7
此系统属于食品机械的投入机的控制系统,系统包括触摸屏、可编程控制器、伺服、编码器、步进电机等,投入机主要功能是把呈带状脱氧剂或者是干燥剂,进行切断,然后按要求投入到包装线。在整个设备中,控制的主要要求是要切断准确,切断的位置偏差要在±5mm以内,而且要求速度可以很快,高速每分钟要达到170个;因为送料驱动使用的是步进电机,这样就会要求送料要有反馈,所以从动轮上安装了编码器做为反馈信号的来源,由于控制部件的组合以及于机械机构的联动配合问题,在调试时做了好多次软件和硬件的进后达到了使用要求。
2 食品脱氧剂投入机工艺
因为属于机械设备的系统,另外,要求精度也高一些,所以工艺过程相对复杂一些,主要要求如下:通过设定不同的料袋长度尺寸和间距,可以加工4种规格的产品;要求实际偏差不得过±5mm;要求在连续运行时的加工速度要能达到每分钟170个;要求速和步进的速度都能有四个档的调整;报警上下限设定;偏差微调功能,并且显示微调值;要求有两个外部联动功能,启动不同的联动信号可以达到包装线联动的功能;要求具有生产计数的功能,可实现计数有效无效的切换。工艺过程如图1所示
此设备的使用台达的机电产品比较多,整合性能比较好,为客户降低了大量的成本,是单一电控技术平台为客户降的很好的实例。针对国内食品机械的自动化程度较低的现状,还有很多自动化应用工程空间。食品脱氧剂投入机使用了台达的SC系列PLC来控制台达伺服系统,达到了使用要求。
这是一条整体呈长方形循环运行的产品装配线;采用PLC自动控制系统对整个生产流程进行控制,操作人员可通过选择运行模式来将整条生产线划分为1~3个小段,各段分别立及组合运行;可手动/自动切换运行;具有多种故障报指示。目前PLC采用艾默生制造的EC20型产品,该型产品指令丰富,编程方便,运行,兼容性强,满足电子行业生产的应用。
节 设备组成和功能简述
如下图1为生产线的平面布置图。
生产线设备构成和功能简述如下:
(1) 生产线由两条长长的平行传送带A和B作为其主体设备,生产用的工装台就放置在这两条传送带上,依次顺序运行到一个个装配测试工位。两条传送带A和B运行方向相反,因此,工装台就是从A这边去,从B那边回。
(2) 传送带A和B两端通过末端的单向移载传送带连通成环形的整体,工装台在运行到某一条传送带的末端,就通过末端的单向移载传送带转移到另一条传送带的起点。图1中左边的末端单向移载传送带简称“左一”,右边的末端单向移载传送带简称“右一”。
(3) 在传送带A和B之间,还有两条中间的双向移载传送带,左边的简称“左二”,右边的简称“右二”。通过选择运行模式,这两条双向移载传送带可以投入运行,在从而实现将生产线分解成1~3小段组合运行的功能。这样可以在生产线各小段分别安排不同工序流程的多种产品进行同时加工,提高了生产效率,满足多产品排产的要求。
(4) 图1中左边为控制柜,内装PLC及其外围输入输出电路,还有电机主电路的设备,包括变频器、空气开关、接触器等。
(5) 在传送带中,布置了很多的行程开关、微动开关,用于检测工装台运行的位置,转换成为开关量数字信号输入PLC控制器,使PLC能根据这些工装台的位置进行运行程序的运算和控制输出。
(6) 在装配测试工位上,还有一些手自动转换开关、脚踏开关、阻挡气缸释放按钮等,多是开关量数字信号输入(除了气缸按钮不是),可通过这些装置人工操作工装台和传送带的运行。
(7) 电机是由PLC输出的开关信号来进行启停控制的;气缸的升和下降是由电磁阀控制生产用压缩空气对气缸的进气和排气来实现的,而电磁阀则也是由PLC输出开关信号来控制的。
(8) A和B传送带的运行速度分别由两台变频器来调节速度大小,运行中采用定速运行,满足运行工艺要求。
二节 运行和控制流程说明
(1) 上电后A和B传送带并行反向运行,其速度由变频器面板设置,固定运行,调试成功后不需要改。
(2) 两端的移载传送带负责把工装台在两条A和B传送带之间循环移载。例如当工装台沿A线运行到“右一”前A1位置碰到检测的行程开关,则当“右一”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带起点B1时),“右一”将会进入单向移载程序。这时工装台继续运行到就位位置A1’触动行程开关,则“右一”气缸会升,把工装台起来,“右一”传送带启动运行,把工装台送到对面的B1起点,然后气缸放气,工装台放下。这就完成了一次单向移载。“左一”运行方式同上述方式的顺序是一致的。
(3) 在选择不同的小段组合工作运行模式时,如果两条传送带被分成两段或三段循环运行,则中间的两段移载传送带负责把工装分别在各自的循环路径上移载,实现分段运行。例如当工装台沿A传送带运行到“左二”前位置A3,则开始进行移载检测,如果“左二”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带出口点B3时),“左二”将会进入移载程序,这时工装台继续运13行到就位位置A4触动行程开关,则“右一”气缸会升,把工装台起来,“右一”传送带启动运行,把工装台送到对面的B4点,然后气缸放气,工装台放下。这就完成了一次A向B的工装台移载。而对面的工装台也可按相的顺序从B5点转移到A5点。
(4) 中间移载传送带根据各循环路径上工装到位的先后顺序来排队,先到先走,解决两边冲突的问题。
(5) 移载传送带通过气缸升和皮带滚轮传送来实现工装移载
(6) 现场有手/自动转换开关、脚踏开关用以实现手动操作。
(7) 整条线运行前先根据要求选择运行模式(即小段组合运行方式)。
三节 PLC及输入输出设备配置
控制柜是整个生产线的,其中关键的设备是PLC。生产线选用的是艾默生网络能源有限公司的新产品EC20系列的PLC及扩展模块。
EC20系列PLC是的通用PLC,内存指令容量达到8k;典型基本指令执行速度0.09~0.42μs,典型应用指令则为5~280μs;支持高达50kHz的高速输入和80kHz的高速输出;具有丰富的中断功能,有8路输入中断、3个定时、6路高速计数;支持工业标准的Modbus通讯网络,指令有浮点运算、PID、高速I/O、通讯等20类共243条;具有掉电检测和后备电池保持。可扩展多个模块,扩展模块有数字型、模拟型、温度型的模块。
EC20的编程采用界面友好的窗口软件,支持多种编程方式(梯形图、指令列表、顺序功能图),方便地监控和调试,可在线修改程序。
(1) PLC设备配置:
1个主模块EC20-3232BRA,继电器型输出,220VAC电源,32输入和32输出;
1个扩展模块EC20-0808ER,继电器型输出,8输入和8输出。
(2) 输入设备配置:
输入设备有——a.旋臂式行程开关,用于工装台的位置检测;b.限位开关,用于工装台、运动机械、气缸的到位检测;c.脚踏开关,用于装配工位上的人工操作;d.转换开关,用于操作模式的选择,在控制柜和装配工位上,控制柜上是整体运行模式的选择,装配工位上是手/自动切换。EC20输入端是漏型输入,因此输入设备采用EC20模块的COM点为输入接线回路端。
(3) 输出设备配置:
输出设备有 —— a.继电器-电磁阀-气缸,PLC输出点通过控制继电器来控制电磁阀,电磁阀再控制气缸的进气和排气,从而实现气缸的升和下降,继电器-电磁阀-气缸的组合是通过电气输出的接点控制气动操作设备的一种有效手段;b.继电器-接触器,PLC输出点通过控制继电器来控制接触器,从而实现电机的启停操作、设备的开关及其它电路的通断,继电器-接触器的组合是用小容量的输出点来控制大容量的电气回路的正确方法;c.继电器,PLC部分输出控制可通过继电器直接进行,如指示灯、蜂鸣器等小容量电路。
一般情况下要注意PLC的输出点不应用于直接接入和控制各种被控制电气回路,要通过继电器等元件来提高控制容量,以及起到隔离的作用。
四节 PLC的顺序步骤程序设计要点
环形生产线的运行,主要的流程都是按顺序进行操作的。大多数情况下工程技术人员采用的是梯形图的编程方式,也有少量采用指令列表的方式。顺序功能图的方式还不十分为广大技术人员熟悉。这里讨论的是采用梯形图编程时的顺序步骤程序设计。
在编程前,需要把设备的流程转变为顺序的逻辑流程(图)。二节中所讨论的流程,是一种操作的外在现象和设计思想,而程序的逻辑流程(图),则是准确到包含以下及其他未说明的设计:输入检测和受控设备的动作配合、步骤的准确衔接、操作的延时长短设置、操作的条件和限定、对人和设备保护防护设限、动
作先后判断及选择、故障的诊断和显示、故障后的保护和恢复等。
如果设计和编制程序时,不编制流程和顺序控制点,不设置顺序控制点的代表元件,则程序做出来的可读性、可维护性会很差。比如一台电机的启动,如果仅是套用一堆输入、延时、条件、限制逻辑在PLC输出线圈之前,其中没有一个代表顺序的触点元件,那么就是上述无序编程的典型做法。当程序点数增多,后就可能导致程序的编制难以控制,出错可能性大,调试非常困难、维护和调整难以下手。
生产线的编程,采用了两项主要的编程方法。
(1) 顺序步骤程序设计
顺序步骤程序设计,是将一长串流程分解为一个个步骤,每个步骤单完成一项逻辑运算和动作。在每个步骤上,都设置一个人为的标志位,用以明确表示当前运行的步骤,并通过此标志位限定设备的输出,达到使整个系统按照步骤严格运行的目的;并使得整个程序的条理清晰,各步骤逻辑简洁明确,有利于日后的维护和修改。
如图3所示,程序中采用了D100和D102两个32位长整型寄存器用来做累加比较。当工装台同时进入时图1中的A3、B3时(这个“同时”还是有些微差别的),如图3所示的程序,M200和M250都置位,A和B两边都进入了移载程序的步,4、5行就是对D100和D102进行累加,则当运行到6行时,D100和D102的差别比较就会出来了。在D100大于和等于D102时,M120被置位;在D100小于D102时,M121被置位。这样,通过累加和比较,会得出一个的判断并固定用两个标志位M120及M121来表示(实际上,这样编程就能得到“先到者”的结果,现场所谓工装台“同时”达到对PLC来说还是非同时的)。随后的编程则将两边的步骤可以分开来写,并且还能相互添加一些联锁,保证两边的步骤不互相干扰。
五节 程序设计用到的指令
程序中用到的指令有:
(1) 基本指令:LD、LDI,分别是梯形图中的常开点和常闭点。
(2) 基本指令:EU、ED,分别是“上升沿检测指令”和“下降沿检测指令”,单步循环内导通有效。
(3) 基本指令:OUT,是线圈输出指令。
(4) 基本指令:TON,是计时器指令。
(5) :DMOV,是双字指令。
(6) 整数算术运算:DINC,是长整数增一指令。
(7) 比较触点指令:LDD>、LDD=、LDD<,是长整数比较指令。
从上可以看出,电子装配生产线所用到的指令是比较简单的,数量种类不多,基本上是顺序和逻辑的编程。实际上,大多数的应用场合,即使是复杂的功能,也可能通过基本指令的组合来实现。适当应用的应用指令则可以使程序的可读性增强。
六节 艾默生PLC应用能力、优势
艾默生EC20的PLC在输入输出、指令、编程元件资源、中断、指令速度上,相对有前的性能;艾默生PLC以全中文化的工业自动控制平台为其基本设计思想,非常符合中国工控行业的规范和习惯,新老PLC用户可以很快地很容易地掌握艾默生产品的应用和编程。设计性能好,比如指令数量、中断源、高速计数等。
在这些场合应用中,由于生产线可能会长期运行,其性要求要较高;同时有可能会因为用户生产产品和工艺的变,对生产线可能会要求做修改、改造,因此PLC需要考虑生产线改造时有一定的扩展性。




一、概述
拉丝机是机械行业主要的加工设备之一,主要是将铜(钢)线加工成各种规格细线,一般由放线、水冷、收线及排线等部分组成,其中电气传动部份主要由放线电机和收线电机及排线电机实现。随着控制技术的成熟发展,PLC与变频器广泛被用于拉丝机设备。
客户拉丝机控制系统项目主要采用艾默生公司EC20系列PLC、EV1000变频器与TD3000变频器(见图1)产品来实现。该产品无论从控制算法的性,可实现性,还是从硬件平台的简易性,稳定性和实用性都具有明显的优越性。
二、系统控制组成及工艺要求
1、拉丝机的主要电气构成
一般拉丝机主要由放线电机与收线电机及排线电机构成驱动部分,随着收线卷径不断扩大收线电机的转速应相应的减小,以保线速恒定,我们可利用转矩变化来调节收线电机的速度。排线电机由于功率较小,直接由EV1000来控制。收线电机由TD3000控制,控制系统由EC20-PLC来实现。
放线电机与收线电机分别由两台变频器控制(见图1),放线变频器通过外部电位器调节转速,收线变频器先读电机实际需要转矩(可由人工电位器调整变频器参数F.E),再用相应转矩(变频器参数F3.07控制转矩限制 )来控制收线变频器。随着收筒卷径的变化转矩的大小信号也随着变化,我们根据运行规律及卷径的变化给予一定的补偿,使丝线保持一定的线速度。工艺示意图如下:
2、生产工艺
拉丝机有大、中、小与微拉机之分。对于不同要求,不同精度规则的产品,不同的金属物料,可选择不同规格的拉丝机械。对大部分钢丝生产企业,针对其材料特性,其精度要求和拉拔稳定度要求也高,其工作过程如下:
(1) 放线:金属或钢丝的放线速度,对于整个拉丝机环节来说,其控制没有过要求,对大部分拉丝机械,放线的控制是通过变频器驱动放线机实现的,可调节其频率速度。
(2) 拉丝:拉丝环节是拉丝机为重要的环节。不同金属物料,不同的产品精度和要求,拉丝环节有很大的不同,拉丝部分与放线部分共用一台电机,金属丝通过内部塔轮的导引,经过模具而逐步拉伸。
(3) 收线:收线环节的工作速度决定了整个拉丝机械的生产效率,也是整个拉丝机工作的重要工序。由PLC根据放线速度等条件,经过相应算法和补偿后,通过控制收线电机的转矩来实现。
(4) 换轮:后一道工序,工字轮卷满钢丝后,由人工停止系统并把其拿走,放置一个空工字轮,拉丝工序重新开始。
3、控制原理
操作面板和PLC负责设定和监控各个环节的参数,通过变频器的各个设定端子,直接进行各个拉丝控制变频器状态。收线电机的运行转矩通过主操控PLC输出给定。PLC根据上一级电机的运行速度来决定收线电机的运行转矩,为了保线速基本恒定以保金属产品的品质,拉丝环节电机的主控速度通过PLC综合上一级电机的运行频率给定,单主给定信号控制产品生产精度有限,刚开始生产时拉丝会较紧,后面阶段则可能较松。丝线每绕工字轮从左到右(或从右到左)转一趟,都会有个脉冲信号送给PLC,PLC根据此信号来检测卷径的变化。为达到生产要求,需要根据转径的变化来不断调整控制转矩。其余电器的逻辑控制部分可根据生产工艺来编写PLC程序。
主控制信号控制变频器时,考虑机械惯性,按一定的斜率输出,即通过一频率斜坡发生器产生变频器主控制信号。发生器的斜率可针对不同机械的特性而设定。它决定了当前拉丝机的动态特性,在整个信号给定中,当辅助信号所占比例较大时,转速将出现大的振荡而较难稳定,当辅助信号占比例较小时,其控制跟随速度较慢。因此须在主控PLC或变频器内部对辅助转矩补偿进行限幅,通过简单的比例关系,设定主给定信号和拉丝机本身给定信号的相应关系即可实现。
四、控制系统简介
该拉丝机系统全部采用的PLC+变频器控制方式。PLC部分为艾默生公司EC20系列32点PLC,其实时性强、性高、体积小且坚固。可设定控制参数,处理复杂的数据运算、存储及查询等功能,PLC内运行设定的逻辑控制程序。
主模块CPU自带2个异步串行通讯端口,其中COM0口主要用于编程调试,COM1口提供了RS232 和RS485电平,可与PC机、HMI、其它工控设备之间通讯和控制,内置通用的Modbus 协议,组成1:N网络。可提供Profibus 总线的从站扩展模块,组成Profibus 总线网络。本次EC20-32与TD3000通信采用的是485口,自由口通信协议。PLC根据一定的算法发出命令给变频器。变频器再以转矩方式来的控制拉丝机平稳地收线。
系统其余部分例如汽缸的夹紧、拉丝排线、运行指示灯、报警、启动停止、变频器控制与紧急停车等逻辑控制功能,可根据生产工艺编写出合适的PLC控制程序。
通信读写与逻辑控制部分都编写了不同的子程,在CPU主程序里直接调用即可(多可调用64个子程序)。PLC里还设置了相应的密码(PLC可提供3级用户密码权限)。保护用户程序的私密性。
五、通信及相关参数设置
在本系统中,EC20-PLC与TD3000通信采用自由口协议(也可选用MODBUS协议或Profibus协议,Profibus需另加模块)。在此总线协议上每段多32个站(多31个从站),可用中继器扩展至127个站(包含中继器)。TD3000 通过RS485总线接口接入PLC控制网。有关参数设置说明如下:
数据格式:1位起始位、8位数据位、1位停止位、无校验;(F9.01数据格式0)
波特率:9600 bps(F9.00波特率3)
通信地址:2(F9.02站地址)
通信方式:PLC/PC机后台为主机,变频器为从机。采用主机轮询,从机应答方式。
协议类型(可根据需要选用):
协议采用长短帧结构:
短帧——用于立传送自动控制系统所需的控制字、主设定和状态字、实际值;。
长帧——既包括控制字和状态字又含有涉及到操作控制、观测、维护以及诊断等的内容。
对于只需要控制变频器运行,而不需要读写功能码的场合,可使用短桢。对于需要对变频器功能码进行操作的情况,需要使用变频器长桢。
注意:使用通信控制变频器时,请先检查硬件是否连接好。同时,将变频器的通信数据格式、波特率以及通信地址设置好。详细自由口协议请参阅TD3000变频器串行通信协议。其余参数按电机有关性能设置即可,加减速时间可根据实际需要调整。
EC20 系列PLC 主模块提供了三种软件协议资源:编程口协议、MODBUS、自由口协议,用户通过在编程时设定配置信息,确定每个通讯口使用的通讯协议。
CPU自带2 个通讯端口,其中COM0 作为用户编程的接口,COM1口同时提供了RS232 和
[NextPage]
RS485 电平,用RS485口可与TD3000进行通讯和控制。通信设置:在工程管理器\系统块\通信口\通信口1\设置自由口协议:
波特率:9600 奇偶校验:不校验
数据位:8 停止位:1 帧间时:20ms
用户可采用ControlStar 集成开发环境进行EC20 系列PLC 的用户程序的编程、下载与上载、调试和监控,该编程环境提高了丰富的帮助信息,可选用梯形图、指令列表、顺序功能图等方式进行编程。
六、注意事项
在调试过程中主要应注意起动阶段与停车阶段应保持放线电机与收线电机同步起动。
1、启动阶段
启动变频器缓慢升速,如启动时出现断线现象说明收线电机启动过快,可相
应地调整收线电机的启动转矩及放线、收线变频器的加减速时间几个相关参数。
2、停车阶段
停机时放线、收线电机由当前运行频率按减速时间减速,使得放线、收线电机准确停车,这样便不会因为放线电机过快停车造成铜线拉断。如果在停机过程中出现断线可相应地调放线、收线变频器减速时间。
3 、通信问题
EC20-PLC与TD3000通信时,除了相应的通信地址、数据格式要对应外,其中数据接收的祯间时要设置(参考值20ms),与多台变频器通信时,波特率选9600。
七 、系统效果
拉丝机采用变频器控制可以根据丝线不同规格调节放线电机的速度,提高了产品精度和系统的稳定性。另一方面变频器控制实现了电机软启动延长电机使用命,也减少了电气维护量。
系统自投运以来,效果很好。大大减轻了工人的劳动强度,方便了维修人员检修。实时性、稳定性等技术指标满足要求,得到客户的肯定。