7
西安西门子PLC模块CPU供应商
二、常发生的故障现象分析:
当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:
●R1或R2被烧断,Z1、Z1和SN75176完好。这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。
●SN75176损坏,R1、R2和Z1、Z2完好。这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。
●Z1或Z2、SN75176损坏,R1和R2完好。这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。
由以析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压出允许范围。所以EIA-485标准要求将各个RS485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,地线环流!
当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。
连接在RS485总线上的其它设备产生的瞬态过电压或过电流同样会流入到PLC,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。
当通信线路较长或有室外架空线时,雷电必然会在线路上造成过电压,其能量往往是的,常有用户沮丧地说:“联网的几十台PLC全部遭打坏了!”。
三、 解决办法:
1、从PLC内部考虑:
●采用隔离的DC/DC将24V电源和5V电源隔离,分析了三菱、欧姆龙、施耐德PLC以及西门子的PROFIBUS接口均是如此。
●选用带静电保护、过热保护、输入失效保护等保护措施完善的高挡次RS485芯片,如:SN65HVD1176D、MAX3468ESA等,这些芯片价格一般在十几元至几十元,而SN75176的价格仅为1.5元。
●采用响应速度快、承受瞬态功率大的新型保护器件TVS或BL浪涌吸收器,如P6KE6.8CA的钳制电压为6.8V,承受瞬态功率为500W,BL器件则可抗击4000A以上大电流冲击。
●R1和R2采用正温度系数的自恢复保险PTC,如JK60-010,正常情况下的电阻值为5欧,并不影响正常通信,当受到浪涌冲击时,大电流流过PTC和保护器件TVS(或BL),PTC的电阻值将骤然增大,使浪涌电流减小。
2、从PLC外部考虑:
● 使用隔离的PC/PPI电缆,尽量不用廉价的非隔离电缆(特别是在工业现场)。西门子公司早期出产的PC/PPI电缆(6ES7 901-3BF00-0XA0)是不隔离的,现在也改成隔离的电缆了!
● PLC的RS485口联网时采用隔离的总线连接器.
● 与PLC联网的三方设备,如变频器、触摸屏等的RS485口均使用RS485隔离器BH-485G进行隔离,这样各RS485节点之间就无“电”的联系,也无地线环生,即使某个节点损坏也不会连带其它节点损坏。
● RS485通信线采用PROFIBUS总线屏蔽电缆,保证屏蔽层接到每台设备的外壳并后接大地。
● 对于有架空线的系统,总线上设置专门的防雷击设施。
找到了解决S7-200通讯口损坏的办法了
在我们单位众多的S7-200PLC中,不时有通讯口损坏,致使不能连接PC或不能进行通讯,在对PLC解体时发现,在PLC通讯口出有一芯片--75176,这就是通讯接口芯片,在芯片周围有5个FB,标识FB1~FB5,这其实就是5个保险,在通讯连不上时,一般就是这5个保险中的某个烧毁了,可用同等型号的保险代替,也可用导线直接短路。一般就能解决问题。不过换时要注意,由于元件时贴片的,十分小,空间也小,所以焊接时注意不要短路。
1 引言
PLC作为一种成熟稳定的控制器,目前已经在工业控制中得到了越来越广泛的应用。PLC系统的设计直接影响着工业控制系统的运行。一个完善的PLC系统除了能够正常运行,满足工业控制的要求,还能在系统出现故障时及时进行故障诊断和故障处理。故障自诊断功能是工业控制系统的智能化的一个重要标志,对于工业控制具有较高的意义和实用。
故障诊断一般有两种途径:故障树方法和系统方法。故障树方法利用系统的故障逻辑结构进行逻辑推理,由错误的输出找到可能的输入错误。这种方法比较适用于系统结构相对简单,各部分耦合少的情况。系统方法通过建立系统故障的知识库与推理机,计算机借助现场的数据利用知识库和推理机进行深入的逻辑推理,找出故障原因。这种方法适用于系统结构复杂,各部分耦合强的大型工业系统。
本文根据故障树推理与经验规则推理相结合的方法,以某火电厂输煤控制系统的设计为例,介绍了一种利用PLC和上位计算机进行故障诊断的PLC系统设计。
2 系统设计
故障诊断系统建立在基于PLC和上位计算机组成的控制系统上。PLC在故障诊断系统中的功能主要是完成输煤系统设备故障信号、预处理,转化存储并传输给上位计算机。上位计算机由于具有强大的科学计算功能,利用知识和库,完成从故障特征到故障原因的识别工作。并通过人机界面,给出故障定位,和解释故障诊断结果,并为操作员给出相应的排除故障的建议。
3 PLC程序设计
在进行故障诊断设计时,对整个系统可能会发生的故障进行分析,得到系统的故障层次结构,利用这种层次结构进行故障诊断部分的设计。以火电厂输煤控制系统的故障结构为例。为了描述简单,这里作了一定的简化。图1为系统的故障层次结构。
图1 系统故障层次结构
系统故障结构的层次性为故障诊断提供了一个合理的层次模型。在进行系统的PLC梯形图程序设计时,应充分考虑到故障结构的层次,合理安排逻辑流程。在引入故障输入点时应注意:将系统所有可能引起故障的检测点引入PLC,以便系统能及时进行故障处理;应在系统允许的条件下尽可能多的将底层的故障输入信息引入PLC的程序中,以便得到多的故障检测信息为系统的故障自诊断提供服务。
1) 故障点的记录
为了得到系统的故障情况实现系统的故障自诊断,PLC将所有故障检测点的状态反映给内部寄存器,图2是用来记录故障点的部分程序。
IR4.02是输入的IO节点,表示A侧皮带信号,当输煤系统使用A侧皮带正常运行时4.02的值为1,当4.02变为0时,说明A侧皮带信号出了故障,此时利用上升沿微分指令记录这次的信号跳变。这样这次事故就记录在IR31.00中。程序设计中将IR31作为记录底层故障信息的寄存器,由于内部寄存器IR有16位,所以能够记录16种不同的故障原因。如果有多的故障需要记录,可以设置多个寄存器字。需要说明的是,有时引起故障的原因可能不止一个,往往一个故障会引起另一些故障的发生,因此还有关键的一点是程序要能记录发生的故障。这也需要通过PLC编程实现,程序只对开始发生的故障敏感。
图2 记录故障的部分PLC程序
(2) 多次故障事件的记录
由于系统实际长时间的运行中,可能会出现多次故障,为了检修和维护方便,还需要PLC能够将多次故障事件记录下来。OMRON C200H型PLC的数据存储区(DM区)可以间接寻址,利用这一点,可以在DM区划出一定的区域,用来记录每次故障事件,包括故障类型和事件发生的时间(日期,小时,分钟,秒)。这一段DM区域可以循环记录,实际使用中记录了后50次故障的情况,这些记录是系统运行的重要资料,方便了运行人员了解设备情况,对其进行检修和维护。
(3) 模拟量故障的诊断
对于模拟量信号例如犁煤车,给煤车电机电流的故障诊断,利用模拟量模块,接收来自电流变送器的模拟信号,将其转换为数字信号,然后与整定值或系统允许的限值比较,若在允许范围之内则表明对应的设备处于正常运行状态,如果实际值接近或达到限值,则为不正常状态。判断故障发生与否的限值根据实际系统相应的参数变化范围确定。
(4) 各种故障信息的串行通信
上位机通过串行通讯及时读取PLC的内部寄存器区的各种故障信息。利用PLC的RS232通信接口,可与上位计算机进行Host bbbb方式串行通信。通信时,上位计算机向PLC发出一帧命令帧,包括操作命令、寄存器类型、起始地址与要读取的寄存区数目等。PLC收到命令帧后会做出响应,如果没有错误则向上位计算机发出响应帧,响应帧中包含了上位机需要查询的寄存器值。
上位计算机通过读取数据寄存区的值来当前PLC的工作状况,同时上位计算机对PLC的控制也可通过对该区的写操作来完成。具体的通信实现可以参考相关资料,这里不作详细论述。
4 借鉴系统故障诊断方法的实现
系统故障结构的层次性为故障诊断提供了一个清晰的层次模型,可以利用基于模型的故障树法。但是在进行比较详尽的故障诊断以及系统故障存在耦合时,仅仅使用故障树法是不够的,借鉴系统的方法。
(1) 面向对象的“知识对象”, 大大提高了故障诊断的推理效率
在传统的系统中,知识被组织成知识库的形式,推理机进行推理时,要从知识库表示的所有空间中搜索所需的知识。这种方法有搜索空间大,推理效率低的缺点。“知识对象”的概念可以解决这一问题。“知识对象”是一个逻辑概念,它利用面向对象的方法,将知识源和黑板都表达为对象,在知识对象的内部封装了系统和推理机、解释器。当相应的知识对象被后,就在对象内部进行推理,大大提高了推理效率。根据系统的实际情况和故障推理的过程,在这里知识对象被具体化为故障节点。故障节点是进行诊断推理的基本单位,诊断信息在故障节点间层层传递,故障节点内部利用这些信息进行推理并终确定故障原因。
图3为系统部分故障节点的层次结构。图3可以看出,故障节点在结构上以虚线为分界线分为两个部分。上一部分层次清晰,在这一部分可以采用基于故障模型的故障树方法;下一部分由于结构复杂,耦合性较强,构造模型困难,可采用系统的推导方法。
图3 故障节点层次图
故障节点呈网状分布,1个节点可能有1个或多个父节点,也可能有1个或多个子节点。子节点和父节点之间的关系由故障层次和子节点故障层次来表示。如节点1的子节点故障层次为1,而节点2和节点3的故障层次为1,则节点2和节点3是节点1的子节点。故障层次和子节点故障层次不仅指明了故障节点结构上的层次,而且也隐含了推理规则。
(2) 对象类型与推理节点
对象类型表示该故障节点在故障推理中的作用,它可分为3类:根节点,叶节点,推理节点。根节点的故障由它的子节点产生,应到其子节点中去继续推理。叶节点是底层故障。叶节点没有子节点。推理节点是故障诊断规则为集中的节点,检测节点可以视为推理节点的子节点,它为推理节点的推理过程提供相关的信息。我们在推理节点并不是判断该节点是否存在故障,而是利用推理节点封装的规则库与推理机,结合节点提供的信息进行故障推理,找出故障原因。
(3) 故障节点的检测方式
地址段是节点的位置(本系统中是PLC中的寄存器)。数据段根据用户的需要可以为一个或几个,数据段中数据的定义与节点的性质有关。检测方式表明在该节点系统进行何种操作。主程序根据故障节点的检测方式选取相应的处理函数。该函数是检测手段与推理规则的结合,故可称之为检测/推理函数。一方面它可以检测故障节点本身的状态,另一方面使用推理机制进一步推断故障原因。性质类似的节点使用相同的检测/推理函数,利用地址段和数据段中的值加以区别。
(4) 各节点的注释段要有相应帮助信息
各节点的注释段不仅能记录故障的原因和维修方法,还可以记录其他的帮助信息。有时因系统的检测手段不完备,或规则不,推导过程要进行人机对话。这时候如果节点的注释段中有相应帮助信息,可以给用户以提示或指导用户进行操作,使推理能顺利进行。
本系统的故障诊断通过在上位计算机上用VC6.0开发的应用程序实现,集成在上位机监控系统中。在运行中给操作人员提示,指导用户进行操作,了解设备状态,判断故障发生原因,并可给出相应的维修建议。用户也可以对故障诊断进行指导和修正。
5 结束语
按以上故障诊断原理构造的故障诊断系统在火电厂输煤PLC控制系统中得到了应用。从实际运行来看,故障诊断系统能准确而地判断出故障的原因,方便运行人员维护和检修,大大地提高了控制系统的稳定性和智能化水平。这种设计对类似的工业控制系统提供了一定的参考。
1 引言
现代化的工厂中,PLC系统作为工业控制的基础设备已经非常普及。在很多工厂应用中,需要对现场采集过来的脉冲信号进行计数。如果使用脉冲计数模块,可以采集到高速脉冲信号。但是脉冲模块价格昂贵,在一些采集低速脉冲信号的场合其实可以使用普通的开关量输入模块代替脉冲计数模块。这样可以降低系统成套费用和系统的复杂程度,也提高了系统的可维护性。如果使用普通开关量输入模块代替脉冲计数模块,就存在一个问题:普通开关量输入模块采集脉冲信号的速度的限是多少?存在哪些制约条件?以下将以AB公司的ControlLogix 1756系列PLC系统为基础,就这个问题谈一些分析。
2 模块响应速度的制约
开关量输入模块要检测到一个脉冲信号,能完整地采集到脉冲产生的整个过程,如图1所示,开关量输入模块检测脉冲信号的过程可以分解为三个过程。
图1 开关量模块检测脉冲信号过程
从图1可以看出,开关量输入模块能检测到的脉冲信号至少满足以下条件:
(1) 脉冲宽度 t1>T1;
(2) 脉冲周期 t0>T1+T3;
(3) 脉冲间隔 t2>T3。
以AB公司1756-IB16D开关量输入模块为例,其ON时间 = 1,2,or3ms;其OFF时间=4,5,13,or22ms。其不同的ON/OFF时间可以由系统进行配置。在配置快的ON/OFF时间的条件下,可以计算出,1756-IB16D开关量输入模块可以出脉冲宽度为1ms,脉冲周期为5ms的脉冲。如果脉冲宽度增加几个毫秒,脉冲周期就相应增加几个毫秒。结论如下:理想的情况下,1756-IB16D开关量输入模块可以分辨速度200个/秒、脉冲宽度大于1ms的脉冲信号。
3 PLC系统扫描时间的制约
PLC的工作原理是分时扫描,PLC的一个完整扫描周期包括全部I/O新一次的时间和PLC程序执行一次的时间。PLC系统的扫描时间和系统网络情况、远程站的数量以及PLC的CPU模块信号有关。如果现场开关量输入模块出的脉冲信号在一个PLC扫描周期内大于1个,PLC系统将不能正确反映现场脉冲的数量。
PLC系统对开关量输入模块检测信号判断的详细分析如图2。
图2 PLC系统对开关量输入模块检测信号的判断
PLC系统通过扫描新I/O信息,设在时刻0、t1、t2、t3,PLC系统扫描到信号源处,由图2可以看出:
(1) 对于脉冲信号1,PLC系统没有检测到任何脉冲信号。可以得到结论:如果脉冲信号脉冲周期T1<PLC扫描周期T,PLC系统将不能出正确的脉冲数量。
(2) 对于脉冲信号2, PLC系统同样没有检测到任何脉冲信号。这是因为脉冲信号2的脉冲宽度T0<PLC扫描周期T, 脉冲信号的变化有可能发生在一个PLC扫描周期T之内。
(3) 对于脉冲信号3,脉冲信号的脉冲宽度T0>PLC扫描周期T,脉冲周期T1-脉冲宽度T0<PLC扫描周期T,PLC系统未能检测到个信号的消失,此时,PLC系统仍然未能出正确的脉冲数量。
(4) 对于脉冲信号4,脉冲信号脉冲周期T1>PLC扫描周期T,脉冲周期T1-脉冲宽度T0>PLC扫描周期T,PLC系统能出正确的脉冲数量。
对于一个使用AB公司的ControlLogix 1756-L55系列的CPU模块,远程I/O通讯模块选用ControlNet模块1756-CNBR,系统I/O总点数为2000点,远程I/O站数量为6个的中型系统来讲,一个PLC扫描周期约为40~70ms。因此对于本系统来讲,能检测的脉冲信号脉冲宽度应大于70ms,个脉冲信号结束至二个脉冲信号发出的小时间间隔应大于70ms。
4 结束语
综上所述,如果使用普通开关量输入模块代替脉冲计数模块,对脉冲输入信号的制约条件主要是PLC系统的系统扫描时间。对于AB公司的PLC系统来讲,对于脉冲宽度>70ms,个脉冲信号结束至二个脉冲信号发出的小时间间隔大于70ms的脉冲信号是可以接收的。对于其他的PLC系统来讲,其基本工作方式与AB公司的PLC系统是一致的,因此,这个结论也同样适用。对于不满足上述条件的脉冲信号,就考虑脉冲计数模块了。
1 引言
随着PLC的推广普及,PLC产品的种类和数量越来越多,而且功能也日趋完善。在自来水厂中应用越来越广泛,不但能够提高水厂自动化水平,加快生产速度,降低生产成本,而且还可以提高供水质量。但是,PLC品种繁多,其结构型式、性能、容量、指令系统、编程方法、价格等各不相同,适用场合也各有侧重,对其技术性能、使用环境条件了解不清,或对PLC系统要求掌握不够,就会大材小用,造成不必要的浪费或事故频发,影响生产。
2 自来水厂PLC的选择
2.1 提倡选择模快式PLC
按结构形式PLC可分为整体式和模块式。整体式PLC将电源、CPU、I/O部件都集中装在一个机箱内。模块式PLC结构是将PLC各部分分成若干个单的模块,如CPU模快、I/O模快等。考虑到自来水厂改建(特别是节能、换旧设备方面)、扩建和PLC故障率95%都是发生在I/O部件损坏;同时模块式PLC的配置灵活,装配和维修方便,水厂设备、工艺的改变只要将相应的I/O模快换或扩展再经编程就可方便实现自动化。因此,从长远来看,提倡选择模块式PLC。
2.2 统一选择机型
在选择PLC时,要注意售后服务是否,同时兼顾水厂日后维修上的便利、备用件的库存和软件编程方面。而常见的制取自来水的步骤主要分为:混凝、沉淀、过滤、和储存。在功能满足要求的前提下,选择的机型都选择同一间公司的产品。
2.3 根据输入和输出选择
自来水厂中的主要设备有:反应池、澄清池、滤池、清水池、加氯机、氯吸收装置、空气压缩机、鼓风机、加药设备、阀门、泵、混合设备、计量设备。根据控制系统的要求和采用的控制方法,对于每一个被控对象,所用的I/O点数不会轻易发生变化,根据需要的I/O点数选用I/O模块可与主机灵活地组合使用,但是考虑到以后工艺和设备的改动,或I/O点的损坏、故障等,一般应保留1/8的裕量。
除了I/O点的数量,还要注意输入和输出信号的性质、参数和特性要求等。如水厂中阀门是模拟量还是开关量控制;PH计、流量计、浊度计、余氯计、液位计等水质监控仪表信号源是电压输出型还是电流输出型,是有源输出还是无源输出,及其继电器输出是NPN输出型还是PNP输出型。另外,还要注意输出端点的负载特点(负载电压、电流的类型),数量等级以及对响应速度的要求等。
据此,来选择和配置适合输入输出信号特点和要求的I/O模块。
2.4 根据存储器容量选择
通常,PLC的存储器容量以字为单位,如64k字等,应用程序所需存储器容量可以预行估算。选择和计算的种方法是:根据编程使用的节点数计算存储器的实际使用容量。二种为估算法,用户可根据控制规模和应用目的,按照附表的公式来估算。
使用时可以根据程序及数据的存储需要来选用合适的机型,必要时也可专门进行存储器的扩充设计。为了使用方便同时考虑到水厂工艺、设备的改动和编程时的需要,一般应该留有25%~30%的裕量。
2.5 根据通信要求选择
目前,PLC采用了各种工业标准,如IEC 61131、IEEE802.3以太网、TCP/IP、UDP/IP等,各种事实上的工业标准,如bbbbbbs NT、OPC等,融合了IT技术,可与智能MCC马达控制、其它运行控制系统、电控设备、变频器和软起动器等连成系统。
而当前自来水厂自动化应用的多的是工业电脑和PLC组成控制系统,系统中一般PLC分为取水泵站、投加站、滤池站和送水泵站,站与站之间要传递监控的参数,如余氯、流量、浊度等,并且由中控室的电脑集中控制,通讯的基本要求是实时、稳定、经济。水厂要根据自身的设备、投入的资金、响应速度、以后的发展,选择易于扩展、连接、发展成熟的现场总线、网络,如以太网、PROFIBUS、Modbus、FIPIO、Asi等,从而有侧重地选定PLC通讯模块。
3 维护时要注意的问题
(1) PLC安装的应避免太阳光直接照射,保证有足够的散热空间和通风条件,避免安装在干扰严重、高温、高湿度有粉尘、不清洁以及有腐蚀气体的环境中。另外,PLC要安装在有振源的地方时应采取减振措施。
(2) 不要为了节约投资而将输入、输出线同用一根电缆,同时动力电缆和控制电缆要分开铺设,避免干扰。
(3) 安装完毕,要检查清楚,把细短线、铜屑、铁屑、螺丝清理干净,方可通电。投入使用后,定期检查安装是否牢固和端子、模块的连接接线是否,定期清扫灰尘,确保。
(4) 为了抑制加在电源及输入端、输出端的干扰,应给PLC接上地线,接地点应与动力设备(如电机)的接地点分开,平常要注意检查PLC的接地是否良好。
(5) 控制PLC的工作环境(0~50℃为宜),必要时要采用强迫风冷冷却方式,可以有效地提高它的工作效率和寿命。
(6) PLC外部的输出元件,如电磁阀、接触器等的故障率远远PLC本身的故障率,若连接输出元件的负载短路,将会烧毁PLC的印制电路板。因此,应选用适当容量的熔丝保护输出元件,切忌盲目换。另外,采用继电器输出时,承受的电感性负载大小影响到继电器的工作寿命,采用的继电器工作寿命要求长。
(7) 某些易损坏的部件,如I/O模块,要适当的购买备件;要注意定期检查防雷设施,防止雷击造成PLC损坏。
4 结束语
事实证明,PLC的功能很好地满足了近的工业控制需要。PLC硬件和软件的形态,随着微电子技术和IT的发展而不断改进,利用PLC来实现保护和故障诊断系统,可减少故障率,提高性。在应用上方便灵活,价格,运行,有利于保护和故障诊断、实施及维护。
在实际工作中,选择PLC时还要依据实际情况做出适当的调整,以便设计出满足期望的控制系统。