企业信息

    浔之漫智控技术(上海)有限公司

  • 7
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2017
  • 公司地址: 上海市 松江区 永丰街道 上海市松江区广富林路4855弄52号3楼
  • 姓名: 聂航
  • 认证: 手机已认证 身份证已认证 微信未绑定

    太原西门子中国代理商交换机供应商

  • 所属行业:电气 工控电器 DCS/PLC系统
  • 发布日期:2024-11-26
  • 阅读量:15
  • 价格:666.00 元/台 起
  • 产品规格:模块式
  • 产品数量:1000.00 台
  • 包装说明:全新
  • 发货地址:上海松江永丰  
  • 关键词:西门子代理商,西门子一级代理商

    太原西门子中国代理商交换机供应商详细内容

    太原西门子中国代理商交换机供应商

    1、PLC的基本概念
         可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC 
    2、PLC的基本结构
         PLC实质是一种于工业控制的计算机,其硬件结构基本上与微型计算机相同,如图所示:
    a. 处理单元(CPU)
         处理单元(CPU)是PLC的控制。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。
    为了进一步提高PLC的可*性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。
    b、存储器
         存放系统软件的存储器称为系统程序存储器。
    存放应用软件的存储器称为用户程序存储器。
    C、电源
         PLC的电源在整个系统中起着十分重要得作用。如果没有一个良好的、可*得电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去。
    3、PLC的工作原理
    一. 扫描技术
         当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
    (一) 输入采样阶段
         在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
    (二) 用户程序执行阶段
          在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
         即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
    (三) 输出刷新阶段
         当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
         同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。
         一般来说,PLC的扫描周期包括自诊断、通讯等,如下图所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。
    二. PLC的I/O响应时间
         为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。
    为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。
         以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至长。
         所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。其短的I/O响应时间与长的I/O响应时间如图所示:
    (n-1)个
         扫描周期
         短I/O响应时间:
         长I/O响应时间

         西门子PLC基础2
    SIEMENS PLC在中国的产品,根据规模和性能的大小,主要有 S7-200 S7-300 和S7-400三种,下面就简单介绍一下该三种产品的一些特性。
         S7-200
         针对低性能要求的摸块化小控制系统,它多可有7个模块的扩展能力,在模块中集成背板总线,它的网络联接有RS-485通讯接口和PROFIBUS两种,可通过编程器PG访问所有模块,带有电源、CPU和I/O的一体化单元设备。
         其中的扩展模块(EM)有以下几种:数字量输入模块(DI)——24VDC 和 120/230VAC;数字量输出(DO)——24VDC 和 继电器;模拟量输入模块(AI)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。   还有一个比较特殊的模块-通讯处理器(CP)——该块的功能是可以把S7-200作为主站连接到AS-接口(传感器和执行器接口),通过AS-接口的从站可以控制多达248个设备,这样就可以显著的扩展S7-200的输入和输出点数。
    CPU设计  
         有3种手动选择操作模式:STOP——停机模式,不执行程序;TERM——运行程序,可以通过编程器进行读/写访问;RUN——运行程序,通过编程器仅能进行读操作。
         状态指示器(LED):SF——系统错误或(和)CPU内部错误;RUN——运行模式,绿灯;STOP——停机模式,黄灯;DP——分布式I/O(仅对CPU-215)。
         存储器卡——用来在没电的情况下不需要电池就可以保存用户程序。PPI口用来连接编程设备、文本显示器或其他CPU。
    S7-300
         相比较S7-200,S7-300针对的是中小系统,他的模块可以扩展多达32个模块,背板总线也在模块内集成,它的网络连接已比较成熟和流行,有MPI(多点接口)、PROFIBUS和工业以太网,使通讯和编程变的简单和多选性,并可以借助于HWConfig工具可以进行组态和设置参数。
         S7-300的模块稍微多一点,除了信号模块(SM)和200的EM模块同类型之外,它还有接口模块(IM)——用来进行多层组态,把总线从一层传到另一层;占位模块(DM)——为没有设置参数的信号模块保留一个插槽或为以后安装的接口模块保留一个插槽;功能模块(FM)——执行特殊功能,如计数、定位、闭环控制相当于对CPU功能的一个扩展或;通讯处理器(CP)——提供点对点连接、PROFIBUS和工业以太网。
    CPU设计
         模式选择器有:MRES=模块复位功能;STOP=停止模式,程序不执行;RUN=程序执行,编程器只读操作;RUN-P=程序执行,编程器可读写操作。
         状态指示器:SF,BATF=电池故障;DC5V=内部5 V DC电压指示;FRCE=表示至少有一个输入或输出被强制;RUN=当CPU启动时闪烁,在运行模式下常亮;STOP=在停止模式下常亮,有存储器复位请求时慢速闪烁,正在执行复位时快速闪烁。
         MPI接口用来连接到编程设备或其他设备,DP接口用来直接连接到分布式I/O。
    S7-400
         同300的区别主要是规模和性能上强大,启动类型有冷启动(CRST)和热启动(WRST)之分,其他基本一样。哦,它还有一个外部的电池电源接口,当在线换电池时可以向RAM提供后备电源。

    1.概述
    随着城市建设的不断发展,高层建筑不断增多,电梯在国民经济和生活中有着广泛的应用。电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,电梯控制系统采用随机逻辑方式控制。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC性高,程序设计方便灵活,抗干扰能力强、运行稳定等特点,所以现在的电梯控制系统广泛采用可编程控制器来实现。
    2.电梯理想运行曲线
    根据大量的研究和实验表明,人可接受的大加速度为am≤1.5m/s2, 加速度变化率ρm≤3m/s3,电梯的理想运行曲线按加速度可划分为三角形、梯形和正弦波形,由于正弦波形加速度曲线实现较为困难,而三角形曲线大加速度和在启动及制动段的转折点处的加速度变化率均大于梯形曲线,即+ρm跳变到-ρm或由-ρm跳变到+ρm的加速度变化率,故很少采用,因梯形曲线容易实现并且有良好加速度变化率频繁指标,故被广泛采用,采用梯形加速度曲线电梯的理想运行曲线如图1所示:



    智能变频器是为电梯的灵活调速、控制及平层等要求而专门设计的电梯变频器,可配用通用的三相异步电动机,并具有智能化软件、标准接口、菜单提示、输入电梯曲线及其它关键参数等功能。其具有调试方便快捷,而且能自动实现单多层功能,并具有自动优化减速曲线的功能,由其组成的调速系统的爬行时间少,平层距离短,不论是双绕组电动机,还是单绕组电动机均可适用,其设计速度可达4m/s,其特的电脑软件,可选择串行接口实现输入/输出信号的无触点控制。
    变频器构成的电梯系统,当变频器接收到控制器发出的呼梯方向信号,变频器依据设定的速度及加速度值,启动电动机,达到大速度后,匀速运行,在到达目的层的减速点时,控制器发出切断高速度信号,变频器以设定的减速度将大速度减至爬行速度,在减速运行过程中,变频器的能够自动计算出减速点到平层点之间的距离,并计算出优化曲线,从而能够按优化曲线运行,使低速爬行时间缩短至0.3s,在电梯的平层过程中变频器通过调整平层速度或制动斜坡来调整平层精度。即当电梯停得太早时,变频器增大低速度值或减少制动斜坡值,反之则减少低速度值或增大制动斜坡值,在电梯到距平层位置4—10cm时,有平层开关自动断开低速信号,系统按优化曲线实现的平层,从而达到平层的准确。
    3.电梯速度曲线
    电梯运行的舒适性取决于其运行过程中加速度a和加速度变化率p的大小,过大的加速度或加速度变化率会造成乘客的不适感。同时,为保证电梯的运行效率,a、p的值不宜过小。能保证a、p取值的电梯运行曲线称为电梯的理想运行曲线。电梯运行的理想曲线应是抛物线-直线综合速度曲线,即电梯的加、减过程由抛物线和直线构成。电梯给定曲线是否理想,直接影响实际的运行曲线。
    3.1速度曲线产生方法
    采用的FX2-64MR PLC,并考虑输入输出点要求增加了FX-8EYT、FX-16EYR、FX-8EYR三个扩展模块和FX2-40AW双绞线通信适配器,FX2-40AW用于系统串行通信。利用PLC扩展功能模块D/A模块实现速度理想曲线输出,事先将数字化的理想速度曲线存入PLC寄存器,程序运行时,通过查表方式写入D/A,由D/A转换成模拟量后将速度理想曲线输出。
    3.2加速给定曲线的产生
    8位D/A输出0~5V/0~10V,对应数字值为16进制数00~FF,共255级。若电梯加速时间在2.5~3秒之间。按保守值计算,电梯加程中每次查表的时间间隔不宜过10ms。
    由于电梯逻辑控制部分程序大,而PLC运行采用周期扫描机制,因而采用通常的查表方法,每次查表的指令时间间隔过长,不能满足给定曲线的精度要求。在PLC运行过程中,其CPU与各设备之间的信息交换、用户程序的执行、信号采集、控制量的输出等操作都是按照固定的顺序以循环扫描的方式进行的,每个循环都要对所有功能进行查询、判断和操作。这种顺序和格式不能人为改变。通常一个扫描周期,基本要完成六个步骤的工作,包括运行监视、与编程器交换信息、与数字处理器交换信息、与通讯处理器交换信息、执行用户程序和输入输出接口服务等。在一个周期内,CPU对整个用户程序只执行一遍。这种机制有其方便的一面,但实时性差。过长的扫描时间,直接影响系统对信号响应的效果,在保证控制功能的前提下,大限度地缩短CPU的周期扫描时间是一个很复杂的问题。一般只能从用户程序执行时间短采取方法。电梯逻辑控制部分的程序扫描时间已过10ms,尽管采取了一些减少程序扫描时间的办法,但仍无法将扫描时间降到10ms以下。同时,制动段曲线采用按距离原则,每段距离到的响应时间也不宜过10ms。为满足系统的实时性要求,在速度曲线的产生方式中,采用中断方法,从而有效地克服了PLC扫描机制的限制。
    起动加速运行由定周期中断服务程序完成。这种中断不能由程序进行开关,一旦设定,就一直按设定时间间隔循环中断,所以,起动运行条件需放在中断服务程序中,在不满足运行条件时,中断即返回。
    3.3减速制动曲线的产生
    为保证制动过程的完成,需在主程序中进行制动条件判断和减速点确定。在减速点确定之前,电梯一直处于加速或稳速运行过程中。加程由固定周期中断完成,加速到对应模式的大值之后,加速程序运行条件不再满足,每次中断后,不再执行加速程序,直接从中断返回。电梯以对应模式的大值运行,在该模式减速点到后,产生高速计数中断,执行减速服务程序。在该中断服务程序中计数器设定值的条件,保证下次中断执行。
    在PLC的内部寄存器中,减速曲线表的数值由大到小排列,每次中断都执行一次“表指针加1”操作,则下一次中断的查表值将小于本次中断的查表值。门区和平层区的判断均由外部信号给出,以保减程的性。
    4.电梯控制系统
    4.1电梯控制系统特性
    在电梯运行曲线中的启动段是关系到电梯运行舒适感指标的主要环节,而舒适感又与加速度直接相关,根据控制理论,要使某个量按预定规律变化对其进行直接控制,对于电梯控制系统来说,要使加速度按理想曲线变化就采用加速度反馈,根据电动机的力矩:M—MZ=ΔM=J(dn/dt),可见加速度的变化率反映了系统动态转距的变化,控制加速度就控制系统的动态转距ΔM=M—MZ。故在此段采用加速度的时间控制原则,当启动上升段速度达到稳态值的时,将系统由加速度控制切换到速度控制,因为在稳速段,速度为恒值控制波动较小,加速度变化不大,且采用速度闭环控制可以使稳态速度保持一定的精度,为制动段的平层创造条件。在系统的速度上升段和稳速段虽都采用PI调节器控制,但两段的PI参数是不同的,以提高系统的动态响应指标。
    在系统的制动段,即要对减速度进行必要的控制,以保证舒适感,又要严格地按电梯运行的速度和距离的关系来控制,以保证平层的精度。在系统的转速降至120r/min之前,为了使两者得到兼顾,采取以加速度对时间控制为主,同时根据在每一制动距离上实际转速与理论转速的偏差来修正加速度给定曲线的方法。例如在距离平层点的某一距离L处,速度应降为 Vm/s,而实际转速高为V′m/s,则说明所加的制动转距不够,因此计算出此处的给定减速度值-ag后,使其再加上一个负偏差ε,即使此处的减速度给定值修正为-(ag+ε)使给定减速度与实际速度负偏差加大,从而加大了制动转距,使速度很快降到标准值,当电动机的转速降到120r/min 以后,此时轿厢距平层只有十几厘米,电梯的运行速度很低,为防止未到平层区就停车的现象出现,以使电梯能较快地进入平层区,在此段采用比例调节,并采用时间优化控制,以保证电梯准确及时地进入平层区,以达到准确平层。
    4.2电梯控制构成
    由于电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制,而楼层和轿厢的呼叫是随机的,因此,系统控制采用随机逻辑控制。即在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应状态适时的控制电梯的运行。另外,轿厢的位置是由脉冲编码器的脉冲数确定,并送PLC的计数器来进行控制。同时,每层楼设置一个接近开关用于检测系统的楼层信号。
    为便于观察,对电梯的运行方向以及电梯所在的楼层进行显示,采用LED和发光管显示,而对楼层和轿厢的呼叫信号以指示灯显示(开关上带有指示灯)。
    为了提高电梯的运行效率和平层的精度,系统要求PLC能对轿厢的加、减速以及制动进行有效的控制。根据轿厢的实际位置以及交流调速系统的控制算法来实现。为了电梯的运行,系统应设置的故障保护和相应的显示。采用PLC实现的电梯控制系统由以下几个主要部分构成。
    4.2.1PLC控制电路;PLC接收来自操纵盘和每层呼梯的召唤信号、轿厢和门系统的功能信号以及井道和变频器的状态信号,经程序判断与运算实现电梯的集选控制。PLC在输出显示和监控信号的同时,向变频器发出运行方向、启动、加/减速运行和制动停梯等信号。
    4.2.2电流、速度双闭环电路;变频器本身设有电流检测装置,由此构成电流闭环;通过和电机同轴联接的旋转编码器,产生a、b两相脉冲进入变频器,在确认方向的同时,利用脉冲计数构成速度闭环。
    4.2.3位移控制电路;电梯作为一种载人工具,在位势负载状态下,除要求外,还要求运行平稳,乘坐舒适,停靠准确。采用变频调速双环控制可基本满足要求,利用现有旋转编码器构成速度环的同时,通过变频器的PG卡输出与电机速度及电梯位移成比例的脉冲数,将其引入PLC的高速计数输入端口,通过累计脉冲数,经式(1)计算出脉冲当量,由此确定电梯位置。电梯位移
    h=SI
    式中I—累计脉冲数;
    S—脉冲当量;
    S = plD / (pr)         (1)
    l—减速比;
    D—牵引轮直径;
    P—旋转编码器每转对应的脉冲数;
    r—PG卡分频比。
    4.2.4端站保护;当电梯定向上行时,上行方向继电器、快车辅助接触器、快车运行接触器、门锁继电器、上行接触器均得电吸合,抱闸打开,电梯上行。当轿厢碰到上强迫换速开关时,PLC内部锁存继电器得电吸合,定时器Tim10、Tim11开始定时,其定时的时间长短可视端站层距和梯速设定。上强迫换速开关动作后,电梯由快车运行转为慢车运行,正常情况下,上行平层时电梯应停车。如果轿厢未停而继续上行,当Tim10设定值减到零时,其常闭点断开,慢车接触器和上行接触器失电,电梯停止运行。在骄厢碰到上强迫换速开关后,由于某些原因电梯未能转为慢车运行,及快车运行接触器未能释放,当Tim11 设定值减到零时,其常闭点断开,快车运行接触器和上行接触器均失电,电梯停止运行。因此,不管是慢车运行还是快车运行,只要上强迫换速开关发出信号,不论端站其他保护开关是否动作,借助Tim10和Tim11均能使电梯停止运行,从而使电梯端站保护加。
    当电梯需要下行,只要有了选梯指令,下行方向继电器得电其常开点闭合,锁存继电器被复位,Tim10和Tim11均失电,其常闭点闭合为电梯正常下行做好了准备。下端站的保护原理与上端站保护类似不再重复。
    4.2.5楼层计数;楼层计数采用相对计数方式。运行前通过自学习方式,测出相应楼层高度脉冲数,对应17层电梯分别存入16个内存单元DM06~DM21。楼层计数器(CNT46)为一双向计数器,当到达各层的楼层计数点时,根据运行方向进行加1或减1计数。
    运行中,高速计数器累计值实时与楼层计数点对应的脉冲数进行比较,相等时发出楼层计数信号,上行加1,下行减1。为防止计数器在计数脉冲高电平期间重复计数,采用楼层计数信号上沿触发楼层计数器。
    4.2.6快速换速;当高速计数器值与快速换速点对应的脉冲数相等时,若电梯处于快速运行且本层有选层信号,发快速换速信号。若电梯中速运行或虽快速运行但本层无选层信号,则不发换速信号。
    4.2.7门区信号;当高速计数器CNT47数值在门区所对应脉冲数范围内时,发门区信号。
    4.2.8脉冲信号故障检测;脉冲信号的准确采集和传输在系统中显得尤为重要,为旋转编码器和脉冲传输电路故障,设计了有无脉冲信号和错漏脉冲检测电路,通过实时检测确保系统正常运行。为脉冲计数累计误差,在基站设置复位开关,接入PLC高速计数器CNT47的复位端。
    5.软件设计特点
    5.1采用级队列
    根据电梯所处的位置和运行方向,在编程中,采用了四个级队列,即上行级队列、上行次级队列、下行级队列、下行次级队列。其中,上行级队列为电梯向上运行时,在电梯所处位置以上楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层所具有的脉冲数存放的寄存器所构成的阵列。上行次级队列为电梯向上运行时,在电梯所处位置以下楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层所具有的脉冲数存放的寄存器所构成的队列。控制系统在电梯运行中实时排列的四个级陈列,为实现随机逻辑控制提供了基础。
    5.2采用先出队列
    根据电梯的运行方向,将同向的级队列中的非零单元(有呼叫时此单元为七零单元,无呼叫时则此单元为零)送入寄存器队列(先出队列FIFO),利用先出读出指令SFRDP指令,将FIFO个单元中的数据送入比较寄存器。
    5.3采用随机逻辑控制
    当电梯以某一运行方向接近某楼层的减速位置时,判别该楼层是否有同向的呼叫信号(上行呼叫标志寄存器、下行呼叫标志寄存器、有呼叫请求时,相应寄存器为l,否则为0),如有,将相应的寄存器的脉冲数与比较寄存器进行比较,如相同,则在该楼层减速停车:如果不相同,则将该寄存器数据送入比较寄存器,并将原比较寄存器数据保存,执行该楼层的减速停车。该动作完毕后,将被保存的数据重新送入比较寄存器,以实现随机逻辑控制。
    5.4采用软件显示
    系统利用行程判断楼层,并转化成BCD码输出,通过硬件接口电路以LED显示。
    5.5对变频器的控制
    PLC根据随机逻辑控制的要求,可向变频器发出正向运行、反向运行、减速以及制动信号,再由变频器根据一定的控制规律和控制算法来控制电机。同时,当系统出现故障时,PLC向变频器发出信号。
    5.结束语
    采用MIC340电梯变频器构成的电梯控制系统,可实现电梯控制的智能化,但由于候梯和电梯轿内的人到达各层的人数是智能电梯无法确定的,即使采用AITP人工智能系统,传输的交通客流信息也是模糊的,为解决电梯这一垂直交通控制系统的两大不可知因素,需要我们在今后的工作中去不断的研究和探索。

    1. DCS是一种“分散式控制系统”,而PLC (可编程控制器) 只是一种控制“装置”,两者是“系统”与“装置”的区别。系统可以实现任何装置的功能与协调,PLC装置只实现本单元所具备的功能。 
        2. 在网络方面,DCS网络是整个系统的神经,它是双冗余的高速通讯网络,系统的拓展性与开放性好。而PLC因为基本上都为个体工作,其在与别的PLC或上位机进行通讯时,所采用的网络形式基本都是单网结构,网络协议也经常与标准不符。在网络上,PLC没有很好的保护措施。我们采用电源,CPU,网络双冗余。
        3. DCS整体考虑方案,操作员站都具备工程师站功能,站与站之间在运行方案程序下装后是一种紧密联合的关系,任何站、任何功能、任何被控装置间都是相互连锁控制, 协调控制;而单用PLC互相连接构成的系统,其站与站(PLC与PLC)之间的联系则是一种松散连接方式,是做不出协调控制的功能。
        4. DCS在整个设计上就留有大量的可扩展性接口,外接系统或扩展系统都十分方便,PLC所搭接的整个系统完成后,想随意的增加或减少操作员站都是很难实现的。
        5. DCS性:为保证DCS控制的设备的,DCS采用了双冗余的控制单元,当重要控制单元出现故障时,都会有相关的冗余单元实时无扰的切换为工作单元,保证整个系统的。PLC所搭接的系统基本没有冗余的概念,就谈不上冗余控制策略。特别是当其某个PLC单元发生故障时,不得不将整个系统停下来,才能进行换维护并需重新编程。所以DCS系统要比其性上高一个等级。
        6. 系统软件,对各种工艺控制方案新是DCS的一项基本的功能,当某个方案发生变化后,工程师只需要在工程师站上将改过的方案编译后,执行下装命令就可以了,下装过程是由系统自动完成的,不影响原控制方案运行。系统各种控制软件与算法可以将工艺要求控制对象控制精度提高。而对于PLC构成的系统来说,工作量其庞大,需要确定所要编辑新的是哪个PLC,然后要用与之对应的编译器进行程序编译,后再用的机器(读写器)专门一对一的将程序传送给这个PLC,在系统调试期间,大量增加调试时间和调试成本,而且其不利于日后的维护。在控制精度上相差甚远。这就决定了为什么在大中型控制项目中(500点以上),基本不采用全部由PLC所连接而成的系统的原因。
        7. 模块:DCS系统所有I/O模块都带有CPU,可以实现对采集及输出信号品质判断与标量变换,故障带电插拔,随机换。而PLC模块只是简单电气转换单元,没有智能芯片,故障后相应单元全部瘫痪。
        8. 现在的PLC与DCS的功能已经差不多,DCS对网络和分布式数据库还要定时扫描有较强的功能,同时对运算和模拟量的处量比较拿手。
        9. PLC还分大、中、小、微PLC,其中的只卖几百块到2000块,点数也好少,大型的可以带数千点,运算能力与DCS差不多,但对多机联网功能较弱。现在两个技术平台都差不多,只是不一样。

    :应用PLC实现对自动监测系统的控制,可实现远程、脱机、普通电话线连接的自动监测,具有实时信号采集、集中图形显示、智能化数据处理、自动打印记录等诸多优点。这种系统功能齐全、性能稳定、价格比高,对远程以及其它无人值守的系统均有一定的实用和指导意义。
    关键词:监测系统 PLC 模块控制

    1          引言

    利用可编程序控制器(PLC)组成远程自动监测系统时,遇到的是PLC的选型问题。在选用PLC时,除把性、环境适应性放在外,还要根据具体应用场合尽量选用合适的可编程序控制器。

    关于可编程控制器选型的一般原则可从以下几方面考虑:

    (1) 明确控制对象要求。本系统要求改善信息管理,把PLC与上位微机的通讯能力远程I/O与微机通讯方式和手段作为选择的依据。PLC响应时间的影响因素有:输入信息时,CPU读解用户逻辑网络时间和时间。PLC的实时响应性还受到系统中慢仪器的限制,与上位机的通讯也将增加服务时间。
    (2) 功能选择要根据不同的控制对象确定。具体有:替代继电器、数学运算、数据传递、矩阵功能、功能、诊断功能以及串行接口。
    (3) 输入输出模块选择。输入/输出模块是PLC与被控对象之间的接口,模块选择得当否直接影响控制系统的性。
    (4) 存储器类型及其容量选择。小型PLC作为单机小规模控制使用时,由于工艺简单、程序固定,多数使用EPROM或EPROM加RAM。对于中、大规模的PLC,往往用于工艺比较复杂,且多变的场合,程序改变较多,因此一般都使用CMOSRAM存储器,且有后备电池,以便关机时保存存储信息。根据控制规模和应用目的,我们按下列公式进行估算:
    ① 代替继电器 M=Km[(10×DI)+(5×DO)]
    ② 模拟量控制 M=Km[(10×DI)+(5×DO)+(100×AI)]
    ③ 多路采样控制 M=Km{[(10×DI)+(5×DO)+(100×AI)]+(1+采样点×0.25)}
    式中DI为数字(开关)量输入信号;
    DO为数字(开关)量输出集中;
    AI为模拟量输入信号;
    Km为每个节点所占存储器字节数;
    M为存储器容量。
    我们还可在编完程序以后地计算出存储器实际使用容量。
    (5) 控制系统结构和方式的选择。用PLC构成的控制系统有集中控制、远程I/O控制和分布式控制等三种方式。
    (6)支持技术条件。在选用PLC时,有无支持技术条件也是重要的选择依据。支持技术条件主要有:编程手段、程序文本处理、程序贮存方式和通讯软件包。通讯软件包往往是和通讯硬件一起使用的,如调制解调器等。

    2 PLC构成的控制系统
    PLC构成的控制系统流程图如图1所示:


    图1 PLC构成的控制系统设计步骤

    此种设计方法与常用的继电器控制逻辑设计比较,组件的选择代替了原来的部件选择,程序设计代替了原来的硬件设计。
    我们采用一台PLC控制多台监测仪器的集中控制系统。该系统用于监测对象(仪器)所处的地理位置比较接近,且相互之间有一定联系的场合。如图2所示。



    图2 集中控制系统

    该系统采用的PLC(SZ-4)模块是:
    ① 8点DC12/24输入模块Z-8ND1
    ② 8点集电开路输出模块Z-8TD1
    ③ 4通道12位模拟量输入模块Z-4AD1
    ④ SZ毓CPU模块(2端口通讯、CCM协议、从机功能)以及S-20P指令编程器、0D通用操作面板等。
    I/O点数是指要求PLC能够输入输出开关量、模拟量总的个数,它与继电器触点适当留有余量。同时要注意尽可能简化I/O点数来降。
    用PLC构成的监测控制系统,有自动、半自动和手动三种运行方式。在进行完总体设计以及具体的硬件系统设计和软件系统设计后,除要分别对其进行调试外,对整个系统进行联合调试和试运行,反复进行硬件系统和软件系统的调整,使整个系统全部投入正常工作为止。

    PLC在监测系统中要完成信号实时采样、脉冲量累计、预警报信号监测与报警输出等,并通过各种传感变送器与传感器连接。PLC作为一种控制设备,用它单构成一个监测系统是有局限性的,主要是无法进行复杂运算,无法显示各种实时图形和保存大量历史数据,也不能显示汉字和打印汉字报表,没有良好的界面。这些不足,我们选用上位微机来。上位微机完成监测数据的存贮、处理与输出,以图形或表格形式对现场进行动态模拟显示、分析限值或警报信息,驱动打印机实时打印各种图表。
    系统的设计步骤如图3所示。


    图3

    3 控制软件

    PLC梯形图所用逻辑符号与继电器、接触器系统原理图的相应符号其相似,人们能熟悉该种编程语言。一般设计梯形图程序大都采用继电器系统电路图的设计方法。对于复杂的系统,在梯形图设计中采用大量的中间单元来完成记忆、联锁、互锁等功能,由于需要考虑的问题较多,分析起来非常困难,并且很容易遗漏一些该考虑的问题,且修改和阅读也很困难。根据功能图表设计PLC的梯形图程序,可以有效地解决以上问题,达到事半功倍的效果。
    我们在课题研究中下位机PLC采用梯形图来编制程序。
    下位PLC软件用来实现数据采集、脉冲计数转换、限值逻辑判断及声光报警输出、通信数据格式的转换。
    数据通讯与分离模块完成PLC与微机间数据和命令的双向传送,并将得到的数据按系统要求的格式分离成系统变量。
    显示模块将实时数据显示在屏幕上,以图形或表格形式分屏循环显示。在手动方式下可固定监视画面并可显示历史趋势图等。
    定时存贮模块按每十分钟将实时数据存贮到相应的数据库中,每天整理一次历史数据。
    系统维护模块可用来修改定值参数、口令及限值等。
    报警模块不论软件工作在何种方式下,一旦出现值,系统确认后并发出报警,屏幕上显示报警内容和地点,以便采取措施。
    为提高PLC及系统的抗干扰能力,在硬件配置与安装上,交流电源使用双层隔离,输入信号光电隔离,远离强电布线,模拟量信号和脉冲信号采用屏蔽线传递,采用放射性一点接地等措施,或减弱共模和瞬变干扰。
    在软件设计和编程上,加上一些抗干扰模块。
    系统从开始到运行的流程如下:
    A) 把CPU的动作方式设定为STOP方式,(不在STOP方式时)



    S—20P的操作和显示
    *在在线方式下,CPU处于STOP或TEST—STOP方式时可进行编程。
    *在显示程序时可进行编程。
    *平时,显示命令语不显示程序地址,必要时,用键显示程序地址
    S—20P操作次序


    编程器S-20P即使不和SZ-4 CPU模块连接,也可进行编程(离线编程)。在S-20P上编程时,通常是要连在CPU模块上进行(在线编程)。

    4 结论

    根据远程自动监测系统的要求,可以采用PLC来实现对系统的控制。以PLC为的自动监测系统下位机的控制设备,具有体积小、接线简单、测试,特别是可实现脱机工作。该系统运行高速、简单、,实现了上位机与下位机的互连和实时通讯任务。


    1 引言

    变频调速技术在我国水泥行业的应用日趋广泛。在生产工艺需要调速的许多环节,如回转窑、单冷机、喂料机、配料系统、风机、水泵等,以交流变频调速取代调压调速、滑差调速以及直流调速已成为一种必然趋势。
    在水泥粉磨工艺中,球磨机入磨物料粒度的大小,对其台时产量影响较大,预破碎工艺作为提高磨机台时产量、降低粉磨电耗的重要途径,引起了许多水泥企业的重视。根据工艺要求,水泥立窑放料每次持续2~3 min,间隔2~3 min,但目前几乎所有水泥企业中破碎机处于工频恒速运行状态,24 h连续运转,造成电能的浪费,并影响电机和破碎机的使用寿命。另一方面,由于破碎机具有十分大的惯性,不易频繁启停,所以即使使用变频器也难以解决系统制动时产生的泵升电压引起保护电路动作,使系统无法正常工作。
    针对系统的以上特点,本文设计了破碎机变频拖动PLC控制系统。利用变频器实现破碎机的变频调速和软启动;利用再生能量回馈单元克服破碎机制动过程中产生的过高的泵升电压;利用PLC实现系统的逻辑闭环控制,使破碎机的工作与立窑放料同步,实现间歇运行。从而在改善工艺控制质量的同时,大限度地节约了电能,降低了生产成本。现场调试和运行结果表明,系统运行,节电率可达60%以上。

    2 粉磨工艺流程

    水泥粉磨工艺流程如图1所示。

    图1 水泥粉磨工艺流程图

    熟料出窑后由输送机送入熟料库,熟料、混合材、石膏按重量配比后先入磨前提升机,再输送到回转筛。回转筛筛余粗粒入立式反击式破碎机,破碎后的物料再入提升机。回转筛筛下的细粒则入水泥磨。成品从旋风式选粉机细粉出口入成品库。立窑每放料一次,由窑口处的远红外测料仪检测到放料信号后,启动链式输送机输送物料,每次持续2~3 min,然后间隔2~3 min,开始下一次放料和送料。改造前破碎机由工频电源直接供电,在立窑不放料时则处于空转状态(空转率达50%),浪费大量能源。再者,破碎机工频运行时,其运行速度过高,即使放料时也存在严重能源浪费。因而对其进行变频改造能够产生的经济效益。

    3 系统硬件设计及工作原理

    本系统主要由变频器、能量回馈装置、可编程控制器PLC和远红外测料仪组成。现分别介绍如下。
    3.1 变频器
    水泥熟料破碎机属于大惯性、近似恒转矩负载,对变频系统有特殊要求。保留原交流电机,选用FRN37G9S-4CE型恒转矩负载变频器,它具有转矩矢量控制、转差补偿、电压AVR自整定以及负载转矩自适应等一系列功能。变频器接线原理图如图2所示,所有动作都由PLC控制。J10为能量回馈单元内部继电器,当能量回馈单元出现故障时,J10断开,使变频器THR端子off,可瞬间封锁U,V,W输出,变频器停车,并经PLC产生系统故障联锁和报警。

    图2 变频器接线图

    3.2 再生能量回馈装置
    由于水泥立窑放料是间歇运行状态,而且破碎机属大惯性负载,因而存在着调速装置制动时产生的再生能量的处理问题。通常的处理方法是将再生能量通过设置在变频器直流回路中的制动电阻放电以热的形式消耗掉,达到系统制动的目的。这种方式存在着电阻器放置的问题以及在制动时间长或需要连续制动运行的场合,电阻温升的限制问题。而能量回馈单元不存在以上限制,可进行连续的再生制动。我们选用富士公司的RHR 030-4型能量回馈装置,其额定功率为30 kW。相对电阻制动方式,本装置可大大节省空间,安装场所的自由度大,而且制动产生的热量也大幅度减低。
    图3表示变频器和能量回馈装置的连接方式。主回路部分由晶体管桥、限流电抗器组成。能量回馈装置和变频器的直流回路连接。电动机电动运行时,由变频器内部的整流二管从电网侧提供电能;电动机再电运行时,在变频器直流侧产生较高的泵升电压,当泵升电压660 V,启动能量回馈装置,通过能量回馈装置将再生能量回馈到电网侧。晶体管桥、电网是同步进行通—断的。限流电抗器2ACR的作用是限制回馈电流,平衡压差。晶体管开通时,限流电抗器2ACR承受直流电压和交流电压之差,在限流电抗器的作用下,装置以有源逆变方式将再生能量送回电网。“TA”为复位按钮,用于设备故障恢复后系统复位。另外,本系统还设有回馈过电流(OC)、交流熔断器熔断(ACF)、直流熔断器熔断(DCF)、直流过电压(OV)、交/直流欠压()、过热(OH)、P-N接反(NPN)等保护功能及相应的报警指示。

    图3 变频器和电源再生装置连接图

    3.3 可编程控制器PLC
    PLC因其性能、操作方便、程序修改简单及适应恶劣工作环境等特点深受水泥行业科技人员和维护人员的青睐。本系统选用富士公司的FLEX-PC NB0-P14型PLC,完成系统的逻辑控制及手动/自动、工频/变频转换和故障自切换等功能,控制灵活方便。图4是其输入输出外部接线图。当远红外测料仪到窑口出料信号,继电器J4吸合,经PLC延时30 s后输出Y10=on,启动变频器开始运行,破碎机开始工作。根据现场工况的需要,将变频运行给定频率设为43 Hz。当立窑放料完毕,继电器J4失电,PLC延时30 s后输出Y10=off,变频器按设定的制动时间减速停车。当遇到设备故障或特殊情况需要停车时,可按下停止按钮TA1。在回馈装置故障后,采用“高低速”控制方式运行,即有“放料”信号时,变频器运行于“高速”(43 Hz);无“放料”信号时,变频器运行于“低速”(38 Hz),系统仍然处于节能运行方式。此时若按下TA1,则PLC输入Y11=off,破碎机运行于自由停车状态,避免泵升电压过高使变频器出现故障。

    图4 PLC接线图

    另外,系统设有工频/变频运行切换开关K4以及手动/自动运行切换开关K5。在一般情况下系统要求变频运行,K4置于“变频”位置,X2=on,PLC输出Y12=on,系统进入变频准备状态;如果变频器故障,可将K4置于“工频”位置,X2=off,PLC输入出Y12=off,破碎机工频运行,可继续使用。K5用于决定破碎机的工作状态是连续恒频运行还是根据水泥窑送料信号断续调频工作。

    图5 PLC程序流程图

    4 PLC的程序设计

    PLC软件采用梯形图语言,实现各种逻辑控制、变频器启制动控制及手动/自动、工频/变频转换和故障自切换等功能。程序框图如图5所示。

    5 运行结果

    上述系统已于1998年8月在山东某水泥厂投入实际运行。系统根据送料信号自动实现启制动运行,破碎机运行速度连续可调。电机可以实现频繁软启动,基本无启动电流冲击,启动力矩足够。系统在变频运行条件下,若变频器突然故障,则自动切换至“工频”状态继续运行,同时发出声光报警信号(内部可选)。根据现场工况需要,将有放料信号时变频运行给定频率设为43 Hz,系统运行电流为27 A,运行电压280 V,改造后的系统平均每年耗电5.7万度。根据现场记录,系统在改造前工作频率为工频50 Hz,运行电流为32 A,运行电压400 V,平均每年耗电19.42万度。改造后的节电率为70.6%。该系统的优点如下。
    (1)利用变频调速技术改造了水泥熟料破碎机的拖动系统,满足了破碎机的低速、间歇运行特点,保证了工艺控制质量,节能效果明显,并有利于延长破碎机和电机的使用寿命。
    (2)利用能量回馈控制技术克服破碎机大惯性引起的泵升电压,有效地保证了变频器的运行。系统除了变频器和能量回馈装置所具有的20余种保护功能和故障自诊断功能外,还增设了电机过热、控制回路保护及报警。
    (3) 利用可编程控制器PLC实现了各种逻辑控制、变频器启制动自动控制及手动/自动、工频/变频转换和故障自切换等功能,使系统控制灵活方便,功能齐全。

    1 基于PLC的分布式控制系统多机通信方式的确定
    监控主机与PLC分机之间通过接入RS—232到RS—422转换器,构成了小型分布式控制系统,其体系结构如图1—1所示。
    在图1—1所示的结构中,通信过程采用命令及响应的传送控制方式[1],[2],如图1—2所示。图中,命令块及响应块的格式已由PLC生产厂家确定,监控主机处于主动,PLC分机处于被动。
    由于PLC采用周期扫描工作方式,因此,在通信波特率确定后,监控主机发送命令到正确接收PLC的响应所花费的时间具有范围确定性。据此,多机通信可采用监控主机定时循环发送命令及接收响应的方式,如图1—3所示。这种方式,一方面可避免通信总线发生数据冲突,另一方面可确保定时刷新监控主机中各PLC分机的实时数据。

    2 多机通信编程实现
    要实现定时循环命令发送及响应接收,其关键是正确设置及应用VB计时器控件和通信控件等的属性、方法及事件。
    2.1 计时器控件
    计时器控件属性Interval值的确定是通信的关键之一。为确保通信总线不发生冲突,Interval的值应大于通信命令发送大延迟、PLC大扫描周期及响应接收大延迟三者之和。其中,PLC大扫描周期可设为PLC监测时间,命令发送及响应接收延迟可根据通信波特率及传送字符的大二进制位数,用式2—1计算求得。

    传输时间=二进制位数/波特率    (2—1)

    2.2 通信控件
    VB系统调用通信控件的初始化程序设置满足前述确定的多机通信方式,其具体处理方法参见2.3节编程实例中的初始化过程。
    2.3 编程实例
    如图1—1所示结构,笔者研制了基本欧姆龙CQM1 PLC的小型分布式油料定量灌装系统。为实现现场无人值守发油,作业过程采用了领油人员在现场PLC控制分机键入领油密码,监控主机进行密码确认后,控制分机才能实施发油控制。实现该作业过程通信的命令和响应格式及部分源程序清单如下所示:
        1)监控主机读PLC实时数据
    若监控主机下挂分机号为00~07共8个PLC,PLC实时数据存放在IR1 16开始的1 0个字节中,命令块及响应块格式则如图2—1、图2—2所示。


        2)监控主机命令数据写入PLC
    若监控主机向PLCIR016开始的字节中写入命令数据,命令块及响应块格式则如图2—3、图2—4所示。
        3)源程序清单
    为实现上述的作业过程,对同一个PLC,上述的读写命令只能在不同的定时循环内分别发送:对写PLC命令码,只有在现场键入密码确认正确后才有效,直到写命令响应正确返回后才无效。为此,在程序中定义了全程变量cn及ct(16),初值为0。cn为PLC待处理分机号,每定时循环一次其值增一,当cn值大于分机号大值时cn=0。ct(0)为0#PLC读写命令码标志,为0时,读PLC命令码有效,为1时,写PLC命令码有效。另外,为了保存并产生命令响应接收处理事件,建立了名为Intext的文本框,其Visible属性为False,当Intext.Text属性改变时,将产生Intext_Change()事件。监控主机完成通信任务的部分源程序清单如下:
    ’初始化过程

    Private Sub bbbb_Load()
        ’确定通信端口
        MSComm1.CommPort=2

        ’设置收发缓冲区大小
        MSComm1.InBufferSize=1024

        MSComm1.OutBufferSize=1024

        ’与PLC一致设置通信格式
    MSComm1.Settings=″9600,E,7,2″

        ’文本方式通讯
        MSComm1.bbbbbMode=bbbbbMode Text

        ’读接收缓冲区全部数据

        MSComm1.bbbbbLen=0

        ’打开通讯端口
    MSComm1.PortOpen=True

      End Sub
      ’PLC响应块数据处理

      Private Sub Intext-Change()
        Dim Q,IAs Byte
        Dim Plcn,M1m As bbbbbb
        Dim err1,a,Fcsp,Fcsd As bbbbbb

        Dim Ls As Integer
    S=Intext.Text ’取响应码字符串
        err1=″ ″’清通信错标志

        If S<>"  "  Then

        ’计算FCS校验字符串长度
      Ls=Len(S)-4

        ’取返回FCS校验码,包括结束符
      Fcsp=Right(S,4)

        ’计算FCS校验码 Q=0
      For I=1 To Ls
            a=Mid$(S,I,1)

            If a<>"  "  Then

              Q=Q Xor Asc(a)

            End If

        Next I

        Fcsd=Hex(Q)
    If Len(Fcsd)=1 Then Fcsd=″0″+Fcsd

        ’计算FCS校验码与结束符合并
    Fcsd=Fcsd&″*″&Chr$(13)
        ’校验码判断并置错误否标志

          If Fcsd<>""Fcsp Then

            err1=″err″
          Else

            err1=″ ″
          End If

        Else
          err1=″err″

        End If
        If err1=″ ″And Mid(S,6,2)=″00″Then
        ’校验及结束码均正确后,取返回码分机号

          Plcn=Mid(S,2,2)

          ’根据分机号执行相应处理
          Selease Plcn

        ’0#PLC响应处理

          Case″00″

          ’取命令码

            M1m=Mid(S,4,2)

            Select Case M1m

          ’读PLC命令响应处理

            Case″RR″

            ’密码确认及PLC实时数据刷新

              ……

            ’密码确认有效后写PLC命令码有效

              ct(0)=1

          ’写PLC命令响应处理

              Case″WR″

              ’写命令响应正确,读命令有效

               ct(0)=0

              End Select

            ’1#PLC响应处理

            Case″01″

              ……

            End Select

          End If

        End Sub
        ’定时循环发送命令及接收响应

        Private Sub Timer1-Timer()

          Dim d,e As bbbbbb

          Dim b,IAs Byte

          ’读输入缓冲区并保存

          Intext.Text=MSComm1.bbbbb

          ’按PLC站号发送命令

          Selease cn

          ’组织0#PLC命令块

            Case 0

            Select Case ct(0)

              Case 0’读PLC命令码有效

                d=″@00RR01160011″

              Case 1’写PLC命令码有效

                d=″@00WR001600010000″
            End Select

            ’组织1#PLC命令块
        Case 1
          ……
    End Select
    ’FCS校验码计算

    b=0
    For I=1 To Len(d)
    b=b Xor Asc(Mid(d,I,1))

    Next I
    e=Right(″0″+Hex(b),2)

    d=d+e+″*″+Chr(13)
        ’命令块发送
        MSComm1.Output=d

        ’PLC站号加1

        cn=cn+1

        ’到达大站号

        Ifcn>7 Then cn=0

    End Sub

    3 结束语
    本文介绍的通讯处理方法已在油料装备样机中获得成功应用。




    http://zhangqueena.b2b168.com
    欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。 主要经营电气相关产品。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。