深圳西门子中国一级代理商电源供应商
1 引言
发动机装配线PLC控制系统,主要针对包括转台、举升台、举升转移台、翻转机五种工位的控制。在汽车发动机装配过程中,由于被装配零件的多样性,需要在装配线的每个工段适当调整发动机的方位以方便装配零件。装配线上共计20余个工位,包括7个普通转台、2个维修转台、4个无滚轮举升台、7个单向滚轮举升台以及2个翻转机。
整个被控对象包括22个工位,每个工位上包含必需的转移电机或举升电机,此外还有32个生产线传输电机。每个工位均由一个ET200S和一个ET200eco从站组成,用于该工位的I/O点数据采集和发送以及分散控制。
2 系统结构及功能
系统包括操作员站、工程师站、自动化系统、网络和现场I/O站等几个部分。
系统各部分功能:
操作员站:提供全汉化人机界面,实现控制系统的监控操作功能(操作、显示、报表、报警、趋势),并且可以在人机界面上直接查看对应的step7源程序。
工程师站:用于系统的组态和维护。
自动化系统:使用SIMATIC控制器完成回路调节和逻辑运算。
现场I/O站:使用现场总线技术,在设备现场直接采集现场仪表的信号,控制现场的执行机构。
现场总线ProfiBus:用于连接控制单元与操作员站以及管理网络。
本系统采用PLC300CPU和CP342-5、CP343-1的接口模块相连构成系统的主站。CP342-5是用于连接S7-300和profibus-DP的主/从站接口模块,CP 343-1是用于连接S7-300和工业以太网的接口模块。在该控制系统中,除了上述主站外,从站是由22个ET200S和22个ET200eco组成,分别分布在两条profibus网络上。CPU上自带的profibus-DP接口构成profibusⅠ线,CP 342-5接口模块构成profibusⅡ线。
系统配置功能图如图1所示:
系统中ET200S从站上采用的IM151-1接口模块有两种: 基本型和标准型,基本型的接口模块所能挂接的电源管理模块和I/O模块个数范围为2~12个,标准型的接口模块其范围为2~63个。所以当从站I/O模块较多时,宜选用标准型的接口模块。接口模块上带有profibus地址设定拨码开关。
系统中ET200eco从站中选用了8DI和16DI两种模板,模板结构紧凑,模板的供电采用7/8‘电源线,模板的通讯采用M12通讯接头。接线灵活而快速,方便拔插。其接口模块上带有2个旋转式编码开关用于profibus地址分配。
网络设备按照适应工业现场环境的程度,以及生产线的布局来考虑选用不同防护等级。控制箱中的模块采用防护等级为20的ET200S I/O模块,对应每个控制箱的还有一个防护等级为67的ET200eco模块,置于生产线滚轮下方,由于该模块需要接触到现场较为恶劣的生产环境,因此需要有防油防尘等功能。
3 目标控制系统
3.1 系统设计
汽车发动机装配线是一个对发动机顺序装配的流水线工艺过程。由于工艺的繁琐性,工程的计算机控制系统考虑采用分散控制和集中管理的分布式控制模式,采用以PLC为构成的计算机控制系统,各立工位控制系统之间通过网络实现数据信息、资源共享。该装配线在整个生产过程中较为关键,由于每个工位之间是流水线生产,因此每个环节的控制都具备高性和一定的灵敏度,才能保证生产的连续性和稳定性。从站中的每个ET200S站和其对应的ET200eco站共同构成一个工位, ET200eco主要是采集现场数据之用。ET200S站的模块置于小型控制箱内, 对于工位的基本操作有两种方式,就地控制箱手动方式和就地自动方式。由于每个控制工位的操作进度不一致,操作工可以按照装配要求进行手自动切换。特殊情况下亦可通过手动操作进行工件位置的修正。
安装在各工位的分布式I/O模块ET200S和ET200eco通过现场检测元件和传感器将系统主要的监控参数(主要是开关量)采集进来,ET200S和ET200eco将现场模拟量信号转换为的数据量,通过速度可达12M的Profibus-DP现场总线网络将采集数据上传到控制器,控制器根据具体工艺要求进行处理,再通过Profibus-DP网络将控制下传给ET200S,实现各工位的控制流程。PROFIBUS是应用广泛的过程现场总线系统。PROFIBUS有三种类型:FMS、DP和PA。PROFIBUS-FMS可用于通用自动化;PROFIBUS-DP用于制造业自动化;PROFIBUS-PA用于过程自动化。使用PROFIBUS过程现场总线技术可以使硬件、工程设计、安装调试和维修费用节省40%以上。PROFIBUS-DP的技术性能使它可以应用于工业自动化的一切领域,包括冶金、化工、环保、轻工、制等领域。除了安装简单外,它有高的传输速率,可达12Mbits/s,通讯距离可达到1000米,如果加入中继器可以将通讯距离延长到数十公里,具有多种网络拓扑结构(总线型、星型、环型)可供选择。在一个网段上多可连接Profibus-DP从站即ET200S或是ET200eco 32个。
整个控制系统根据工艺划分由转台、举升台、举升转移台、翻转机五种工位组成。各部分可立完成各自的控制任务,并通过工业以太网实现和上位监控系统的连接,由上位系统实现各部分的协调控制。
装配I线工程PLC控制系统和网络通讯系统具有下列特点:
(1) 计算机集成自动化过程控制系统,分布式、高性、高稳定性。
(2) 从站作为相对立的系统分散控制各个工位的运行。
3.2 系统控制要点
(1) 该系统网络中一个主站CPU下两条profibus网络所带的从站有44个之多,在利用Simatic Manager编程软件进行硬件配置时,根据S7-300CPU中CPU31XC的地址分配的参数规范,对于数字量输入输出,其分配的参数范围为0.0~127.7。因此在进行硬件配置时, S7~300CPU自带的profibus-DP接口上的profibus I线上的模块数字量I/O地址一般规定在0.0~127.7的范围中,如有出则采用间接寻址的方式来处理。profibus Ⅱ线上的模块的数字量I/O无论处在哪个范围中,都采用间接寻址方式。(2) 关于接触器的硬件互锁。对于转台工位,转台有正转和反转两种工作状态,因此转台的回转电机需要有一个负荷开关和两个接触器一并来控制(而举升电机一般只需要一个负荷开关和对应的一个接触器即可进行控制),接触器分正转接触器和反转接触器,输入端为380AV。正转接触器的三相电压A、B、C分别和反转接触器的C、B、A短接。如图2所示,当程序在执行过程中,若存在某些漏洞使得正转接触器和反转接触器的输出点同时置1时,则会出现正转接触器和反转接触器各自的A相和C相短接,造成接触器短路损坏,主电源开关跳闸。为了避免这种事故的发生,保程序中不能出现两个接触器同时置1的情况,其次即是采用接触器上硬件互锁,如图2所示,点Q1、点Q2是输出控制点,Q1两端本应接在正向接触器的两个输入端子,同理, Q1两端本应接在正向接触器的两个输入端子,但是改接成如图所示。接触器上有自带的一个常开点和一个常闭点,互锁中只需用到常闭点,当输出点Q1闭合时,正向接触器上常闭点随之断开,则Q2输出点两端之间不可能形成回路,也就不会出现短路跳闸的事故。
(3) 该项目中涉及到的变量数目较多,根据现场情况随时可能有改,为了便于管理,采取S7程序界面和Wincc人机界面共用一套变量。这样可以将建立变量的工作量减少一半,也将出错概率减少一半。先安装step7软件,之后自定义安装Wincc软件,将Wincc通讯组件安装完整。然后在step7软件中插入OS站,可点击右键打开并编辑Wincc项目。在Wincc项目中需要引用变量的位置进行变量选择,出现变量选择对话框,即可在step7项目变量表中选择需要的变量,从而保证人机界面和下位机所用变量的一致性。
3.3 系统控制功能
(1) 手自动回路的切换
在Wincc人机界面上可以很方便地知道每个工位的手自动状态,但是手自动状态的切换是在从站的控制箱面板上实现的。在自动状态下,工位的操作全由下位控制,可实现全自动控制机械的操作流程。在手动状态下,操作具有自保护功能,在某些机械操作动作下通过软件互锁可杜绝相应的危险动作的发生。
(2) 保护
上位监控系统设定了若干级操作密码,管理员和操作员分别有自己的操作权限,且操作员在进行操作时有必要的警告提示框和信息提示框出现。
(3) 查询源程序代码
当上位机画面显示某个工位出现故障时,可从画面直接点击按钮进入相应的下位机梯形图程序界面,即可查找出故障的根本原因,节省了维修时间。
(4) 故障报警和报表打印
当设备出现故障时,报警框中会出现提示,并伴随有声音报警。操作员可根据需要打印与生产相关的报表信息。
4 结束语
西门子S7300 CPU通过两条profibus-DP网络连接若干ET200S和ET200eco从站构成的集中分散式控制系统已经在该发动机装配线成功投运,能够保证生产线连续稳定地生产,尤其在机械动作灵敏度上有较大提高,满足了用户的要求
1.汽车总装线系统构成与要求
汽车总装线由车身储存工段、底盘装配工段、车门分装输送工段、终装配工段、动力总成分装、合装工段、前梁分装工段、后桥分装工段、仪表板总装工段、发动机总装工段等构成。
车身储存工段是汽车总装的个工序,它采用ID系统进行车身型号和颜色的识别。在上件处,由ID读写器将车型和颜色代码写入安装在吊具上的存储载体内,当吊具运行到各道岔处由ID读写器读出存储载体内的数据,以决定吊具进人不同的储存段。出库时,ID读写器读出存储载体内的数据,以决定车身送到下件处或重新返回存储段。在下件处,存储载体的数据。在上下线间,应在必要的地方增加ID读写器,以确定车身信息,防止误操作。采用人机界面以分页显示该工段各工位的运行状况,车身存储情况、饱和程度、故障点等信息。
总装线的所有工段都分为自动操作和手动操作两种形式。自动时,全线由PLC程序控制;手动时,操作人员在现场进行操作。整条线在必要的工位应有急停及报置。
整个系统以三菱PLC及现场总线CC-bbbb为控制设备,采用接近或光电开关监测执行结构的位置,调速部分采用三菱FR-E500系列变频器进行控制,现场的各种控制信号及执行元件均通过CC-bbbb由PLC进行控制。
2.系统配置
汽车总装线的系统配置如图所示。
汽车总装线的系统配置
3.系统功能
本总装线电控系统总体上采用“集中监管,分散控制”的模式,整个系统分三层,即信息层、控制层和设备层。
信息层由安装在控制室的操作员站和工程师站构成,操作站的主要作用是向现场的设备及执行机构发送控制指令,并对现场的生产数据、运行状况和故障信息等进行收集监控;工程师站的主要作用是生产计划、管理生产信息。它们的连接采用通用的Ethernet,并通过安装在MELSECNET/10网主站 PLC上的Ethernet模块实现与设备控制层各PLC间的数据交换。在必要的时候,可以通过工程师站与管理层的计算机网络进行连接,使得管理者可以在办公室对所需要的信息进行查阅。
控制层采用三菱的MELSECNET/10网,将总装线各工段上(除前桥和后桥分装工段外)的8 套Q2AS PLC相连接实现数据共享。它具有传输速度高(10Mbps)、编程简单(网络指令)、性高、维护方便、信息容量大等特点。车身储存工段采用一台三菱 A975GOT人机界面,实现对该工段现场信息的高速响应。
设备层采用四套CC-bbbb,分别挂在车身储存工段、底盘装配工段、车门分装储存工段和内饰工段的PLC上。CC-bbbb现场总线具有传输速度高(10Mbps)、传输距离长(1200m)、设定简单、性高、维护方便、等特点。它通过双绞线将现场的传感器、泵、阀、ID读写器、变频器及远程I/O等设备连接起来,实现了分散控制集中管理。这样变频器的参数、报警信息等数据不但可以方便地由PLC进行读写,而且可由上位机和GOT通过PLC方便地进行监控和参数调整。使用ID读写器容易进行车体跟踪,减少了信息交流量,使生产线结构实现高度柔性化,并且有效地提高了自动化程度,节省人力资源。
4.系统优点
(1)保持稳定的自动化生产本系统内的任何设备发生故障,都不会影响其他操作、过程、设备的运行。即使此系统中的任何一个设备发生故障,甚至掉线,仅仅故障发生处的设备不能进行自动操作,其他所有设备都将连续工作。当故障排除后,设备能够自动动恢复运行而不需将整条生产线重新上电。
(2)确保产品
质量 生产数据被实时收集并监控,并根据这些生产数据可进行必要的修补操作。这些生产数据(包括产品的质量信息)被保存在上位机中,并由上位机进行管理。
1 引言
Controllogix是Rockwell公司在1998年推出AB系列的模块化PLC,代表了当前PLC发展的水平,是目前世界上有竞争力的控制系统之一,Control- logix将顺序控制、过程控制、传动控制及运动控制、通讯、I/O技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。
Controllogix可以提供完善的控制器的冗余功能,采用热备的方式构建控制器,两个控制器框架采用相同的配置,它们之间使用同步电缆连接,不仅控制器可以采用热备,通讯网络也可以采用相似的方式进行热备,除以上的部分可以热备外,控制器的电源也可以进行热备,这样大大提高了控制器的运行的性。
2 系统介绍
在某焦化厂干熄焦汽轮机发电项目的DCS控制系统中,采用了冗余的Controllogix,系统结构如图1所示。上位机通过交换机与PLC处理器通讯,远程框架通过冗余的ControlNet连接到控制器框架,同时,远程框架采用了冗余电源配置。整套系统具有很高的性,满足了汽轮机发电系统对于PLC控制部分需要长期无故障运行的要求。上位机采用Rsview32软件,用以监控现场设备的运行。
图1 系统结构图
本地框架由L1和L2 框架构成,运行时L1和L2互为热备,构成了冗余,L1和L2框架各个槽位的所配置的模块如表1所示。R1,R2和R3是远程框架,所有的点号都连接到远程框架的模块,远程框架的供电使用了AB的冗余电源(1756-PAR2)。表1 L1和L2框架各个槽位的所配置的模块
设置主从控制器框架的1756-CNBR/D的节点地址时应注意,他们的地址拨码应该相同,应该是系统中挂接在冗余ControlNET网上所有节点的地址,在本系统里面都设置为4,远程站的节点地址分别为1,2,3。在冗余系统正常运行时,从控制器框架的CNBR/D节点地址会自动加1,变为5。
1757-SRM是用于的冗余模块,主从控制器框架的SRM通过光纤连接。正常工作时,1756-L61中所有的程序和数据通过光纤进行同步,在RSLOGIX5000编程中,不必对此模块进行组态。
1756-ENBT是以太网接口模块,通过网线连接到交换机。ENBT的地址分配为两个连续的IP即可, 在这个系统中IP地址分别为192.168.1.11和192.168.1.12。
3 模块的升级
冗余系统中,主控制器框架和从控制器框架上各个模块的版本严格一致,并到达到要求的版本号,否则无法正常工作。
当版本不一致时,在RSLinx中可能无法看到从控制器框架上的处理器,同时,从控制器框架的处理器状态指示灯(OK灯)变为红色长亮。因此,一般系统在次上电时,需要进行固件升级。根据AB公布的信息,当些模块的固件版本如表2所示,这个版本同样适用于1756-L62, 1756-L63。表2 一些模块的固件版本
上电后,在RSLinx中检查模块的版本号,如果与表2不一致,需要到AB网站上去下载这个版本的升级包V13.71 Redundancy Bundle。升级工作需要使用Rockwell的固件升级软件ControlFLASH。
升级前,先要取消SRM的从框架资格,在RSLinx中,从框架比主框架的节点地址大1。从图标上进入1757-SRM的属性,找到Configration的Auto-Synchonization选项,将参数改为NEVER.然后进入Synchonization选项卡,单击Disqualify Secondary(取消从框架资格),这个时候主从处理器之间就不会同步了。
升级时,先打开一个处理器框架的电源,关闭另一个框架的电源。等1757-SRM显示PRIM后,在RSLinx中可以找到这个框架中的模块。然后使用ControlFLASH分别进行升级。升级完毕后,关闭这个处理器框架的电源,打开另一个框架的电源,也如此进行升级。
升级完毕后,进入1757-SRM的属性,将从控制器设为主控制器,使用RSLogix5000将程序下载到从处理器,关闭机架电源,进入从1757-SRM的属性,选择BecomePrimary,然后进入RSLogix5000的通讯菜单,掉故障。完成以上升级工作后,主从控制器框架都上电,然后使用RSNetWorx for ControlNET对网络进行调度。
在正常工作情况下,一般哪一个框架先上电,哪一个就是主框架,另一个是从框架,主框架的1757-SRM会显示PRIM,从框架的会显示SYNC。正常运行时,在SRM属性中可以进行主从的切换。如果显示状态与这个不一致,表示系统同步出现问题,需要进行进行检查,刚上电时因为SRM需要自检,可能要花一些时间。如果同步光纤、ControlNET或者以太网出现连接问题,都有可能导致同步不正常。
在RSLogix5000中进行冗余系统的编程时,只能使用一个连续性任务或几个周期性任务。尽量不要使用SINT和INT型的数据,另外,数据的定义都采用数组完成,这样可以提高同步时的效率。在打点和程序调试期间,由于经常下载程序,这个时候容易导致同步出错,在1757-SRM中把自动同步选项设为禁用,采用手动的方式进行同步。等调试完毕后,再把这个选项打开,正式将系统投运。
4 RSLinx中的冗余配置
为了保证冗余系统能够和上位机的HMI软件正常通讯,需要在RSLinx中进行冗余配置。
RSLinx中,定义两个Topic,分别指向主框架和从框架的处理器,然后,在Alias Topic中,定义一个别名Topic,指向刚才定义的两个Topic,在使用时,HMI中的节点的定义只要指向别名Topic就可以了,当处理器发生主从切换时,HMI仍然可以保持正常的通讯。
5 SRM时间同步
1757-SRM正常运行时,需要对同步过程中发生的事件按照时间顺序进行记录,1757-SRM出厂时的缺省时间不是当前的时间,因此需要对SRM间重新设置。在设置1757-SRM时间时,笔者采用编程的方式将1757-SRM的时间与处理器的时间进行同步,同时,利用AB提供的时间工具,笔者可以将处理器的时间与上位机的时间进行同步,这样也就实现了1757-SRM与上位机的时间同步。
在RSLogix5000中添加程序,如图2所示:
图2 RSLogix5000中添加程序
GSV中读出的时间数据写入到WCT(WCT定义为DINT[2].)然后,由MSG把数组WCT的值写入到SRM的时间属性。MSG指令的设置如图3所示。
图3 MSG指令的设置
通讯配置如图4所示。通讯配置的格式为:1,SRM的槽号。
图4 配置显示
这一程序表示从处理器中读出时间,放入到WCT中,然后把WCT的值写入到SRM中。
程序运行后,处理器和SRM的时间就实现同步了。然后在上位机运行时间同步工具。
"C:Program FilesRockwell SoftwareRSLogix 5000 ToolsLogix5000 Clock Update Tool"
先添加设备,从RSWho中选中要同步的处理器。在添加的处理器图标上点击鼠标右键,在弹出的菜单中选择synchronize device,这样就实现了上位机与CPU的时间同步。那末也就实现了SRM与上位机的时间同步。
如果Controllogix的时间误差较大,但又对SRM的时间要求较高,可以利用时间同步工具的常驻内存运行功能,实现实时的时间同步。在scheduled synchronizations菜单中可以添加需要进行实时时间同步的CPU,同步的时间间隔进行相应的配置后,就可以实现实时的时间同步了。
利用这个原理,通过相应的设置,可以实现同一网络中不同Controllogix处理器之间的时间同步,或者不同SRM之间的时间同步,也可以时间不同网络之间的时间同步。
6 处理器的故障处理
虽然在处理器发生故障时,会导致处理器的切换,但我们可以通过编程来防止可以预见的故障的产生。当处理器在运行过程中出现主要故障时,可以使用程序这一故障。
空压机工艺简介
抚顺乙烯空分装置采用法国空气液化公司的,该装置以空气为原料,经过过滤、压缩、净化、精馏、蒸发等工序,后分离出产品氧气和产品氮气。吸入的原料空气经过滤后除去灰尘和杂质,过滤后的空气由空气压缩机K601进行压缩,加压后送往下游净化岗位。空压机K601系离心式压缩机,由电机带动,分两级压缩,两级分置于电机两侧即K601A和K601B。空压机K601设计流量为31500 Nm3/h,功率为3200kw,转速为1450rpm,由法国苏尔寿(SULZER)公司制造。
喘振现象的产生
压缩机在工作过程中,当入叶轮的气体流量小于机组该工况下的小流量(即喘振流量),管网气体会倒流至压缩机,当压缩机的出口压力大于管网压力时,压缩机又开始排体,气流会在系统中产生周期性的振荡,具体体现在机组连同它的外围管道一起会作周期性大幅度的振动,这种现象工程上称之为喘振。
喘振是离心式压缩机的固有特性,当发生喘振时需采取措施降低出口压力或增大入口,尽量降低喘振时间。为了确保压缩机稳定地工作,防止用量波动发生喘振,该装置设计了防喘振放空阀,当下游工艺设备空气用量减少或压缩机出现喘振时,可由放空阀减量放空来平衡。
防喘振方案的实施
离心机防喘振控制常采用以下两种方法:
定限流量法:就是使压缩机的流量始终保持大于某一定值流量,从而避免进入喘振区运行。此法通常用于恒速运行的离心机且一般流量调节器的给定值应大于额定喘振点流量的7%~10%,此法优点是控制简单,缺点是当机组变速运行且处于低负荷情况时,防喘振控制投用过早,造成能耗加大。
变限流量法:在变速运行的压缩机中,随着不同工况(压缩比、出口压力或转速),限喘振流量是个变数。变限流量法是采用随动防喘振流量控制系统在压缩机的不同工况下沿喘振曲线(实际上是沿防喘振操作曲线)自动改变防喘振流量调节器的给定值,使防喘振调节器沿喘振曲线右侧控制线(防喘振操作线)工作,这样既又节能。
本装置防喘振控制采用变限流量法,变限流量系统喘振曲线的数学模型可以从离心机流量-压力特性曲线、气体动力学方程及压缩机入口流量计算公式导出,此喘振曲线在h(入口流量仪表的差压)-P2/P1(压缩机的压缩比)坐标上是一条直线参见图1中M1 -M2罩毕
h/P1=V×P2/P1+K
式中:h—气压机入口流量差压变送器量程的百分数;
P1—气压机入口压力(绝)变送器量程的百分数;
P2-压机出口压力(绝)变送器量程的百分数;
V—常数,直线M1 -M2盏男甭剩
k—常数,直线B的截距。
变限流量法防喘振操作线绘制确定(图1中B线)方法为根据压缩机制造厂提供的如图2气体压缩机特性曲线上的M1,M2点(喘振限曲线上的任意两个临界工况点)数据折算成与流量差压变送器及压力变送器的刻度值相对应的h(或h/P1)和P2(或P2/P1)的相对值(%),在图1的坐标上确定对应于M1,M2的M1’和M2’点,连接M1’和M2’就可画出压缩机的喘振限直线A。然后再作A线的平行线B。A,B线的间距△Q为流量刻度7%~10%。对应的△h按具体机组设计数据计算
△h%=△Q%×(2 Q%+△Q%)
式中:△h%-A,B线的间距,取差压变送器量程的百分数;
△Q%—节器给定值与喘振点之间的间距,一般取喘振点流量值的7%~10%;
Q%—振点的流量差压变送器的相对百分数;
图1中A线就是压缩机的理论喘振限直线;B线就是压缩机的随动防喘振操作线。
如果压缩机的特性曲线换算到图1上不是一条直线A,而是一条不规则的曲线时,可沿此曲线绘制近似的平行线作为操作线B来使用。
系统的优化
为了使PLC能够快速执行PID算法,并实时刷新计算输出,选用PLC 90-30中的模块CPU351来完成。利用PLC功能强大的编程软件LogicMaster提供的梯形图功能,根据变限流量防喘振控制方案来实现防喘振算法和相关联锁逻辑功能。
此次造在软件中增加联锁停车事故信号的捕获功能,使压缩机停车原因具体、明确,便于事故分析。为了便于现场操作和维护,将PLC硬件和工艺操作用的触摸屏均安装在防爆控制柜上,将防爆控制柜安装在压缩机附近的现场操作室里。
防喘振控制系统的特点
PLC系统选用美国通用电气公司(GE_Fanuc)的90-30系列控制系统,性能优良,。
PLC系统具有双机热备功能,实现PLC主机冗余、电源冗余、通讯模块和通讯总线冗余,主机、从机可无扰动切换,模块在线可换,增加了系统的性。
上位机与PLC之间通过10Mb/S的高速以太网ETHERNET实现数据的采集和传输,保的高速、。
系统具有强大的通讯功能,支持多种通讯总线协议,具有开放的网络结构,可与其它厂家的PLC和DCS进行通讯。
系统具有容错能力和强大的自诊断功能。
PLC的微处理器选用的INbbb处理器,系统运行速度高,能快速执行PID算法,并实时刷新计算输出。
PLC具有功能强大的梯形图编程软件LogicMaster,可实现防喘振算法和相关联锁逻辑功能。
具有实时和历史数据处理功能,联锁停车事故信号的捕获功能。
可显示操作状态及流程图画面、调速画面、机组喘振控制画面、实时趋势画面、历史趋势画面、报警历史画面等。
本装置的防喘振控制系统自投用后,运行效果很好,压缩机没有再发生喘振现象,机组运行平稳,达到了设计要求,显著的经济效益。
http://zhangqueena.b2b168.com
欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。
主要经营电气相关产品。
单位注册资金单位注册资金人民币 100 万元以下。
价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。