7
重庆西门子模块代理商交换机供应商
一、 基本指令系统特点
PLC的编程语言与一般计算机语言相比,具有明显的特点,它既不同于语言,也不同与一般的汇编语言,它既要满足易于编写,又要满足易于调试的要求。目前,还没有一种对各厂家产品都能兼容的编程语言。如三菱公司的产品有它自己的编程语言,OMRON公司的产品也有它自己的语言。但不管什么型号的 PLC,其编程语言都具有以下特点:
1、图形式指令结构:程序由图形方式表达,指令由不同的图形符号组成,易于理解和记忆。系统的软件已把工业控制中所需的立运算功能编制成象征图形,用户根据自己的需要把这些图形进行组合,并填入适当的参数。在逻辑运算部分,几乎所有的厂家都采用类似于继电器控制电路的梯形图,很容易接受。如西门子公司还采用控制系统流程图来表示,它沿用二进制逻辑元件图形符号来表达控制关系,很直观易懂。较复杂的算术运算、定时计数等,一般也参照梯形图或逻辑元件图给予表示,虽然象征性不如逻辑运算部分,也受用户欢迎
2、明确的变量常数:图形符相当于操作码,规定了运算功能,操作数由用户填人,如:K400,T120等。PLC中的变量和常数以及其取值范围有明确规定,由
产品型号决定,可查阅产品目录手册。
3、简化的程序结构:PLC的程序结构通常很简单,典型的为块式结构,不同块完成不同的功能,使程序的调试者对整个程序的控制功能和控制顺序有清晰的概念。
4、简化应用软件生成过程:使用汇编语言和语言编写程序,要完成编辑、编译和连接三个过程,而使用编程语言,只需要编辑一个过程,其余由系统软件自动完成,整个编辑过程都在人机对话下进行的,不要求用户有高深的软件设计能力。
5、强化调试手段:无论是汇编程序,还是语言程序调试,都是令编辑人员的事,而PLC的程序调试提供了完备的条件,使用编程器,利用PLC和编程器上的按键、显示和内部编辑、调试、监控等,并在软件支持下,诊断和调试操作都很简单。
总之,PLC的编程语言是面向用户的,对使用者不要求具备高深的知识、不需要长时间的专门训练。
二、编程语言的形式
本教材采用常用的两种编程语言,一是梯形图,二是助记符语言表。采用梯形图编程,因为它直观易懂,但需要一台个人计算机及相应的编程软件;采用助记符形式便于实验,因为它只需要一台简易编程器,而不必用昂贵的图形编程器或计算机来编程。
虽然一些的PLC还具有与计算机兼容的C语言、BASIC语言、的语言(如西门子公司的GRAPH5、三菱公司的MELSAP),还有用布尔逻辑语言、通用计算机兼容的汇编语言等。不管怎么样,各厂家的编程语言都只能适用于本厂的产品。
编程指令:指令是PLC被告知要做什么,以及怎样去做的代码或符号。从本质上讲,指令只是一些二进制代码,这点PLC与普通的计算机是相同的。同时PLC也有编译系统,它可以把一些文字符号或图形符号编译成机器码,所以用户看到的PLC指令一般不是机器码而是文字代码,或图形符号。常用的助记符语句用英文文字(可用多国文字)的缩写及数字代表各相应指令。常用的图形符号即梯形图,它类似于电气原理图是符号,易为电气工作人员所接受。
指令系统:一个PLC所具有的指令的全体称为该PLC的指令系统。它包含着指令的多少,各指令都能干什么事,代表着PLC的功能和性能。一般讲,功能强、性能好的PLC,其指令系统必然丰富,所能干的事也就多。我们在编程之前弄清PLC的指令系统
程序:PLC指令的有序集合,PLC运行它,可进行相应的工作,当然,这里的程序是指PLC的用户程序。用户程序一般由用户设计,PLC的厂家或代销商不提供。用语句表达的程序不大直观,可读性差,特别是较复杂的程序,难读,所以多数程序用梯形图表达。
梯形图:梯形图是通过连线把PLC指令的梯形图符号连接在一起的连通图,用以表达所使用的PLC指令及其前后顺序,它与电气原理图很相似。它的连线有两种:一为母线,另一为内部横竖线。内部横竖线把一个个梯形图符号指令连成一个指令组,这个指令组一般总是从装载(LD)指令开始,必要时再继以若干个输入指令(含LD指令),以建立逻辑条件。后为输出类指令,实现输出控制,或为数据控制、流程控制、通讯处理、监控工作等指令,以进行相应的工作。母线是用来连接指令组的。下图是三菱公司的FX2N系列产品的简单的梯形图例:
1、引言
声波切割机用于加工化纤、尼龙类布料,主要用来制作无尘拭布(洁净布),无缝缝润等产品。
无尘布是常用于电子产品、光学仪器以及其他在无尘生产环境中制作的零部件清洁用布。无尘布柔软、弹性大、易变形。在使用中不能出现脱毛、崩布边等要求。由于该布料有着特殊的使用要求,所以对布料的分切加工也有着特殊的工艺要求。
声波切割机是针对无尘布的特点,专门设计制造的机械。具有切口光滑、牢靠,切边准确,不会变形,不翘边、起毛、抽丝、皱折等优点。可避免的“激光切割机”存在的切边粗糙、焦边、起球等缺点。
作为国内技术力量的PLC研发和生产厂商——德维森科技(深圳)有限公司和厂商一起从电气控制到工艺,为厂商提供了解决方案。
2、声波切割技术
声波切割机主要有2个技术问题,一个声波的产生,另外一个就是布料的传送控制,切割。声波主要是通过陶瓷振子加上电压产生声波振动,再经增幅放大,使头刃具产生高速振动,可用来切割布料,塑料等材料。作为声波切割机中重要的一环就是实现布料的传送以及高速切割。切割机要求每次布料的传送长度一致,并且为了提高生产效率,对布料的传送和切割速度有要求。并且在切割时要求不能产生黑边的现象。由于切割机的需要非常大,所以对成本控制也比较严格。
3、德维森的声波切割机解决方案
德维森公司针对提到的问题,提出了一个价格低廉和的解决方案:
对主传送马达,我们采用普通的步进电机代替伺服电机,对于切割电机,采用普通的交流异步电机。其他压布挡板的控制,进,退的控制以及布料的安装等均采用气缸来控制。
电气控制采用V80M32DR-AC/S就可以实现所有控制,并带一个简单的触摸屏来实现对布料切割长度的设置以及累计产量的统计并实现机器的启动停止控制。
V80M32DR-AC/S为德维森科技推出的带运动控制的小型PLC,具有16个输入点以及16个继电器输出点。并且带有2路单的速度高达50KHZ的高速PTO/PWM输出单元。并有2路全功能(ABZ三相)的高速计数功能。



图1 梅溪桥闸自动控制系统结构图
3)实现12孔闸门的自动开启、关闭,保持上游水位波动范围为+5厘米。
4)系统故障自诊。
2.系统构成
本系统采用总线分布式控制模式,实现12孔闸门的远程集中控制。系统层为计算机监控系统,它包括监控计算机、管理计算机、服务器、集线器,通过Ethernet 网,实现各计算机之间的通讯。控制层内由一台PLC可编程序控制器来完成,它负责12孔闸门的闸位、上下游水位、降雨量等数据的实时采集,通过DH485通讯方式,将采集给监控计算机,输出模块调解闸门的上下动作。层为现场设备,保留现场设备原有的手动操作启闭机功能,同时增设远程接口控制电气回路,接受PLC可编程序控制器的动作。
3.控制模式
3.1 现场手动方式
现场手动方式为控制模式的,任何情况下,当现场控箱上选择现场手动操作时,远程对此闸门的操作无效,此闸门只响应现场箱上操作按钮的动作,该操作方式是原启闭机自带的功能。
3.2 远程点动方式
现场控制模式选择远程控制方式,在监控计算机选择点动操作,用鼠标单击闸门上、或下操作。
3.3 远程手动方式
现场控制模式选择远程控制方式,在监控计算机选择手动操作,用鼠标单击闸门上、下、停操作。
3.4 远程方式
现场控制模式选择远程控制方式,在监控计算机上选择定位操作,通过键盘输入闸门开度,鼠标单击定位操作,闸门自动运行至开度停止。
3.5 闸门全自动方式
现场控制模式选择远程控制方式,在监控计算机上选择自动方式,设定控制上游水位,鼠标单击自动运行后,12孔闸门进入全自动运行状态。
4.PLC系统的设计
4.1对象分析
本系统控制主对象为闸门,实现闸门的上下停等工作状态。由于远程控制,操作人员不在启闭机现场,所以确保系统运行,系统要知道启闭机以下各参数: PLC可编程序控制器选型
12孔闸门实现远程控制所需:
数字输入量DI:3X12=36
数字输出量DO:3X12=36
模拟输入量AI:5X12=60
此系统采用美国AB公司的SLC-500系列可编程序控制器,此PLC可编程序控制器为模块式可编程序控制器,可以根据DI、DO、AI点数,来配置模块使用数。
4.3PLC程序设计
采用Rslogix 500 编程软件,用梯形图方式,对闸门控制进行编程,从程序的内容三种形式的程序设计。
1)开环程序设计
对闸门的点动操作、手动操作、定位操作都采用开环程序设计方式。点动操作、手动操作为非定量操作,定位操作为给定量操作。由于闸门上、下运行时,闸门的惯性及闸门刹车性能不一样,所以编程时,要考虑定位控制的补偿问题,程序流程如图2。
图2 闸门开环程序流程图
2)闭环程序设计
为控制上游水位在控制水位,波动范围在+5厘米内,由上游实时水位、控制给定水位、12孔闸门启闭机构成一个环闭控制系统。编程选用SLC-500 CPU处理器中PID功能,输出控制12孔闸门启闭机的工作。由于水闸操作规程中只允许同时开启两孔闸门,且每次开度小于30厘米,先开中间后两边,先关两边后中间的要求,所以程序设计中注意顺序操作编程处理。
3)故障自诊设计
由于本系统为远程集中控制,闸门操作人员不在现场,闸门故障发生,要即时停止启闭机的运行,否则将发生严重事故。
根据对卷扬式启闭机现场测试,总结出以下几方面的故障类型:
①闸门卡死故障
当闸门下降时,水闸下有树木住平板钢板闸门,闸门不能继续下降。
②闸门时运行故障
远程操作时,每次闸门操作不能连续运行过一个时间,即表明闸门运行失控。
③闸门距运行故障
每次闸门开度不能过30厘米,开开度过大,违犯闸门操作规程。
④闸门运行限故障
闸门一般有闸门道槽,不能过此高度,否则闸门出槽,此为限故障。
⑤闸门过载故障
通过对电机电流的监测,当出现较大电流时,说明电机过载。
⑥闸门钢丝绳过松故障
由于此启闭机为卷扬机式,当闸门下落时,会出现一边紧一边松,此时闸门要立即立停止。
图3 闸门闭环控制程序流程图
小结:
在水闸计算机监控系统中应用PLC控制技术,对传统的启闭机进行改造,实现水闸自动化控制,特别故障自诊程序的设计,大大提高了系统的性和性,系统真正实现全自动的运行,当系统发生故障时,立即停止闸门的运行,同时报警信息在监控计算机中显示,提醒值班人员采取措施。
汕头市梅溪桥闸应用PLC控制技术,实现12孔水闸自动控制,此系统经历2001年“尤特”台风及洪水的考验,运行效果良好,适合大、中型水闸自动化控制技术推广。
1997年太钢引进的按国二十辊轧机、冷热不锈带钢退火线、光亮线等新装备,是以扩大不锈钢生产能力。冷轧煤气混合加压站,是太钢不锈带钢退火线的配套设施,有加压机3台,气源为高炉煤气、焦炉煤气。由于生产线工况不稳而造成用量大幅度频繁波动;同时由于气源管网方面的状况较差,高炉煤气压力波动范围3—10kPa,焦炉煤气压力波动范围1.5。6.5kPa;其波动有时频率很快,仅靠仪表调节产生震荡,无法通过人工调节;经常出现长时间的低压,造成混压困难,甚至造成高炉煤气蝶阀关闭、机前负压的险兆。
太钢于1999年6月采用了西门子SIMATICS7—300PLC、德国UNI公司热值仪、西门子变频技术等进行全过程自动控制改造,实现了混合煤气热值、加压机后压力双稳定的目标,确保了不锈钢的正常生产,节能效益非常可观。
1系统概要
改造后的系统构成复杂,仅调节阀就有九个,此外还要增加变频器,由计算机控制切换调节3台风机转速;增加热值仪,串级调节高焦配比。采用西门子S7—300PLC和研华IPC 610工控机构成DCS系统。S7—300PLC作为下位机来实现所有信号的采集、运算、调节,其特点是:模块化、无排风结构、易于实现分散、运行、。CP5611卡为S7—300PLC与工控机的通讯接口卡,具有RS485接口和87.5kbps的通信速率,传输距离可达50m,使用中继器可达9100m。
2控制原理
本系统含四个调节回路:
2.1热值调节
热值是用户气源的主要质量指标之一。
冷轧煤气7昆合加压站以高炉煤气为主气,它不可控制,取决于用户用量;焦炉煤气为辅气,要求控制其两道阀门,使高、焦配比约4:1。
2.1.1“高焦限幅”辅热值
本回路为一串级、交叉限幅调节系统。以热值调节为主环,焦炉煤气流量调节为副环,加入了高焦煤气流量单交叉限幅。焦炉煤气流量的设定值不单单取决于热值调节器输出信号,而且受到高炉煤气流量的瞬时值的限制,即按高、焦理论配比值求出应配焦炉煤气流量值,乘以1.05和0.95作为输出信号的上、下限幅值。
该控制思想一则使焦炉煤气流量调节器的调节量不至于过大,从而使高焦配比值在小范围内波动;二则使主环调节器不至于产生调节饱和,加快了滞后较大的主环的动态响应,改善了系统的调节品质。
对热值仪信号故障也有保护性,在实际的运行中,我们发现工人有时忘记了给热值仪过滤器排水,使煤气人口压力太低,燃烧不够,造成仪表信号显示偏低很多,即使焦炉煤气阀开到大,也不可能把热值调至“正常”,但此时热值调节器输出信号受到高炉煤气流量的交叉限幅,故在此三个信号中,终以上限值为焦炉煤气流量调节器的设定值,从而使焦炉煤气流量调节阀被约束在了一定的阀位,终使混合煤气热值波动稳定在一定范围内。
2.1.2“双阀同控”避“瓶颈”
原设计一阀自动、另一阀手动,实际上两阀都在手动方式,因而常常顾此失彼,致使南、北阀位相差太大;若采用两路单的调节器,二阀阀位加混乱,当系统工况变化较大时,其中一阀就会成为调节的“瓶颈”;若采用双调节器进行调节,二阀各自进行动作,虽能使系统在某一阀位组合状态下稳定,但有可能造成二阀阀位相差太大,同样可导致“瓶颈”的现象。
对此采用单台调节器串调双阀的控制方案,即在计算机中设置一台软调节器,其输出信号给到2台手操器,同时带动2台电动蝶阀。为防止二阀同时动作造成调,将2台手操器内的死区设置的有所差别,当调节器输出要求的阀位信号与实际阀位反馈信号出现偏差时,死区小的手操器(电动调节阀)动作,若偏差不大时,就能纠正过来;当调节量不够时,偏差增大,死区大的手操器(电动调节阀)也动作,加大调节力度,使系统回到稳定状态上。当系统出现较大偏差时,常会出现同时出二者死区范围的现象,则二阀一同动作,使偏差减小到一定范围,此时大死区的电动调节阀停止动作,剩余的小偏差靠死区小的调节阀来进一步精调到位。
2.2混压调节
混压调节在实际中既影响热值、又影响加压机后压力。所以,混压调节不好,则热值调节、加压机后压力调节都无从谈起。本回路为一串级随动调节系统,在控制回路中建立数学模型,煤气混合压力的设定值随着高、焦气源的压力波动而自动计算设定,同时又加以上下限幅,使工艺操作变得加合理。从热值的稳定方面来看,机前混压能够随高、焦煤气压力波动而适时适度地调整,保证了焦炉煤气能够按所需的量顺利配人;从加压机后压力的稳定方面来看,机前压力变化范围不至于太宽,减少了对加压机后出口压力调节的干扰。
混压调节就是控制高炉煤气的两道阀门。为了避免“瓶颈”,同样如上所述,也采用了一台软调节器控制2台电动调节阀的方式,减少对机后出口压力调节的干扰。
2.3加压机后压力(变频)调节
加压机后压力是用户气源的主要质量指标之一,本回路为一定值单回路调节系统。其设定值为3.5kPa,当加压机后出口压力升高/降低时,增大/减小变频器的输出频率。从而改变加压机的转速,以“变”求“稳”。在计算机和变频器上都设置了运行频率,从而保出口压不至于太低,也保证了自带油泵能够给出足够的油压油量,以免烧坏轴瓦。这两个频率运行下限是保证加压机设备、用户正常生产的两道防线。
2.4加压机后压力(泄放)调节
这是加压机后压力调节的另一手段。本回路为一定值单回路调节系统,其设定值为14kPa,当加压机后出口压力升高/降低时,增大/减小泄压阀的开度,以“泄”求“稳”。
2.4.1变频、泄放“双管齐下”稳压力
通常,泄放调节器的设定值变频调节器的设定值,一般情况下,变频器负责系统全部的调节,而泄放阀处于关闭的“休闲”状态。当用户突然大减量,造成出口压骤然升高,变频的调节速度不足以使出口压降下来时(即出口压过14kPa),泄放回路立即参与调节。泄放回路比例带、积分时间都设得很小,因而,动作很快,与变频“双管齐下”,可使压力降下来,保证了用户气源压力稳定,避免了以前类似情况下加压机进入喘振的可能,了设备。在调节过程中,绝不会出现既保持加压机转速较高,又使泄放开启一定高度的“稳定平衡”状态。
综上所述,本系统在控制思想和软件编制上有如下的特点:
(1)小偏差小动作、大偏差大动作,既加决了响应速度,又提高了调节精度。
(2)两阀在调节过程中,”不会造成“瓶颈”现象。阀位死区大的南阀阀位“阶段”性地跟踪死区小的北阀阀位。当偏差产生时,北阀“有错必纠”,南阀对北阀在调节中所累计的阀位变化不会坐视不管,而是“该出手时就出手”,大力度地“调一把”(当北阀阀位调到一定开度时效果就不显著了,此时取决于南阀的开度)。
(3)死机情况下、变频器仍然能保证运行。无论主机从机中任一掉电,或二者都掉电,变频器都运行在其保护下限频率上,加压机不会停机,保证了用户的正常生产。
(4)简单易“倒机”。通过软件的巧妙设计,使加压机的切换变得非常简单:将变频器输出频率下调为零、此时原运行的加压机处于停止状态,电流很小,可拉掉其开关,并马上再合上另一台备用加压机的开关,因变频器末停,3—4分钟即可调频加速到工作状态。当然二者切换期间,需关照冷轧关小烧嘴。
控制系统在WIN98环境下运行,组态软件为STEP7V5.0及Kingview5.0。系统利用组态软件Kingview5.0的驱动程序与下位S7—300PLC进行数据通讯,包括数据采集和发送数据/指令;下位S7·300PLC则通过MPI卡与上位计算机交换数据,每一个驱动程序都是一个公共对象,这种方式使通讯程序和组态软件构成一个完整的系统,保证了系统率地运行。
3系统画面
系统画面分为两大类:操作员画面、工程师画面。
操作员画面:向操作人员了各种数据、曲线、功能键,显示内容丰富鲜明、操作简捷。
工程师画面:工程师在调节中进行参数修改和设定的重要环境,也是自控系统的。
4结束语
该系统自投运以来,在生产正常的情况下,热值稳定在6.0左右,压力稳定在13.5kPa左右,满足了用户的要求,同时变频运行于30—40Hz左右,泄放阀一般处于关闭的状态,大大减少了泄放煤气量和净焦煤气量,达到了预期的生产、提高产品质量、节能降耗的目的。