,该调节阀主要用于调节气缸、转子及滑片形成的压缩腔,阴、阳转子旋转相对于气缸里偏心方式运转。滑片安装在转子的槽中,并通过离心力将滑片推至气缸壁,的注油系统能够确保压缩机良好的冷却及润滑油的小舒适耗量,在气缸壁上形成的一层薄薄的油膜可以防止金属部件之间直接接触而造成磨损。经压缩后的空气温度较高,其中混有一定的油气,经过油气分离器进行分离,之后,油气经过油冷却器冷却在经过油过滤器流回储油罐,空气经过气后冷却器(空气冷却装置)进行冷却而进入储气罐。

    2.2空压机变频节能原理

    螺杆式空压机基本运行方式是加载、减载方式。减载时电机空转,能源白白的浪费,如果利用变频器通过改变电机频率来调节转速,变频控制即通过改变电动机的转速来控制空压机单位时间的出风量,从而达到控制管路的压力,具有明显的节能效果。空压机变频节能系统原理如下:通过压力变送器测得的管网压力值与压力的设定值相比较,得到偏差,经PID调节器计算出变频器作用于异步电动机的频率值。由变频器输出的相应频率和幅值的交流电,在电动机上得到相应的转速。那么空压机输出对应的压缩空气输出至储气罐,使之压力变化,直到管网压力与给定压力值相同。

    2.3变频改造注意事项

    (1)空压机是大转动惯量负载,这种启动特点很容易引起变频器在启动时出现跳过流保护的情况,建议采用具有高启动转矩的无速度矢量变频器,保证既能实现恒压供气的连续性,有可保证设备稳定的运行。

    (2)空压机不允许长时间在低频下运行,工作下限应不20Hz。

    (3)建议功率选用比空压机功率大一等级的变频器,以免空压机启动出现频繁跳闸的情况。

    (4)为了有效的滤除变频器输出电流中的高次谐波分量,减少因高次谐波引起的电磁干扰,建议选用输出交流电抗器,还可以减少电机运行的噪音。

    (5)设计的系统应具备变频和工频两套控制回路,确保变频出现异常跳保护时,不影响生产。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


自1889年美国奥梯斯升降机公司推出世界部以电动机为动力的升降机以来,电梯在驱动方式上经历了卷筒式驱动、牵引式驱动等历程,逐渐形成了直流电机拖动和交流电机拖动两种不同的拖动方式。如今电梯已成为人们进出高层的代步工具;而且作为载人工具,人们在运行的平滑性、高速性、准确性、性等一系列静、动态性能方面对它提出了高的要求。由于早期的电梯继电器控制方式存在故障率较高、性差、接线复杂、一旦接收完成不易改等缺点,所以需要开发一种、的控制方式。可编程控制器(PLC)既保留了继电器控制系统的简单易懂、控制精度高、性好、控制程序可随工艺改变、易于与计算机接口、维修方便等诸多性能。因此,PLC在电梯控制领域得到了广泛而深入的应用。


一、电梯控制系统组成

电梯控制系统可分为电力拖动系统和电气控制系统两个主要部分。电力拖动系统主要包括电梯垂直方向主拖动电路和轿箱开关电路。二者均采用易于控制的直流电动机作为拖动动力源。主拖动电路采用PWM调试方式,达到了无级调速的目的。而开关门电路上电机仅需一种速度进行运动。电气控制系统则由众多呼叫按钮、传感器、控制用继电器、指示灯、LED七段数码管和控制部分的器件(PLD)等组成。PLC集信号采集、信号输出及逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。

十层电梯控制系统由呼叫到响应形成一次工作循环,电梯工作过程又可细致分为自检、正常工作、强制工作等三种工作状态。电梯在三种工作状态之间来回切换,构成了完整的电梯工作过程。

(一)电梯的三个工作状态

1.电梯的自检状态

将程序下载到AB公司的MicroLogix1000型PLC后上电,PLC中的程序已开始运行,但因为电梯尚未读入任何数据,也就无法在收到请求信号后通过固化在PLC中的程序作出响应。为满足处于响应呼叫就绪状态这一条件,使电梯处于平层状态已知楼层且电梯门处于关闭状态。电梯自检过程的目标为:为先按下启动按钮,再按下恢复正常工作按钮,电梯电梯门处于关闭状态,然后电梯自动向上运行,经过两个平层点后停止。

2.电梯的正常工作状态

电梯完成一个呼叫响应的步骤如下:

(1)电梯在检测到门厅或轿箱的呼叫信号后将此楼层信号与轿箱所在楼层信号比较,通过选向模块进行运行选向。

(2)电梯通过拖动调速模块驱动直流电机拖动轿箱运动。轿箱运动速度要经过低速转变为中速再转变为高速,并以高速运行至减速点。

(3)当电梯检测到目标层楼层点产生的减速点信号时,电梯进入减速状态,由中速变为低速,并以低速运行至平层点停止。

(4)平层后,经过一定延时后开门,直至碰到开关到位行程开关;再经过一定延时后关门,直到碰到关门到位行程开关。电梯控制系统始终实时显示轿箱所在楼层。

3.电梯强制工作状态

当电梯的初始位置需要调整或电梯需要检修时,应设置一种状态使电梯处于该状态时不响应正常的呼叫,并能移动到导轨上、下行限点间的任意位置。控制台上的消防/检修按钮按下后,使电梯立刻停止原来的运行,然后按下强迫上行(下行)按钮,电梯上行(下行);一旦放开该按钮,电梯立刻停止,当处理完毕时可用恢复正常工作按钮来使电梯跳出强制工作状态。

(二)电梯控制系统原理框图

电梯控制系统原理框图如图1所示,主要由轿箱内指令电路、门厅呼叫电路、主拖动电机电路、开关门电路、档层显示电路、按钮记忆灯电路、楼层检测与平层检测传感器及PLC电路等组成的。

图1 电梯控制系统原理框图

(三)电梯控制系统的硬件组成

电梯控制系统的硬件结构如图2所示。包括按钮编码输入电路、楼层传感器检测电路、发光二管记忆灯电路、PWM控制直流电机无线调速电路、轿箱开关电路、楼层显示电路及一些其他辅助电路等。为减少PLC输入输出点数,采用编码的方式将31个呼叫及指层按钮编码五位二进制码输入PLC。
1.系统输入部分

系统输入部分分为两个部分,一是直接输入到PLC输入口的开关量信号部分,包括:控制台上的启动按钮、恢复正常工作按钮、消防/检修按钮、强迫上行(下行)按钮部分以及开关门行程到位开关。二是按钮编码输入信号部分。本系统为十层电梯系统,在轿箱内的选层按钮和门厅旁的向上、向下呼叫按钮共有28个之多,采用编码的方法将31个按钮信号编为五位二进制码。这里采用四片8位编码器4532和五个四二输入端或门4072组成32级编码器。

2.系统输出部分

系统的输出部分包括发光二管记忆灯电路、PWM控制调速电路、轿箱开关门电路和七段数码管楼层显示电路等。

在PWM控制直流电机无线调速电路中,PWM产生电路接收来自PLC的八位二进制码,随着码值的改变,其输出的脉冲占空比也相应改变。轿箱开关门电路使用两个继电器、两个行程开关、直流电动机、功率反相器2003等构成控制电路。在七段数码管楼层显示电路中,七段数据管不经驱动芯片驱动而由PLC提供特定的二进制码直接输入。
二、系统的软件设计

(一)软件流程

(二)模块化编程

本系统是集选式控制系统,控制比较复杂,适合采用模块化编程方法。要将各个输出信号的属性分类,模块与模块之间的衔接可以用中间寄存位来传递信息。如:门厅呼叫电路和轿箱内指层电路均要求读入按钮呼叫信号,并保持至呼叫被响应完成为止。将门厅呼叫按钮、箱内指层按钮、箱内开关门按钮、报警按钮等通过32级编码电路编码后输入PLC,在软件上就形成了读按钮编码电路模块。

系统软件大致分为八个模块:读按钮编码电路模块、楼层检测电路模块、控制七段数码管显示楼层电路模块、电梯选向电路模块和系统非正常工作状态及电机调速拖动电路模块、减速点信号产生电路模块、电梯轿箱开关门电路模块和按钮记忆灯显示电路模块。

楼层检测电路模块主要是读入楼层编码并将该记忆信号存入对应的中间寄存位,直到楼层改变为止。

控制七段数码管显示楼层电路模块主要控制两片七段数码管的显示。

电梯的选向模块主要是完成电梯在响应呼叫时作出的向上运行还是向下运行的判断。该模块有两个对系统来说特别重要的中间量输出,即上行中间寄存位和下行中间寄存位。

系统正常工作状态及电机调速拖动电路模块将系统初始化过程、强制工作过程及电机调速拖动过程合并为一个模块。

减速点信号产生电路模块完成将减速点信号通知系统的任务。电梯在运行到目标楼层点时要进入减速状态,而电梯在运行过程中会碰到很多的楼层检测点,只有到目标楼层的点时才会发出减速通知,电梯在经过目标楼层检测点时接到这个信号就开始减速了。

电梯轿箱开关门电路模块和按钮记忆灯显示电路模块是为了便于控制组成的模块,分别控制轿箱的并关门和按钮接过之后需要记忆显示的发光二管电路。

(三)系统调试

电梯系统为模拟实用旅客电梯系统的教学实验装置。它能实现实际旅客电梯系统的绝大部分功能,包括:门厅召唤功能、轿箱内选层功能、顺向截梯功能、智能呼叫保持功能、电梯自动开关门功能、电梯手动开关门功能、无效指令功能、智能初始化功能、/检修功能、楼层显示功能和电梯平滑变速功能。

虽然本电梯控制系统已能满足基本的电梯运行要求,但仍有许多需要改进的地方:

1.增加与微机通信的接口,实现联网控制,多台电梯的综合控制由微机完成。

2.优化电梯的选向功能,使之能随客流量的变化而改变,达到运送乘客的目的。

3.增加出现紧急情况时的电梯处理办法。

4.需输入密码才能乘电梯到达特殊档层功能,且响应该楼层呼叫时不响应其他楼层呼叫。

5.设置电容感应装置,如关门时仍有乘客进出,则轿门未触及人体就能自动重新开门。


汽车制造厂的输送线和装配线的控制系统非常复杂,它需要控制道岔、停止器、捕捉器、隔离开关、急停开关、接近开关、光电开关、传送机、张紧器、提升机、举升台等许多执行机构。在奇瑞公司二期工程总装车间里,采用两条装配线实现了四种车型的混线生产。整个控制系统由控制室和四个远程控制站组成了一个全厂工业局域网,远程控制柜PLC通过以太网将自己所控制区域内的生产情况传送至控制室的计算机系统。


一、系统选型及特点

在认真分析控制系统公司的产品基础上,奇瑞公司根据自动化控制技术人员在产品实际应用上的经验,鉴于一期工程采用罗克韦尔A-B PLC产品的良好运行状况,决定在二期工程中仍采用A-B PLC用来控制整个生产车间。

A-B PLC在工业界享有,其PLC-5系列作为A-B家族中旗舰产品拥有许多功能模块,可以实现多种复杂的控制系统。此外,罗克韦尔的软件众多,功能强大,能够给予A-B的产品广泛的支持。

终,奇瑞公司确定选用罗克韦尔的PLC-5可编程序控制器、RSLogix 5编程软件、RSNetWork控制网组态软件以及RSView软件组成的自控系统来实现对总装车间的整个生产装配线的控制。除此之外,奇瑞公司二期工程的焊装输送线和涂装输送线也采用了罗克韦尔的A-B PLC。

PLC-5/40E CPU的特点是内存容量大、数据处理能力强、网络功能强大,带有以太网网口,不需要额外的以太网通讯模块。PLC-5/40E CPU使用钥匙开关改变处理器的操作模式:在运行模式下,用户不能创建或删除程序文件、创建或删除数据文件、或通过编程软件变操作模式;在编程模式时,用软件编程不能变操作模式;通过编程软件,在远程编程、远程测试、远程运行模式之间改变。

RSLogix 5编程软件具有的通讯能力、强大的编程功能以及的诊断能力、监控能力、运行控制功能。运用RSLogix 5梯形逻辑编程软件可以优化系统性能,节省项目开发时间,提高生产率。

上位机软件RSView32是罗克韦尔自动化公司推出的组态软件平台,其特点是使用方便,可以构造灵活的界面和强大的功能,能够开发出较强的组合画面。利用上位机软件RSView32,坐在控制室就可对现场的生产情况一目了然,实现监控生产。

二、系统结构与配置

罗克韦尔的通讯网络分为信息层、控制层和设备层。信息层应用以太网进行全厂的数据采集和程序维修;控制层应用控制网、DH+、DH485、远程I/O网络;设备层应用DeviceNet网络进行底层设备的、率信息集成。

罗克韦尔采用基于生产者/客户模式的通讯技术控制网,即传送对时间有苛刻要求的控制信息也可同时传送其他的信息,但对时间无苛求的信息不会影响对时间苛求信息的传送。

该控制网具有以下特点:

连续性;
传送与梯形逻辑程序的扫描异步;
以一个与用户在I/O映象表中所设定的通讯速率相等或快的速率传送,充分保证了控制网中的数据准确、、快速的发送、传递、接受和处理。
总装车间控制系统是一个基于DeviceNet网络的现场总线控制系统。控制系统由一个控制柜和四个远程控制柜组成,并与上位机和企业的以太网相连接。系统的层是设备控制层,主要实现对生产设备的现场控制与监控;控制网主要是通过上位机完成对全车间生产线的在线监测,并向设备控制层下达控制指令;上层是EtherNet网络通过EtherNet网络与公司的企业资源管理(ERP)系统连接,向ERP系统提供整个车间的生产数据。

1、控制室

控制室采用RSView32组态软件。RSView32是高度集成、基于组件并用于监视和控制自动化设备和过程的人机界面软件,通过开放的技术扩展用户的视野,能够实现与罗克韦尔其他软件产品、微软产品以及三方应用程序的高度兼容。RSView32除了具备高质量人机界面软件的功能外,还能够提供特的系列工具以大限度地提升生产效率。

控制室承担了数据管理、车间数据采集、报警、趋势、数据记录及中文报表等工作。在控制室设有操作员工作站,操作员通过操作终端详细了解整个车间的生产运行情况,下达操作控制指令指挥整个车间的生产,以实现车间自动化控制。

控制室主要实现以下功能:

(1) 控制操作:在控制室对整个系统的被控设备进行在线实时控制。

(2) 显示功能:用图形实时显示各PLC站被控设备的运行工况;动态显示生产线工艺流程图,并能在流程图上选择弹出多级细部详图;动态显示各种信号的数值和范围清单。

(3) 数据管理:建立生产数据库、操作信息库、故障信息库。

(4) 数据处理:利用实时数据和历史数据计算主要生产指标。

(5) 报警功能:当装配线出现故障时,工人按下呼人开关和急停开关,装配线停止运行,并把故障信息输入到报,屏幕显示报警信息,打印机输出报警信息,声光报警,并可依据报警信息推出相应的动态画面。

(6) 报表功能:包括即时报表、日报表、月报表、年报表。

(7) 功能:按不同操作级别分级加密,并记录操作人的员工号和所有操作信息。

(8) 打印功能:可以实现报表和图形打印以及各种事件和报警的实时打印。
2、双行道板式输送机系统

总装车间有两套双行道板式输送机系统。该系统由四柱叉式提升机、助推器、回转举升台、传送机和接近开关等设备组成,每套系统由两条平板输送线组成。平行回行是一种非常复杂的控制技术,在国内处于技术的地位。该输送线能够在很大程度上降低工人的劳动强度,提高生产效率。因此,对控制系统技术的要求比较高,难度也比较大。设备控制和调试起来非常困难,要求控制系统的各个部分互相紧密配合,不能出现半点差错,这是控制中的难点和。

从四柱叉式提升机的控制系统中取一个信号,用来控制吊具从宽推杆积放式悬挂输送链到双行道板式输送机上或从双行道板式输送机到宽推杆积放式悬挂输送链上,过程之间的紧密衔接,以杜绝差错和故障的出现。同时,在现场设有自动/手动切换箱,以防生产过程中出现紧急事故。

3、车型吊具识别系统

在油漆车身上料点,操作人员将当前吊具号及车的信息输入到录入计算机中,然后通过以太网传送至PLC进行堆栈存储。录入计算机将车的信息通过识别系统写头写入载码体,通过以太网将吊具号及车的信息传送至上位机,并在录入计算机内存储,当录入完毕后向PLC发送信号。

上位机做出与输送线相对应的画面及参数,通过PLC给出的指针及录入计算机给出的信息进行显示,并与PLC给出的堆栈信息进行比较,上位机根据信息及要求控制出入库的道岔及停止器。当上位机出现故障时,操作人员采用人工控制运行,待上位机正常后从PLC调出堆栈信息恢复显示。

在库存入口处的识别系统读头读取载码体信息通过以太网传至上位机,上位机根据库存及车的信息控制入库区的道岔及停止器。当上位机出现故障时,操作人员人工控制运行,待上位机正常后从PLC调出堆栈信息恢复显示。

库区出口处,上位机根据计划及库区信息通过以太网控制停止器。当上位机出现故障时,操作人员人工控制运行。

载车吊具入口处,上位机根据识别系统读头读取载码体信息通过以太网传至上位机,然后上位机根据车的信息控制道岔及停止器。当上位机出现故障时,操作人员人工控制运行。

在装配悬链整车下线提升机工位处(ST48)设置识别系统读头,现场仪表板上线处设置显示计算机及打印机各一台。当车通过ST48工位时,读头将载码体信息读入,并在计算机处显示。

发动机上线完毕后,通过以太网发送一信息,计算机自动。计算机能依次显示3台车辆的信息,并能打印当天的产量及参数。

4、吊具储存区

总装车间吊具存储区分空吊具存储区和油漆车身吊具存储区。其中油漆车身吊具存储区由九条宽推杆积放式悬挂输送链系统组成,用来存储不同的车型和同种车型的不同颜色车身的吊具。

控制系统需要区分吊具的类型,在吊具进入存储区和移出存储区时需要鉴别吊具的类型,并与已经输入的信息进行比较。然后做出吊具应该进入哪一条悬挂输送线存储区,或者哪种吊具从悬挂输送线存储区出去的决定。

在空吊具存储区前有一个坏吊具识别和检修区,把需要检修的吊具送入检修区进行维修,正常的空吊具进入吊具存储区。

三、结束语

总装车间控制系统的特点同时也是控制的难点,主要体现在以下两方面:一是,要切实保证设备运行的性,在生产过程中出现任何微小的故障都可能导致重大的事故和的经济损失;二是,控制系统复杂的连锁关系,从载油漆车身的吊具上线到成品车下线,包括工艺链和快速链之间的衔接,需要设备的各个环节紧密配合,不能出现丝毫差错。

总装车间控制系统自动化程度较高、数据采集量大、控制站多,因此,对系统性的要求较高。通过采用罗克韦尔的产品和技术,系统基本达到设计要求,运行效果较好,运行稳定、,灵活地实现了复杂的连锁任务,具有较高的机电一体化水平。同时,该系统设计合理、,减轻了工人的劳动强度,减少了设备运行的故障率,提高了生产效率。



http://zhangqueena.b2b168.com

产品推荐