企业信息

    浔之漫智控技术(上海)有限公司

  • 6
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2017
  • 公司地址: 上海市 松江区 永丰街道 上海市松江区广富林路4855弄52号3楼
  • 姓名: 聂航
  • 认证: 手机已认证 身份证已认证 微信未绑定

    长春西门子PLC代理商DP电缆供应商

  • 所属行业:电气 工控电器 DCS/PLC系统
  • 发布日期:2024-11-22
  • 阅读量:17
  • 价格:666.00 元/台 起
  • 产品规格:模块式
  • 产品数量:1000.00 台
  • 包装说明:全新
  • 发货地址:上海松江永丰  
  • 关键词:西门子代理商,西门子一级代理商

    长春西门子PLC代理商DP电缆供应商详细内容

    长春西门子PLC代理商DP电缆供应商



    一 概述
    PLC是直流屏系统监测、控制、保护、管理、通讯的核一个部件。不但可以实现繁琐的逻辑控制、模拟运算,而且对交流过欠压保护、控制母线过欠压保护、合闸母线过欠压保护和接地等保护都起着重要作用。EMERSON PLC有RS-232、485两个通信口,不但可与HMI直接通信(利用RS232或者485),还可用另一个485口和远动设备(RTU或通过MODEM与远程PC机)通信,实现数据交换与资源共享。真正实现了直流屏系统的全自动控制,在无人值守的场所系统都可以运转与远程维护。

    二 系统组成与功能
    直流屏系统中的监控与控制功能可由一台HMI(触摸屏)与一台EC10-1410BRA组成来实现。
    所有的系统参数设定,充电模块和整流模块的电压及电流调整与监控,电池巡检,对地电压的测量,电池充放电曲线等均通过触摸屏各画面进行。
    监控系统以EMERSON可编程控制(PLC)作为控制系统的部分,PLC可完成如下  功能: 
    1 接受系统的各种开关量状态检测与命令输入信号。
    2 对直流屏系统的故障状态做指示。主要故障状态有充电器故障、两路交流电自动切换、熔断器熔断等做报警指示。
    3 对高频开关充电模块输出的直流电压通过高速脉冲计数进行测量。
    4 与电流传感器、绝缘检测仪、电池检测仪、蓄电池组逆变放电装置(MODBUS通信)和HMI进行通信。检测合闸母线电压、 单体电池电压、 电池组电压、控制母线电流、充电电流、 放电电流、 控制母线绝缘电压、合闸母线绝缘电压、正负母线绝缘电压等。
    5 与电力自动化系统局方通信(CDT协议),可用自由口协议方式来实现。
    EMERSON PLC主模块本体集成有COM0和COM1两个通信口,其中COM0为232接口,COM1为232或者485接线方式可选。C0M0和COM1都支持MODBUS与FREEPORT协议。其通信口0(也作为编程口)支持MODBUS从站,通信口1支持MODBUS主站和从站(可由编程软件设置)。 在这里我们说明一下PLC与电流传感器、绝缘检测仪和电池检测仪等设备的通信。

    三 实现原理与方式
    3.1协议简介
    Modbus 协议是应用于控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络和其它设备之间可以通信。它已经成为一通用工业标准。本文主要描述了Modbus协议在此系统中的应用。通讯采用应答方式,由主机发起请求,从机执行请求并且应答。
    3.2接线方式
    PLC主模块的COM1口上RS485+、RS485-两端接从站设备的RS485+、RS485-口,接线图如下:

    3.3 MODBUS  RTU模式
    协议格式

    从机地址:网络上设备的地址,确定目的站从站。有效范围1-247。
    功能代码: 与HMI和MODBUS从站设备通信时主要用到的功能码: 01读线圈、02读离散量输入、03读保存寄存器、05写单个线圈、06写单个寄存器、15写多个线圈、16写多个寄存器。EMERSON PLC MODBUS全部支持所有的功能码。此次与从站设备的通信用到的03(读)与16(写)这两个功能码。
    数据:要读取或者写入数据的寄存器地址与数量。RTU模式下,多252字节(2×252个字节,ASII模式)。
    CRC检验码: EMERSON PLC编程软件(ContrStar)里的MODBUS指令执行时会自动加校验码(使用CRC校验情况下),用户不需计算校验和。如果用LRC校验时,在发送MODBUS指令时,才用计算检验码。

    四 PLC程序
    本控制系统程序由四个功能块组成,分别是逻辑控制、高速计数子程序、通信读子程序、通信写子程序。
    逻辑控制,主要包括:两路交流电自动切换、对控制模块电压进行调节 、 对充电模块电压、电流进行调节 、 自动控制电池充电过程 、 充电电流温度补偿、自动调压 、电池活化 、充电器故障保护与电池组过放电保护等处理控制。
    高速计数子程序,直接利用Contrstar 软件里SPD指令对6个输入端口进行高速脉冲计数(2路计数频率50KHZ,4路计数频率10KHZ),来计算整流模块的输出电压。
    读取从站数据子程序,读取电流传感器、绝缘检测仪、电池检测仪等设备数据时采用此功能子程序。设备不同,其站地址、参数个数、参数寄存器地址、参数存放PLC里的软元件地址等都不同,却都可以调用此程序,只要填上该设备的相应参数即可完成。
    写入从站数据子程序,如果用EMERSON PLC主模块上的COM0口或者COM1口与触摸屏通信,并且PLC做MODBUS从站时,HMI可以直接读写PLC数据(客户只要设置好通信参数即可)。但如果PLC做主站,HMI做从站时,就需要在PLC里编写通信程序给HMI写数据。
    无论读取还是写入从站数据,通信程序都有以下几部分组成: 
    通信参数设置:
    PLC部分:通信端口COM1,MODBUS协议(RTU模式)站地址,波特率9600bps,8数据位,2停止位,无校验。(在PLC编程软件“系统块”目录的“通信口”界面上设置)。
    HMI部分:和PLC设相同通信参数,站地址除外。
    通信数据刷新:
    通信时,无论是发送还是接收数据时,都要占用端口COM1。为了能在较短的时间内,刷新所有从站通信数据。我们可以采用ContrStar软件里的MODBUS发送接收(MODBUS命令发送完后,自动接收)完成标志位SM135(完成时置位)来判别与一台从站通信完成。从而与下一台从站开始通信。
    注明:也可以用定时器来计时,定时和不同从站设备通信。但是这样做效率不高,影响通信速度。在速度要求不高的场合,也可考虑采用这种方式。
    读命令功能:把MODBUS读发送帧格式写成固定的一个功能块,设置了几个灵活使用的参数:从站地址、寄存器起始地址、读取个数与接收数据的存放地址。与不同从站设备通信时,只需填写这几个参数,便可完成。
    写命令功能:把MODBUS写发送帧格式写成固定的一个功能块,参数设置与读命令功能相同。
    故障处理功能:如果在规定时间内,从站设备没有返回PLC数据,或者PLC把通信错误SM136置位。我们就认为与此设备通信有故障,丢弃此帧,但是与他的通信完成。继续下一台设备的通信。这样不会因为一台设备通信故障,影响与其他设备通信。下一轮再与此设备通信。

    五 运行效果
    客户使用EMERSON 公司生产的EC10系列PLC以来,运行效果良好,系统工作稳定。PLC与所有MODBUS从站设备的数据交换就用通信读与写两个功能块就可以实现。编程简单,指令丰富,功能强大,操作界面人性化,非常适合于直流屏行业的应用,深受客户。






    一、概述
    干燥机是一种制药机械,用对玻璃器皿等加热、和烘干。过去一般是采用常规温度控制器控制温度,采用小型PLC控制其机械运转。随着生产自动化水平的提高,温度测量与控制数据也需要上传到PLC、触摸屏或上位机,因此采用PLC的整体控制方案逐步得到推广。

    二、系统配置图:
    PLC采用EC20-3232BTA,扩展模块采用EC20-4TC,接入了2个测温用的热电偶信号触摸屏采用HITECH的PWS6600。如下图为控制系统结构图。

    三、温度控制方式和策略:
    温度控制是干燥机的主要的功能。通过地控制温度在设定值的±1度偏差左右,达到医用器皿加工的要求;同时工作温度应该在开机后尽快达到要求,预热和波动时间都不能太长。
    此干燥机的加热元件采用7组红外加热管,每组加热管各由1个交流接触器控制电路通断。由于7组红外加热管的功率很大,因此在运行中不能始终以调节全部加热管来控制温度,否则温度难以控制,波动时间很长。
    以下1点说明了分段快速加热控制,2点说明了温控的控制策略。
    1、设计采用了分组快速加热的方式,以加快预热的过程。
    在设定与实际的温差大于50度的时候,PLC会把7组加热管全部投入加热过程。当设定与实际的温差小于30度时,PLC将其中3组红外加热管给关闭了,剩下的4组加热管继续加热。当设定与实际的温差小于15度的时候,PLC再关闭2组加热管,同时对后两组加热管的加热过程进行PID调节。通过这种方式,系统预热时间大大缩短,波动的响应加快了。上述多个温度切换点是通过调试时找到该设备加热管的热惯性后确定的。
    2、PLC采用固定加热周期和可变加热脉宽调节的方式来控制稳定加热过程。
    系统在后2组加热管工作的时候,通过改变固定加热周期中的加热时间脉宽比例,实现了PID调切的控制策略。

    四、比例带与比例系数:
    对某些常用的温控策略设计中,人们常在PID设置中引入“比例带”的概念,也就是在确定比例系数时,先单纯考虑比例调节,以一个固定PV-SV的精度差值来确定比例值。
    比如举温度控制的例子,单纯考虑比例调节,当希望达到的温度差值为±10度,则就以10度为精度数据,当PV小于SV且温差在10度及以上时,PID输出则为大输出(**)。当温差小于10度,则按线性减少,直到没有温差时达到0%输出。
    在这个例子中,“比例带”就设为10度。则可以通过这个比例带来推算出比例值KP。对于EC20的PLC,由于PID输出值一般设定为0~32767,因此KP=32767/10,即3276.7。

    五、其它机械运转控制功能:
    由该PLC对机械运行进行控制,检测位置信号和警报信号。

    六、运行结果:
    艾默生的EC20系列PLC应用于干燥机上,实现对温度和机械进行控制。通过触摸屏来设置设备运行参数,操作机器,显示实时和历史数据,并将一段时间内的运行数据存储在触摸屏内存中,以备查询。PLC的温度PID控制运算功能代替了温度控制器,并将温度值用于触摸屏的显示和记录。新型干燥设备经过工程技术人员的调试,达到了工艺要求。产品目前已经得到了推广,为客户创造了效益。

    一 工艺简介
    染缸系统用于为布料着色,通过调节温度,压力,和颜料的流量形成一定的工艺条件,在相对稳定水位、压力、温度条件下对布料进行染色。系统属于全电脑控制,对各个控制量均实现闭环控制,根据反馈实时调节补偿,以达到稳定的控制效果。
    用户对于每种染色工艺的要求不同,要求程序按照功能进行模块式划分,可以根据需求在上位机中灵活调用,组成一个工艺方案。

    二.电气技术方案
    2.1 系统组成
    根据客户需求,结合当前工控技术的和产品,设计采用的电气技术方案如下。
    上位机采用工业平板PC机。PC机与PLC以RS232方式通信,上位机开发平台采用Wonderware Intouch 9.5版组态软件,可实现对整机运行工作情况的监控和历史纪录数据的保存。
    在可编程控制器(PLC)方面,选择业内的艾默生PLC作为控制器,采用MODBUS通讯协议,与艾默生变频器通过RS485总线通讯控制方式实现传动控制,并可与流量传感器通讯。根据系统要求,这些PLC分配在三个控制箱中。主控制箱中1台PLC配置为MODBUS主站,由主站对全部从站PLC、变频器、流量传感器进行监控;上位机通过主站来进行系统监控。
    变频器选型采用艾默生TD3000系列和SK系列产品。 TD3000系列变频器是、多功能、低噪音的矢量控制通用变频器;SK系列变频器具有体积小巧、操作简便、功能实用、宽输出频率和低噪音等优点。
    文本显示器采用无锡汇联SLIAN文本显示操作屏。
    2.2 电气系统结构图

    图中粗黑线表示的是MODBUS总线。
    电气系统结构图说明
    1、PC作为系统的上位机通过串口与主控制箱的PLC主站模块的通讯口0连接,采用RS232通讯实现对PLC数据的采集和控制。
    2、系统主干通讯网络采用MODBUS协议。
    3、系统分为三个控制箱:主控制箱、机身控制箱、机身电磁阀接线盒。系统需要配置5个PLC主模块,以MODBUS总线协议进行通讯。主控制箱内有3个PLC主模块,其中1个主模块配置为MODBUS主站。机身控制箱和机身电磁阀接线盒分别各配置1个PLC主模块。
    4、主控制箱的主站PLC采用EC20-2012BTA主模块(晶体管输出),扩展了2个EC20-4PT模块(温度测量)、2个EC20-4AD模块(4-20mA模拟量测量);主控制箱的从站PLC采用2个EC20-2012BTA主模块(晶体管输出)。
    5、机身控制箱从站PLC采用EC20-2012BRA主模块(继电器输出),扩展了1个EC20-4AD模块(0-10VDC模拟量测量)。控制箱应留出未来扩展的空间,以便将来增加扩展模块。该控制箱上安装1个无锡汇联SLIAN的文本显示屏,通讯线与PLC的通讯口0连接(RS-232)。
    6、机身电磁阀接线盒从站PLC采用EC20-3232BRA主模块(继电器输出)。
    7、5个比例阀分别由主控制箱的3个PLC主模块进行控制。每个PLC主模块可控制2个比例阀。
    8、4台变频器和2个计都作为MODBUS从站,由主控制箱主站PLC进行监控。
    2.3工作原理说明
    人机交互通过PC实现,PC可以实时监控整个系统的工作运行状态、动作过程及故障报警、实时曲线描绘和保存历史数据等,同时可发送各种操作命令给PLC以控制系统的运行。

    在主站PLC与PC、从站PLC、变频器和流量计仪表通讯方面,EC20 PLC充分利用自身的优势,由于EC20 PLC本身带有2个串行通信口(1个RS232口,集成自由协议/编程协议/MODBUS从站协议,1个RS232/485口,集成自由协议/MODBUS主站/从站协议),EC20 PLC利用COM0口和PC进行通信(EC20 PLC做从站,设置成MODBUS从站协议),利用COM1和多台从站PLC、变频器和流量计仪表组成网络进行集中控制(EC20 PLC的COM1设置成MODBUS主站协议)。
    艾默生变频器自带RS485接口的通讯单元,用于实现PLC与多台变频器的联网。对变频器的所有控制都通过RS485通讯链路来完成,可省去变频器的外部起停控制线路。
    5个比例阀控制器均由步进电机及放大器组成,由主站PLC及2个从站PLC通过高速脉冲输出口来进行控制。
    流量计仪表具有MODBUS协议,可由主站PLC通过MODBUS网络访问和监控。另外,流量计具有脉冲计数和频率输出,可用于计量,作为备用方案。脉冲输出可以接入到EC20的高速输入通道。

    三.PLC逻辑控制 
    此次编程采用顺序功能图(Sequential Function Chart),利用顺序功能图的过程划分和步骤间转换功能。可将程序段进行模块化自由组合。 
    由于顺序功能图编程具有直观和流程化的特点,分解后的每一步骤和每个转换条件都为相对简单的程序过程,在顺序控制领域应用比较广泛。
    3.1 模块化的分解与实现
    染布工艺经过长时间的积累,已经形成一套相对固定的工艺流程。但是随着布料种类、染料种类和印染要求的不同,会在原有流程上进行一定的增加、删减或者参数的改变,因此需要将整个印染工艺分解为若干个小模块以实现这一功能。
    经过对印染工艺的了解,现将整体工艺拆分为如下功能块:

    模块功能的实现应用顺序功能图流程的概念。在一个关联且封闭的顺序流程中,每一时刻只有一个步骤在运行,且各流程间互不干扰。而工艺模块的划分也正是本着一个模块内的工艺顺序执行、各个模块间的工艺尽量立这一原则。因此,一个模块对应一个流程即可。
    3.2  自由式组合编程的实现
    工艺要求能够自由的对功能模块进行顺序组合和重组,而PLC的程序是通过软件将PC中的内容写入到PLC固件中的,因此一经写入就不再可以改,程序的执行按照预定流程。于是我们通过与上位机的配合,再结合顺序功能图的特点,来实现自由编程的,其原理如下图:

    在上位机中对各个功能模块进行组合,通过组态软件将这些模块所对应的流程的起始步进号存储到一个配方列表中。上位机PC发送配方当前的步进号给PLC,PLC接收到后启动该步进对应的流程,并在流程的后置位某固定的完成标志,发送给上位机。PC收到完成标志后,配方的步进号向下传递并再发送,如此实现自由组合编程。

    四 小结 
    通过模块化的编程与PLC双通信口的功能,把一个中型机的功能在小型机上就轻易实现了,实现了染缸工艺要求的全部功能,并降低了客户的成本。


    202202191056324944844.jpg202202191056320952334.jpg202202191056322454334.jpg




    1 引言
    随着城市建设的不断发展,高层建筑不断增多,电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC性高,程序设计方便灵活。本设计在用PLC控制变频调速实现电流、速度双闭环的基础上,在不增加硬件设备的条件下,实现电流、速度、位移三环控制。

    2. 硬件电路
    系统硬件结构图如图1 所示,其各部分功能说明如下。


    Q1——三相电源断路图 K1——电源控制接触器 K2——负载电机通断控制接触器 VS——变频器 BU——制动单元 RB——能耗制动电阻 M——主拖动曳引电机


    2.1 主电路
    主电路由三相交流输入、变频驱动、曳引机和制动单元几部分组成。由于采用交-直-交电压型变频器,在电梯位势负载作用下,制动时回馈的能量不能馈送回电网,为限制泵升电压,采用受控能耗制动方式。

    2.2 PLC控制电路
    选用OMRON公司C系列60P型PLC。PLC接收来自操纵盘和每层呼梯盒的召唤信号、轿厢和门系统的功能信号以及井道和变频器的状态信号,经程序判断与运算实现电梯的集选控制。PLC在输出显示和监控信号的同时,向变频器发出运行方向、启动、加/减速运行和制动停梯等信号。

    2.3 电流、速度双闭环电路
    采用YASAKWA公司的VS-616G5 CIMRG 4022变频器。变频器本身设有电流检测装置,由此构成电流闭环;通过和电机同轴联接的旋转编码器,产生a、b两相脉冲进入变频器,在确认方向的同时,利用脉冲计数构成速度闭环。

    2.4 位移控制电路
    电梯作为一种载人工具,在位势负载状态下,除要求外,还要求运行平稳,乘坐舒适,停靠准确。采用变频调速双环控制可基本满足要求,但和国外电梯相比还需进一步改进。本设计正是基于这一想法,利用现有旋转编码器构成速度环的同时,通过变频器的PG卡输出与电机速度及电梯位移成比例的脉冲数,将其引入PLC的高速计数输入端口0000,通过累计脉冲数,经世式(1)计算出脉冲当量,由此确定电梯位置。电梯位移
    h=SI
    式中 I——累计脉冲数
    S——脉冲当量
    S = lpD / (pr) (1)
    本系统采用的减速机,其减速比l = 1/32,曳引轮直径D = 580mm,电机额定转速ned = 1450r/min,旋转编码器每转对应的脉冲数p = 1024,PG卡分频比r = 1/18,代入式(1)得
    S = 1.0mm / 脉冲

    3 程序设计
    利用变频器PG卡输出端(TA2.1)将脉冲信号引入PLC的高速计数输入端0000,构成位置反馈。高速计数器(CNT47)累加的脉冲数反映电梯的位置。高速计数器的值不断地与各信号点对应的脉冲数进行比较,由此判断电梯的运行距离、换速点、平层电和制动停车点等信号。理论上这种控制方式其平层误差可在±1个脉冲当量范围。在考虑减速机齿轮啮合间隙等机械因素情况下,电梯的平层精度可达±5mm内,大大±15mm的标准,满足电梯起制动平滑,运行平稳,平层准确的要求。电梯在运行过程中,通过位置信号检测,软件实时计算以下位置信号:电梯所在楼层位置、快速换速点、中速换速点、门区信号和平层位置信号等。由此省去原来每层在井道中设置的上述信号检测装置,大大减少井道检测元件和信号连线,降。下面针对在实现集选控制基础上新增添的楼层计数、快速换速、中速换速、门区和平层信号5个子程序进行介绍。

    3.1 楼层计数
    本设计采用相对计数方式。运行前通过自学习方式,测出相应楼层高度脉冲数,对应17层电梯分别存入16个内存单元DM06 ~ DM21。
    楼层计数器(CNT46)为一双向计数器,当到达各层的楼层计数点时,根据运行方向进行加1或减1计数。楼层计数程序流程图如图2 所示。



    运行中,高速计数器累计值实时与楼层计数点对应的脉冲数进行比较,相等时发出楼层计数信号,上行加1,下行减1。为防止计数器在计数脉冲高电平期间重复计数,采用楼层计数信号上沿触发楼层计数器。

    3.2 快速换速
    当高速计数器值与快速换速点对应的脉冲数相等时,若电梯处于快速运行且本层有选层信号,发快速换速信号。若电梯中速运行或虽快速运行但本层无选层信号,则不发换速信号。程序流程图如图3 所示。


    中速换速与快速换速判断方法类似,不再重复。

    3.3 门区信号
    当高速计数器CNT47数值在门区所对应脉冲数范围内时,发门区信号。程序流程图如图4 所示。


    平层信号与区信号判断方法类似,不再重复。

    3.4 脉冲信号故障检测
    脉冲信号的准确采集和传输在本系统中显得尤为重要,为旋转编码器和脉冲传输电路故障,设计了有无脉冲信号和错漏脉冲检测电路,通过实时检测确保系统正常运行。为脉冲计数累计误差,在基站设置复位开关,接入PLC高速计数器CNT47的复位端0001。

    3.5 快速换速工作原理
    限于篇幅,本文仅对快速换速工作原理进行介绍,梯形图如图5 所示。


    图中数据存储单元DM01为快速换速距离脉冲数,DM30为楼层间距脉冲数,DM31为快速换速点对应的脉冲数,DM34为高速换速比较区间下限,DM35为高速换速比较区间上限,HR01为快速换速点开始信号,1507为快速运行信号,1700为选层信号,0010为零速信号,0503为快速换速输出信号。
    以上行为例,DM31快速换速点对应的脉冲数是楼层间距DM30与快速换速举例DM01之差;DM31和DM30的值分别赋给DM34和DM35。运行时高速计数器不断累加脉冲数,每个扫描周期计数器的值与DM34 ~ DM35区段进行比较。当其值进入DM34与DM35区段时,HR01置位,表示进入快速换速区间;若此时有选层信号且电梯为快速运行,则发快速换速信号(0503置ON)。

    4 结论
    本文所述系统基于电气集选控制原则,采用脉冲计数方法,用脉冲编码器取代井道中原有的位置检测装置,实现位移控制,用软件代替部分硬件功能,既降低系统成本,又提高了系统的性和性,实现电梯的全数字化控制。
    在实验室调试的基础上,采用上述方法,实地对两台17层电梯进行改造,经有关部门检测和近一年的实际运行表明,系统运行,乘坐舒适,故障率大为降低,平层精度在±5mm以内,了良好的运行效果。


    1、概述
    水轮机筒阀由法国NEYRPIC公司于1962年用于真机以来,通过一些中小水轮机的应用实践,逐步得到了完善。到1979年加拿大当时大的水电站LG-2,16台出力为338.5MW的大型混流式水轮机采用了圆筒阀之后,它的应用开始引起各国的注意,许多优点得到公认。因此,被越来越多的水电站采用。它的主要优点有:1、安装在固定导水叶与活动导水叶之间,同安装在蜗壳前的球阀、蝶阀相比,缩短了整个厂房的纵向长度,降低了工程造价;2、密封性好,能有效抑制了导叶漏水对导叶的磨损。3、开启、关闭时间短,能好地适应电力系统对水电厂快速开机的要求并能有效地防止事故情况下的机组过速。4、能机前阀门进出口处的收缩和扩散段伸缩节的附加水力损失。5、圆筒阀启闭为直线运动,关闭时可根据水压上升率调整关闭速度。而在圆筒阀的应用实践中如何保证多只接力器的同步成为筒阀控制的关键技术问题。下面就这一问题阐述应用PLC技术实现同步的原理和方法。
    2、筒阀的结构及同步机构原理
    传统的解决同步问题的主要方法采用接力器驱动链条同步,在筒阀圆周尽可能多地均匀布置多支液压接力器,每支接力器动杆(活塞)下端连接固定在阀体上,活塞上下运动可以驱动阀门启闭。各活塞的同步移动有由可逆传动的滚动螺旋副实现,它是在活塞上固定的一只滚动螺旋传动的螺母,螺母连接传动丝杆,当活塞上下移动时丝杆做正反旋转,丝杆上端连接齿轮将筒阀的垂直运动变为齿轮的旋转,齿轮带动链条一起连动其它接力器的齿轮同速旋转并反作用于其丝杆而实现多只接力器的同步。此同步方案的缺点在于:1)、直径大的筒阀将布置数量较多的接力器,增加整个系统的投资。2)、接力器油缸进油口无调节能力,均由调定的节流阀控制流量,接力器运行速度的调节控制没有按调节规律运动的随动性。3)、链条同步对发生异步的的油缸矫正能力差,易发生链条张力矩过载甚至拉断,导致筒阀启闭失败。4)、由于油缸进油量由节流阀调整固定,筒阀只能定速启闭,丧失了筒阀直线运动可按程序启闭速度进行启闭的优势。
    3、采用PLC输出控制比例阀液压随动系统实现同步
    此方案采用接力器直接驱动筒阀并控制其同步,滚动螺旋副和链传动的同步机构可以取消或作为辅助同步手段和保护措施。另外,接力器本身不需再设缓冲装置,缓冲功能由PLC控制程序实现。采用本方案与传统的同步控制系统相比有如下特点:1)、可以灵活地改变(修改控制程序)阀门关闭开启的运动规律,使之符合机组运行之需要。例如:当事故紧急停机调速器主配拒动而需快速关闭筒阀是时,为了即快速又不致使蜗壳及压力钢管水压上升率过高可采用分段关闭的控制规律。2)、可以取消机械同步机构,大大简化控制操作机构从而精简筒阀的整体结构,节省机坑内空间,改善运行维护条件。3)、减少操作执行组件数量,降低工程造价。4)、利用计算机通讯技术,为实现计算机远方监控提供坚实的现场控制和数据采集单元。
    3.1控制系统基本原理
    该系统主要由硬件和控制软件两部分组成,其中硬件部分包含可编程控制器(本方案PLC选用三菱公司的FX2N-80MT)及其配套的A/D模块、通讯模块、接力器行程测量组件(选用磁感应、高速脉冲输出)、信号功率放大板、液压比例阀、电源、操作开关、按钮以及信号灯等组成;其系统硬件构成如图一所示。软件由三菱公司配套可在bbbbbbS下编程的FXGP-WIN-C开发而得。系统的基本控制策略如下:整个系统可视为以位移量偏差为负反馈的闭环电液随动系统,在多只接力器不同步的情况下,以其中一只为基准,在给定的启、闭规律基础上按经典PI控制算法,产生控制量作用到液压比例阀上,液压比例阀控制油流量大小校正发生的不同步的偏差以保证各油缸的同步运行,其基本控制原理框图如图二所示。
    3.2各部分工作元器件特性
    3.2.1控制运算部件PLC及其各功能模块
    PLC(FX2N-80MT)是整个系统的控制部件,其丰富齐备的控制运算指令、优越的性能、现场编程调试的方便已成为实现各种控制的现场级设备。其主要性能指标有:运算速度: 0.08uS/步(基本指令), 1.52uS—数100uS(应用指令);用户程序内存容量:16K,系统程序内存容量:8K;应用指令:128种 298个;输入口:5组每组8个,其中高速记数口8个(X000—X007);响应速度:8个点合计小于等于20KHZ,自带电源容量:24V600mA;输入电源:AC/DC170V—250V。各功能模块:1)模数转换模块FX2N-4AD:用于接收压力传感器输出的4-20mA电流信号,将其变为PLC程序可用的0-1000的十进制数。其性能指标如下:功耗:DC5V30mA,模拟量输入范围:电压DC-10V--+10V大-15V--+15V(输入阻抗200K),电流DC-20mA--+20mA大-32mA—+32mA(输入阻抗250),;输出数字范围:-2047--+2047;分辨率:电压5mV,电流20uA;线性度:±1%F.S,采样速度:普通通道15mS,高速通道:6mS;3)数模转换模块FX2N-2DA:将PLC运算得到的控制量数值转化为电压信号输入到比例阀放大板控制液压比例阀。其性能指标如下:DC5V30mA,数值输入范围:-2047— +2047;模拟量电压输出: -10V— +10V,线性度:±1%F.S,分辨率:电压5mV(10V×1/2000),转化速度:普通通道18mS,高速通道:3.5mS;
    3.2.2测量部件:位移传感器
    选用美国MTS Temposonics III(PB/PH)非接触式位移传感器
    原理:由询问信号的电流脉冲所产生的磁场(沿波导管运行)与位置磁铁产生的磁场相交产生一个应变脉冲信号,然后计算这个信号被探测所需的时间周期,便能换算出准确的位置。
    性能及指标:分辨率:2um;响应速度:比其他测量方式:快4到20倍;提供网络数字SSI  CANBUS  PROFIBUS  DEVICENET ;符合欧洲CE规格
    3.2.3执行部件:比例阀(包括放大板)
    此环节是电气控制信号与机械液压系统连接的关键部分,直接影响到控制系统性能的发挥,所以选用德国REXROTH的VT5005带阀芯位置反馈的自动式比例方向控制阀,其放大电路技据如下:电源电压DC24V,功率50VA,控制电压±9V,大输出电流:2.2A。
    3.2.4操作显示终端
    本系统选用三菱的GOT940触摸操作显示终端,其画面可通过配套的GT-DESIGE软件制作并通过通讯电缆AC30R-9SS与PC机连接进行数据传送及调试。安装此显示终端可丰富人机界面,同时监视多个参数,对即时分析筒阀开启、关闭的运行状态提供方便。
    3.3、控制策略
    利用三菱PLC丰富的指令编制控制程序,对于现场调试及不断完善、优化控制程序具有重大意义。整个控制程序的流程框图如图三所示。
    3.3.1具有启闭运动规律的调节给定量
    圆形筒阀在启闭过程中,根据其安装结构及位置可知:在运动到全行程的中间段时,各缸允许发生的偏差小,为了保证液压调节系统的调节品质,可将给定量降低,放慢筒阀运行速度。在动水关闭过程中,为了控制蜗壳水压上升率,筒阀关闭速度可分段进行设置。其他启闭规律可在筒阀的运行实践中总结得到,通过编制具有启闭运动规律的调节给定量实现。
    3.3.2基准缸判断
    把每一次开关动作完成后的慢及行程小的一缸作为下一次筒阀启闭运行的基准缸,因为此缸响应调节量的能力弱,让它只接收固定的给定输出,调节其它缸的输出量以适应基准缸。
    3.3.3油压参与调节
    当某缸油压上升速率过设定值,说明此油缸侧运动受卡阻,此时应降低基准缸的给定值,使系统调节变得加平缓,顺利完成启闭操作。
    3.3.4保护及信号设置
    油缸油压或四油缸油压之间的差值过某一整定值油压保护动作;链条张力过载保护通过行程开关接点进行调整;全开、全关限位置也是在相应位置安装行程开关实现。为了防止油路系统的油垂效应,在临近全开、全关位置时减小比例阀开度,并延时返回开启和关闭中间继电器。现场控制柜装设有以下信号:全开、全关、中间位置、1#-6#链条张力过载。
    3.3.5相关参数显示
    因为现场控制柜安装了操作显示终端,通过PLC算术指令的运算可以得到多个有关筒阀运行的参数并在一个画面内显示,如各缸的行程、各缸比例阀阀芯位置反馈电压、比例阀阀芯位置(占各阀全开的百分比)、油压、运行速度、筒阀下滑、每次开关经历时间以及各个故障信号、全开全关信号、中间位置信号、下滑信号以及各缸油压、控制量、比例阀开度与位移的关系曲线等。
    4、设手动调节功能,保证控制系统的性
    当链条张力过载筒阀卡死在中间位置或PLC控制系统故障时,可将“手动/自动”切换开关置“手动”位,各缸比例阀直接由功放输入给定电位器调整。
    5、与计算机监控系统通讯,提供现场多信息。
    为了与计算机监控系统各机组LCU的工控机通讯,特在PLC内开辟一个连续的数椐寄存器与中间继电器寄存器区,将要上装的数据和状态变量放在一起,以便工控机快速读取。工控机与PLC的通讯协议是MITSUBISHI  PLC通讯协议;格式:RS422  异步;通讯速率:9600bps;转送的字符:ASCII字符,其中1个起始位,7个数据位,1个奇偶校验位, 1个停止位;字符奇偶校验:偶校验偶数据;数据转送校验方式:和校验。
    6、结束语
    PLC控制技术运用于筒阀的控制,有效地解决了筒阀多只油缸的同步问题,提高了系统的性,减少了油缸数量,节省了投资,充分发挥了筒阀在水轮机运用上的多方面优势,而且实现了与计算机的通讯,为计算机远方监控提供了功能完善的现场单元


    http://zhangqueena.b2b168.com
    欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。 主要经营电气相关产品。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。