6
长春西门子PLC代理商变频器供应商
PLC之所以有生命力,在于它加适合工业现场和市场的要求:高性、强抗各种干扰的 能力、编程安装使用简便、格命。比之单片机,它的输入输出端接近现场设备,不需添加太多的中间部件或需要多的接口,这样节省了用户时间和成本。PLC的下端(输入端)为继电器、晶体管和晶闸管等控制部件,而上端一般是面向用户的微型计算机。人们在应用它时,可以不必进行计算机方面的专门培训,就能对可编程控制器进行操作及编程。用来完成各种各样的复杂程度不同的工业控制任务。
自1836年继电器问世,人们就开始用导线将它同开关器件巧妙地连接,构成用途各异的逻辑 控制或顺序控制。至今,在PLC的编程语言——梯形图中还可以看到这些布线的影子。直到60年代末、70年代初可编程控制器问世,随着微电子技术、计算机技术和数据通信技术的飞速发展,以及微处理器的出现,PLC产品朝小型和小型化方面进行了一次飞跃,终使早期的PLC从初的逻辑控制、顺序控制,发展成为具有逻辑判断、定时、计数、记忆和算术运算、数据处理、联网通信及PID回路调节等功能的现代PLC。
一、可编程控制器的主要功能
PLC是应用面很广,发展非常的工业自动化装置,在工厂自动化(FA)和计算机集成制造系统(CIMS)内占重要地位。今天的PLC功能,远不仅是替代传统的继电器逻辑。
PLC系统一般由以下基本功能构成:
· 多种控制功能 · 数据采集、存储与处理功能 · 通信联网功能 · 输入/输出接口调理功能 · 人机界面功能 · 编程、调试功能
1、控制功能逻辑控制:PLC具有与、或、非、异或和触发器等逻辑运算功能,可以代替继电器进行开关量控制。
定时控制:它为用户提供了若干个电子定时器,用户可自行设定:接通延时、关断延时和定 时脉冲等方式。
计数控制:用脉冲控制可以实现加、减计数模式,可以连盘进行位置检测。
顺序控制:在前道工序完成之后,就转入下一道工序,使一台PLC可作为多部步进控制器使用。
2、数据采集、存储与处理功能数学运算功能:
基本算术:加、减、乘、除。
扩展算术:平方根、三角函数和浮点运算。
比较:大于、小于和等于。
数据处理:选择、组织、规格化、移动和先入先出。
模拟数据处理:PID、积分和滤波。
3、输入/输出接口调理功能具有A/D、D/A转换功能,通过I/O模块完成对模拟量的控制和调节。位数和精度可以根据用户要求选择。
具有温度测量接口,直接连接各种电阻或电偶。
4、通信、联网功能现代PLC大多数都采用了通信、网络技术,有RS232或RS485接口,可进行远程I/O控制,多台 PLC可彼此间联网、通信,外部器件与一台或多台可编程控制器的信号处理单元之间,实现程序和数据交换,如程序转移、数据文档转移、监视和诊断。
通信接口或通信处理器按标准的硬件接口或专有的通信协议完成程序和数据的转移。如西门 子S7-200的Profibus现场总线口,其通信速率可以达到12Mbps。
在系统构成时,可由一台计算机与多台PLC构成“集中管理、分散控制”的分布式控制网络,以便完成较大规模的复杂控制。通常所说的SA系统,现场端和远程端也可以采用PLC作现场机。5、人机界面功能提供操作者以监视机器/过程工作必需的信息。允许操作者和PC系统与其应用程序相互作用,以便作决策和调整。
实现人机界面功能的手段:从基层的操作者屏幕文字显示,到单机的CRT显示与键盘操作和 用通信处理器、处理器、个人计算机、工业计算机的分散和集中操作与监视系统。6、编程、调试等使用复杂程度不同的手持、便携和桌面式编程器、工作站和操作屏,进行编程、调试、监视 、试验和记录,并通过打印机打印出程序文件。
二、可编程控制器的主要特点
1、性高PLC的MTBF一般在40000~50000h以上,西门子、ABB、松下等微小型PLC可达10万h以上,而且均有完善的自诊断功能,判断故障,便于维护。
2、模块化组合灵活可编程控制器是系列化产品,通常采用模块结构来完成不同的任务组合。I/O从8~8192点,有多种机型、多种功能模板可灵活组合,结构形式也是多样的。
3、功能强PLC应用微电子技术和微计算机,简单型式都具有逻辑、定时、计数等顺序控制功能。基本 型式再加上模拟I/O、基本算术运算、通信能力等。复杂型式除了具有基本型式的功能外,还具有扩展的计算能力、多级终端机制、智能I/O、PID调节、过程监视、网络通信能力、远程I/O、多处理器和高速数据处理能力。
4、编程方便PLC适用针对工业控制的梯形图、功能块图、指令表和顺序功能表图(SFC)编程,不需要太多 的计算机编程知识。新的编程工作站配有综合的软件工具包,并可在任何兼容的个人计算机上编程。
5、适应工业环境PLC的技术条件能在一般高温、振动、冲击和粉尘等恶劣环境下工作,能在强电磁干扰环境 下工作。这是PLC产品的市场生存。
6、安装、维修简单与计算机系统相比,PLC安装不需要特殊机房和严格的屏蔽。使用时只要各种器件连接无误,系统便可工作,各个模件上设有运行和故障指示装置,便于查找故障,大多数模件可以带电插拔,模件可换,使用户可以在短的时间内查出故障,并排除,大限度地压缩故障停机时间,使生产恢复。然后再对故障模件进行修复,这对大规模生产场合尤为适宜。一些PLC外壳由可在不良工作环境下工作的合金组成,结构简单,上面带有散热槽,在高温 下,该外壳不像塑料制品那样变形,还可抗无线电频率(RF高频)电磁干扰、防火等。
7、运行速度快随着微处理器的应用,使PLC的运行速度增快,使它符合处理高速度复杂的控制任务,它与微型计算机之间的差别不是很明显。
8、总价格低PLC的重量、体积、功耗和硬件价格一直在降低,虽然软件价格占的比重有所增加,但是各 厂商为了竞争也相应地降低了价格。另外,采用PLC还可以大大缩短设计、编程和投产周期,使总价格进一步降低。
PLC系统与工业总线计算机和DCS系统相互渗透,互为借鉴,相互竞争而发展。促进了工业的 进步。PLC产品面临现场总线的发展,将再次革新,满足工业与民用控制的高需要。
三、PLC的通信及联网PLC的通信包括PLC之间、PLC与上位计算机之间以及PLC与其他智能设备间的通信。PLC系统与通用计算机可以直接或通过通信处理单元、通信转接器相连构成网络,以实现信息的交换,并可构成“集中管理、分散控制”的分布式控制系统,满足工厂自动化(FA)系统发展的需要,各PLC系统或远程I/O模块按功能各自放置在生产现场分散控制,然后采用网络连接构成集中管理的分布式网络系统。
以西门子公司的SIMATIC NET为例,在其提出的全集成自动化(TIA)的系统概念中,内容即包括组态和编程的集成、数据管理的集成以及通信的集成。通信网络是这个系统重要的、关键的组件,提供了部件和网络间完善的工业通信。
SIMATIC NET包含了三个主要层次:
AS-I网——传感器和执行器通信的标准,扫描时间5ms,传输媒体为未屏蔽的双绞线,线路长度为300m,多为31个从站。
PROFIBUS——工业现场总线,用于车间级和现场级的标准,传输率大12m/s,传输媒体为屏蔽双线电缆(长9.6km)或光缆(长90km),多可接127个从站。
工业以太网——用于区域和单元联网的标准,网络规模可达1024站1.5km(电气网络)或200km(光学网络)。
在这一网络体系中,尤其值得一提的是PROFIBUS现场总线,PROFIBUS是目前成功的现场总线之一,已得到广泛地应用。它是不依赖生产厂家的、开放式的现场总线,各种各样的自动化设备均可通过同样的接换信息。为数众多的生产厂家提供了的PROFIBUS产品,用户可以自由地选择合适的产品。PROFIBUS已经成为德国DIN19245和欧洲标准pr EN50170,并在世界拥有了多的用户数量。
四、PLC与工业控制计算机(IPC)和集散控制系统(DCS)的比较
1、各自技术发展的起源计算机是为了满足快速大量数据处理要求的设备。硬件结构方面,总线标准化程度高,兼容性强,软件资源丰富,特别是有实时操作系统的支持,故对要求快速、实时性强、模型复杂和计算工作量大的工业对象的控制占有优势。
集散系统从工业自动化仪表控制系统发展到以工业控制计算机为的集散系统,所以其在模拟量处理、回路调节方面具有一定优势,初期主要用在连续过程控制,侧重回路调节功能。
PLC是由继电器逻辑系统发展而来,主要用在离散制造、工序控制,初期主要是代替继电器控制系统,侧重于开关量顺序控制方面。
近年来随着微电子技术、大规模集成电路技术、计算机技术和通信技术等的发展,PLC在技术和功能上发生了飞跃。在初期逻辑运算的基础上,增加了数值运算、闭环调节等功能,增加了模拟量和PID调节等功能模块;运算速度提高,CPU的能力赶上了工业控制计算机;通信能力的提高发展了多种局部总线和网络(LAN),因而也可构成为一个集散系统。特别是个人计算机也被吸收到PLC系统中。
PLC在过程控制的发展将是一智能变送器和现场总线,暨向下拓展功能,开放总线。
2、相同点在微电子技术发展的背景下,从硬件的角度来看,PLC、工业计算机、集散系统(DCS)之间的差别正在缩小,都将由类似的一些微电子元件、微处理器、大容量半导体存储器和I/O模件组成。编程方面也有很多相同点。
3、区别点由于PLC和计算机属于两类产品,经过几十年的发展都形成了自身的装置特点和软件工具。实际上的区别继续存在。
PLC用编程器或计算机编程,编程语言是梯形图、功能块图、顺序功能表图和指令表等。集散系统自身或用计算机结构形成组态构成开发系统环境。
特别提出的是与STD总线工控机的区别,无论从维修、安装和模件功能都很相似。PLC适用于黑模式下运行,但在线运行时若要进行较大的程序修改,其能力略逊于STD工控机,但是从开关量控制而言,PLC的性能STD工控机。
总的来说,在选择控制器时,要从工程要求、现场环境和经济性等方面考虑。没有什么控制器完善,也没有哪种产品差,只能说选择适用的产品。
4、增长趋势比较(见下)表
1995年四类控制产品的初步统计名次
产品类别
销售额(美元)增长率/%1
PLC
39亿(不包括软件)
50亿(包括软件)15.9
2
PID
29亿14.23
DCS
28亿5.74
个人计算机15亿14.9 控制软件
7.8亿15.1PLC自问世以来,经过20多年的发展,在美国、欧洲、日本等工业发达国家已成为重要产业,1987年世界PLC的销售额为25亿美元,此后每年以20%左右的速度递增。进入90年代以来,世界PLC的年平均销售额在55亿美元以上,其中我国约占1%。当前,PLC在市场上已成为的工业控制产品,用PLC设计自动控制系统已成为世界潮流。
五、PLC的综合经济分析 综上所述,在恶劣环境中,使用PLC控制机构设备,生产流水线和生产过程的自动控制将越来越广泛。但是,这种新型控制装置在推广使用中尚有一些问题困扰着用户,主要集中在两个方面,一是性问题,二是价格问题。
当然,用新型控制装置实现老设备改造与生产过程自动化,提高劳动生产率,改善企业管理,这是提高企业经济效益的必要措施,但如何正确处理这种关系,本文提供一些数据资料作为用户参考。
1、性问题 据有关资料提供数据表明:国外一般中小型PLC,如日立、西门子、IPM,平均无故障时间高达10万h。即使大型PLC平均无故障时间也在4~5万h之间。因此,制造厂商认为性已不存在问题。就性而言,继电接触器是望尘莫及的。所以,对于日立、西门子、IPM等产品资料中性不再是一项技术指标。
2、PLC的经济综合分析 对PLC的经济分析,应从以下几方面考虑: (1)从影响成本的各个因素综合考虑 从目前生产设备控制装置来说,有三种类型:①继电器控制。②半导体器件控制。③PLC控制。价格仅是选择PLC的一个因素,而性是选择时需要考虑的又一个因素。 (2)从设计、生产周期长短考虑 不论是老设备改造,还是设计新的生产机械设备,毫无疑问,生产、设计周期越短越好,甚至希望边设计、边安装、边调试和边生产,特别是产品新换代,生产工艺改造,不需改动现有生产设备及其外部接线,就能马上组织生产,这不仅节约了劳动力,而且新产品能尽快投入市场。这无疑给企业增加了活力,提高了经济效益。如果把这些要求得以实现,继电器或半导体都不能满足,而PLC则可以实现。这是因为若用PLC不必改动外部设备接线,只要在软件上作文章就可以了。也就是说只要改变梯形图,按照新工艺要求重新输入新程序或修改原程序即可。这既经济又简捷,可以达到事半功倍的目的。
众所周知,目前我国75%的生产机械设备,都是采用继电器控制,除了性差外,设计程序也很繁杂。从方案的确立到技术条件的设计以及施工的设计,图面的工作量很大,这势必造成设计周期长。而采用PLC控制可以大大缩短设计周期,甚至有些文件资料也不必绘制成图。设计人员可以利用编程器上屏幕显示来输入,或修改程序使得梯形图能准确无误地反映生产要求。编程人员也可根据新产品对生产提出的新工艺要求,重新编写程序并把它存储在EEPROM模块中去,需要加工哪个产品的程序,操作人员可以随时调用,这既方便、简单又可保密。开发这种软件对优化生产过程,提高产品数量和质量,提高劳动生产率,非常具有实际意义。一点也深受生产及设计者的欢迎。
六、PLC新发展状态及趋势 现代PLC的发展有两个主要趋势:其一是向体积小、速度快、功能强和价格低的微小型方面发展;其二是向大型网络化、高性、好的兼容性和多功能方面发展。 (1)大型网络化 主要是朝DCS方向发展,使其具有DCS系统的一些功能。网络化和通信能力强是PLC发展的一个重要方面,向下可将多个PLC、I/O框架相连;向上与工业计算机、以太网、MAP网等相连构成整个工厂的自动化控制系统。 (2)多功能 随着自调整、步进电机控制、位置控制、伺服控制等模块的出现,使PLC控制领域加宽广。
如西门子公司早在80年代就研制出了多回路闭环控制模块、步进电机控制模块、模块和通信处理模块等。在1995年西门子又成功地开发出了S7200、S7300系列,它具有TD 200和COROS OPS操作模板(OPS)为用户提供了方便人机界面,用户程序三级口令保护,强的计算性能,完善的指令集,MPI接口和通过工业现场总线PROFIBUS以及以太网联网的网络能力,强劲的内部集成功能,的故障诊断功能;模块式结构可用于各处性能的扩展,脉冲输出晶闸管步进电机和直流电机;快速的指令处理大大缩短了循环周期,并采用了高速计数器,高速中断处理可以分别响应过程事件,大幅度降低了成本。 (3)高性 由于控制系统的性日益受到人们的重视,一些公司已将自诊断技术、冗余技术、容错技术广泛应用到现有产品中,推出了高性的冗余系统,并采用热备用或并行工作、多数表决的工作方式。S7400 PLC即使在恶劣、不稳定的工作环境下,坚固、全密封的模板依然可正常工作,在操作运行过程中模板还可热插拔
1.概述
随着城市建设的不断发展,高层建筑不断增多,电梯在国民经济和生活中有着广泛的应用。电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,电梯控制系统采用随机逻辑方式控制。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC性高,程序设计方便灵活,抗干扰能力强、运行稳定等特点,所以现在的电梯控制系统广泛采用可编程控制器来实现。
2.电梯理想运行曲线
根据大量的研究和实验表明,人可接受的大加速度为am≤1.5m/s2, 加速度变化率ρm≤3m/s3,电梯的理想运行曲线按加速度可划分为三角形、梯形和正弦波形,由于正弦波形加速度曲线实现较为困难,而三角形曲线大加速度和在启动及制动段的转折点处的加速度变化率均大于梯形曲线,即+ρm跳变到-ρm或由-ρm跳变到+ρm的加速度变化率,故很少采用,因梯形曲线容易实现并且有良好加速度变化率频繁指标,故被广泛采用,采用梯形加速度曲线电梯的理想运行曲线。
智能变频器是为电梯的灵活调速、控制及平层等要求而专门设计的电梯变频器,可配用通用的三相异步电动机,并具有智能化软件、标准接口、菜单提示、输入电梯曲线及其它关键参数等功能。其具有调试方便快捷,而且能自动实现单多层功能,并具有自动优化减速曲线的功能,由其组成的调速系统的爬行时间少,平层距离短,不论是双绕组电动机,还是单绕组电动机均可适用,其设计速度可达4m/s,其特的电脑软件,可选择串行接口实现输入/输出信号的无触点控制。
变频器构成的电梯系统,当变频器接收到控制器发出的呼梯方向信号,变频器依据设定的速度及加速度值,启动电动机,达到大速度后,匀速运行,在到达目的层的减速点时,控制器发出切断高速度信号,变频器以设定的减速度将大速度减至爬行速度,在减速运行过程中,变频器的能够自动计算出减速点到平层点之间的距离,并计算出优化曲线,从而能够按优化曲线运行,使低速爬行时间缩短至0.3s,在电梯的平层过程中变频器通过调整平层速度或制动斜坡来调整平层精度。即当电梯停得太早时,变频器增大低速度值或减少制动斜坡值,反之则减少低速度值或增大制动斜坡值,在电梯到距平层位置4—10cm时,有平层开关自动断开低速信号,系统按优化曲线实现的平层,从而达到平层的准确。
3.电梯速度曲线
电梯运行的舒适性取决于其运行过程中加速度a和加速度变化率p的大小,过大的加速度或加速度变化率会造成乘客的不适感。同时,为保证电梯的运行效率,a、p的值不宜过小。能保证a、p取值的电梯运行曲线称为电梯的理想运行曲线。电梯运行的理想曲线应是抛物线-直线综合速度曲线,即电梯的加、减过程由抛物线和直线构成。电梯给定曲线是否理想,直接影响实际的运行曲线。
3.1速度曲线产生方法
采用的FX2-64MR PLC,并考虑输入输出点要求增加了FX-8EYT、FX-16EYR、FX-8EYR三个扩展模块和FX2-40AW双绞线通信适配器,FX2-40AW用于系统串行通信。利用PLC扩展功能模块D/A模块实现速度理想曲线输出,事先将数字化的理想速度曲线存入PLC寄存器,程序运行时,通过查表方式写入D/A,由D/A转换成模拟量后将速度理想曲线输出。
3.2加速给定曲线的产生
8位D/A输出0~5V/0~10V,对应数字值为16进制数00~FF,共255级。若电梯加速时间在2.5~3秒之间。按保守值计算,电梯加程中每次查表的时间间隔不宜过10ms。
由于电梯逻辑控制部分程序大,而PLC运行采用周期扫描机制,因而采用通常的查表方法,每次查表的指令时间间隔过长,不能满足给定曲线的精度要求。在PLC运行过程中,其CPU与各设备之间的信息交换、用户程序的执行、信号采集、控制量的输出等操作都是按照固定的顺序以循环扫描的方式进行的,每个循环都要对所有功能进行查询、判断和操作。这种顺序和格式不能人为改变。通常一个扫描周期,基本要完成六个步骤的工作,包括运行监视、与编程器交换信息、与数字处理器交换信息、与通讯处理器交换信息、执行用户程序和输入输出接口服务等。在一个周期内,CPU对整个用户程序只执行一遍。这种机制有其方便的一面,但实时性差。过长的扫描时间,直接影响系统对信号响应的效果,在保证控制功能的前提下,大限度地缩短CPU的周期扫描时间是一个很复杂的问题。一般只能从用户程序执行时间短采取方法。电梯逻辑控制部分的程序扫描时间已过10ms,尽管采取了一些减少程序扫描时间的办法,但仍无法将扫描时间降到10ms以下。同时,制动段曲线采用按距离原则,每段距离到的响应时间也不宜过10ms。为满足系统的实时性要求,在速度曲线的产生方式中,采用中断方法,从而有效地克服了PLC扫描机制的限制。
起动加速运行由定周期中断服务程序完成。这种中断不能由程序进行开关,一旦设定,就一直按设定时间间隔循环中断,所以,起动运行条件需放在中断服务程序中,在不满足运行条件时,中断即返回。
3.3减速制动曲线的产生
为保证制动过程的完成,需在主程序中进行制动条件判断和减速点确定。在减速点确定之前,电梯一直处于加速或稳速运行过程中。加程由固定周期中断完成,加速到对应模式的大值之后,加速程序运行条件不再满足,每次中断后,不再执行加速程序,直接从中断返回。电梯以对应模式的大值运行,在该模式减速点到后,产生高速计数中断,执行减速服务程序。在该中断服务程序中计数器设定值的条件,保证下次中断执行。
在PLC的内部寄存器中,减速曲线表的数值由大到小排列,每次中断都执行一次“表指针加1”操作,则下一次中断的查表值将小于本次中断的查表值。门区和平层区的判断均由外部信号给出,以保减程的性。
4.电梯控制系统
4.1电梯控制系统特性
在电梯运行曲线中的启动段是关系到电梯运行舒适感指标的主要环节,而舒适感又与加速度直接相关,根据控制理论,要使某个量按预定规律变化对其进行直接控制,对于电梯控制系统来说,要使加速度按理想曲线变化就采用加速度反馈,根据电动机的力矩:M—MZ=ΔM=J(dn/dt),可见加速度的变化率反映了系统动态转距的变化,控制加速度就控制系统的动态转距ΔM=M—MZ。故在此段采用加速度的时间控制原则,当启动上升段速度达到稳态值的时,将系统由加速度控制切换到速度控制,因为在稳速段,速度为恒值控制波动较小,加速度变化不大,且采用速度闭环控制可以使稳态速度保持一定的精度,为制动段的平层创造条件。在系统的速度上升段和稳速段虽都采用PI调节器控制,但两段的PI参数是不同的,以提高系统的动态响应指标。
在系统的制动段,即要对减速度进行必要的控制,以保证舒适感,又要严格地按电梯运行的速度和距离的关系来控制,以保证平层的精度。在系统的转速降至120r/min之前,为了使两者得到兼顾,采取以加速度对时间控制为主,同时根据在每一制动距离上实际转速与理论转速的偏差来修正加速度给定曲线的方法。例如在距离平层点的某一距离L处,速度应降为 Vm/s,而实际转速高为V′m/s,则说明所加的制动转距不够,因此计算出此处的给定减速度值-ag后,使其再加上一个负偏差ε,即使此处的减速度给定值修正为-(ag+ε)使给定减速度与实际速度负偏差加大,从而加大了制动转距,使速度很快降到标准值,当电动机的转速降到120r/min 以后,此时轿厢距平层只有十几厘米,电梯的运行速度很低,为防止未到平层区就停车的现象出现,以使电梯能较快地进入平层区,在此段采用比例调节,并采用时间优化控制,以保证电梯准确及时地进入平层区,以达到准确平层。
4.2电梯控制构成
由于电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制,而楼层和轿厢的呼叫是随机的,因此,系统控制采用随机逻辑控制。即在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应状态适时的控制电梯的运行。另外,轿厢的位置是由脉冲编码器的脉冲数确定,并送PLC的计数器来进行控制。同时,每层楼设置一个接近开关用于检测系统的楼层信号。
为便于观察,对电梯的运行方向以及电梯所在的楼层进行显示,采用LED和发光管显示,而对楼层和轿厢的呼叫信号以指示灯显示(开关上带有指示灯)。
为了提高电梯的运行效率和平层的精度,系统要求PLC能对轿厢的加、减速以及制动进行有效的控制。根据轿厢的实际位置以及交流调速系统的控制算法来实现。为了电梯的运行,系统应设置的故障保护和相应的显示。采用PLC实现的电梯控制系统由以下几个主要部分构成。
4.2.1PLC控制电路;PLC接收来自操纵盘和每层呼梯的召唤信号、轿厢和门系统的功能信号以及井道和变频器的状态信号,经程序判断与运算实现电梯的集选控制。PLC在输出显示和监控信号的同时,向变频器发出运行方向、启动、加/减速运行和制动停梯等信号。
.2.2电流、速度双闭环电路;变频器本身设有电流检测装置,由此构成电流闭环;通过和电机同轴联接的旋转编码器,产生a、b两相脉冲进入变频器,在确认方向的同时,利用脉冲计数构成速度闭环。
4.2.3位移控制电路;电梯作为一种载人工具,在位势负载状态下,除要求外,还要求运行平稳,乘坐舒适,停靠准确。采用变频调速双环控制可基本满足要求,利用现有旋转编码器构成速度环的同时,通过变频器的PG卡输出与电机速度及电梯位移成比例的脉冲数,将其引入PLC的高速计数输入端口,通过累计脉冲数,经式(1)计算出脉冲当量,由此确定电梯位置。电梯位移
h=SI
式中
I—累计脉冲数;
S—脉冲当量;
S = plD / (pr) (1)
l—减速比;
D—牵引轮直径;
P—旋转编码器每转对应的脉冲数;
r—PG卡分频比。
4.2.4端站保护;当电梯定向上行时,上行方向继电器、快车辅助接触器、快车运行接触器、门锁继电器、上行接触器均得电吸合,抱闸打开,电梯上行。当轿厢碰到上强迫换速开关时,PLC内部锁存继电器得电吸合,定时器Tim10、Tim11开始定时,其定时的时间长短可视端站层距和梯速设定。上强迫换速开关动作后,电梯由快车运行转为慢车运行,正常情况下,上行平层时电梯应停车。如果轿厢未停而继续上行,当Tim10设定值减到零时,其常闭点断开,慢车接触器和上行接触器失电,电梯停止运行。在骄厢碰到上强迫换速开关后,由于某些原因电梯未能转为慢车运行,及快车运行接触器未能释放,当Tim11 设定值减到零时,其常闭点断开,快车运行接触器和上行接触器均失电,电梯停止运行。因此,不管是慢车运行还是快车运行,只要上强迫换速开关发出信号,不论端站其他保护开关是否动作,借助Tim10和Tim11均能使电梯停止运行,从而使电梯端站保护加。
当电梯需要下行,只要有了选梯指令,下行方向继电器得电其常开点闭合,锁存继电器被复位,Tim10和Tim11均失电,其常闭点闭合为电梯正常下行做好了准备。下端站的保护原理与上端站保护类似不再重复。
4.2.5楼层计数;楼层计数采用相对计数方式。运行前通过自学习方式,测出相应楼层高度脉冲数,对应17层电梯分别存入16个内存单元DM06~DM21。楼层计数器(CNT46)为一双向计数器,当到达各层的楼层计数点时,根据运行方向进行加1或减1计数。
运行中,高速计数器累计值实时与楼层计数点对应的脉冲数进行比较,相等时发出楼层计数信号,上行加1,下行减1。为防止计数器在计数脉冲高电平期间重复计数,采用楼层计数信号上沿触发楼层计数器。
4.2.6快速换速;当高速计数器值与快速换速点对应的脉冲数相等时,若电梯处于快速运行且本层有选层信号,发快速换速信号。若电梯中速运行或虽快速运行但本层无选层信号,则不发换速信号。4.2.7门区信号;当高速计数器CNT47数值在门区所对应脉冲数范围内时,发门区信号。
4.2.8脉冲信号故障检测;脉冲信号的准确采集和传输在系统中显得尤为重要,为旋转编码器和脉冲传输电路故障,设计了有无脉冲信号和错漏脉冲检测电路,通过实时检测确保系统正常运行。为脉冲计数累计误差,在基站设置复位开关,接入PLC高速计数器CNT47的复位端。
5.软件设计特点
5.1采用级队列
根据电梯所处的位置和运行方向,在编程中,采用了四个级队列,即上行级队列、上行次级队列、下行级队列、下行次级队列。其中,上行级队列为电梯向上运行时,在电梯所处位置以上楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层所具有的脉冲数存放的寄存器所构成的阵列。上行次级队列为电梯向上运行时,在电梯所处位置以下楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层所具有的脉冲数存放的寄存器所构成的队列。控制系统在电梯运行中实时排列的四个级陈列,为实现随机逻辑控制提供了基础。
5.2采用先出队列
根据电梯的运行方向,将同向的级队列中的非零单元(有呼叫时此单元为七零单元,无呼叫时则此单元为零)送入寄存器队列(先出队列FIFO),利用先出读出指令SFRDP指令,将FIFO个单元中的数据送入比较寄存器。
5.3采用随机逻辑控制
当电梯以某一运行方向接近某楼层的减速位置时,判别该楼层是否有同向的呼叫信号(上行呼叫标志寄存器、下行呼叫标志寄存器、有呼叫请求时,相应寄存器为l,否则为0),如有,将相应的寄存器的脉冲数与比较寄存器进行比较,如相同,则在该楼层减速停车:如果不相同,则将该寄存器数据送入比较寄存器,并将原比较寄存器数据保存,执行该楼层的减速停车。该动作完毕后,将被保存的数据重新送入比较寄存器,以实现随机逻辑控制。
5.4采用软件显示
系统利用行程判断楼层,并转化成BCD码输出,通过硬件接口电路以LED显示。
5.5对变频器的控制
PLC根据随机逻辑控制的要求,可向变频器发出正向运行、反向运行、减速以及制动信号,再由变频器根据一定的控制规律和控制算法来控制电机。同时,当系统出现故障时,PLC向变频器发出信号。5.结束语采用MIC340电梯变频器构成的电梯控制系统,可实现电梯控制的智能化,但由于候梯和电梯轿内的人到达各层的人数是智能电梯无法确定的,即使采用AITP人工智能系统,传输的交通客流信息也是模糊的,为解决电梯这一垂直交通控制系统的两大不可知因素,需要我们在今后的工作中去不断的研究和探索。
1 引言
小丸包衣制粒机是用于实验室或小批量生产小丸颗粒的制药设备。由于实验室原有的控制系统使用的是十年前的人机界面和PLC,故其硬件均已老化,性能下降,在运行的过程中经常出现死机、黑屏、重启动,甚至某些画面参数不能修改;同时由于无相应的PLC编程器、编程软件和人机界面软件,因此可维修性也差。为了解决这些问题,我们采用西门子S7-200PLC和北京亚控公司的组态王6.05工控组态软件 的控制方案对小丸包衣制粒机的控制系统作了改进。
2 小丸包衣制粒机系统组成
小丸包衣制粒机系统组成如图1所示。小丸包衣制粒机是专门用于实验室或车间小批量生产的。粉或类似的物料能在流化床中进行干燥、制粒以及包衣等过程。流化床物料容器底部装有筛网,药粉或小丸颗粒等类似的物料被盛放在筛网上。流动的空气经过滤处理后经容器底部的筛网向过,当流速达到一定速度时,颗粒(药粉)就会被空气托起,床内粒子就开始流化起来,形成流化床。流化床内的颗粒(药粉)在容器中剧烈搅动,并延伸到容器的扩展区,细微的粉末或轻微的颗粒则被粘附在袋式过滤器上。为了防止袋式过滤器的堵塞,控制滤袋升降的气缸会有一个间歇的抖动操控。空气经过袋式过滤器、控制风量大小的风门和风道被风机引出室外的大气中。在这个过程中,流化床容器内的微粒能充分的与空气流接触,并且搅动剧烈,因而能够很好的完成充分干燥,良好制粒,精致包衣等制过程。
图1 小丸包衣制粒机系统组成
3 系统主要控制要求
小丸包衣制粒机操作的基本控制要求包括五个方面。
(1) 产品温度控制
通过控制进风温度来控制产品温度。进风温度控制精度为±3℃,产品温度控制精度为±2℃。
(2) 进风风量的控制
控制精度为±40m3/h。
(3) 雾化压力的控制
即喷液装置喷射压力的控制,控制精度为±0.1bar。
(4) 密封压力的控制
产品容器与扩展仓密封,形成一个密闭的流化床反应器。采用油压装置进行密封,密封压力在35-70bar之间。
(5) 滤袋的抖动控制
抖动有单滤袋抖动和双滤袋抖动,有手动抖袋和自动抖袋。
4 控制方案的选择
4.1 两种不同方案的比较
小丸包衣制粒机的改进有两种方案可供选择,见表1:
在满足控制要求的前提下,控制系统硬件设备的选择应该追求的性能价格比。由于该机器的使用频率不高,平均每月一次,同时环境良好,因此采用PC+PLC的控制方案。当机器不用时,PC机可作它用。换句话说,利用公用PC机即可作人机界面。
4.2 PLC硬件配置
根据对控制系统的要求,选用西门子S7-200系列PLC。S7-200系列PLC体积小,重量轻、安装方便、功能齐全、配置灵活、运行、编程简单,具有可观的经济性和强的适应性,可以满足上述控制要求。
4.3 人机界面组态软件
组态软件选择北京亚控公司的组态王6.05。这是一款具有易用性、开放性和集成能力的通用组态软件。组态王使用简单,适合各种简单和复杂的任务。只需要进行填表式操作,即可生成适合于用户的“监控和数据采集系统”,可有效用于控制自动化过程, 组态王6.05版是在bbbbbbs2000的平台上运行的,因此选用组态王是较为完善和方便的选择。