7
合肥西门子中国一级代理商DP电缆供应商
对电信运营商来讲,数字家庭是将公共网络和信息服务以家庭网关为连接点延伸到家庭,并通过家庭网络连接各种信息终端,为家庭提供集成的通信、、家电控制、防范、家居管理和信息服务等功能。数字家庭领域涉及的技术非常复杂,主要包括:联网技术、家庭网关技术、设备自动发现技术、远程管理技术。
信息和通信技术的飞速发展正在不断改变人们的生活,信息化和数字化越来越成为社会各个领域的。数字家庭概念应运而生,电信、家电、IT等行业对数字家庭有着各自的。对电信运营商来讲,数字家庭是将公共网络和信息服务以家庭网关为连接点延伸到家庭,并通过家庭网络连接各种信息终端,为家庭提供集成的通信、、家电控制、防范、家居管理和信息服务等功能。数字家庭领域涉及的技术非常复杂,主要包括:联网技术、家庭网关技术、设备自动发现技术、远程管理技术。
联网技术
家庭联网技术解决家庭内部多种终端之间的物理互联。由于家庭环境的多样性和复杂性,联网技术一直是数字家庭中非常活跃的技术领域,随着以IPTV业务为代表的多媒体业务和应用在家庭的普及,对互联技术在带宽性能、QoS保以及使用上提出了高的要求。目前在数字家庭组网中常见的互联技术主要有以太网、HomePNA、MoCA、PLC、WiFi等。
以太网技术在目前的网络世界里是一个非常普及的连接技术,可以提供从10M到100M甚至千兆的传输带宽。以太网上基于802.1p的QoS机制相对比较简单,通过家庭网关的配合可以满足语音、视频、数据多种信息流的QoS要求。以太网技术在目前的家庭设备互联中是简单也是普及的,但由于以太网对家庭布线有较高的要求,而且不具备移动性,所以在很多应用上受到相当的限制。
HomePNA是一种基于电话线传输的家庭互联技术,通过在双绞线上调制信号承载数据提供基于电话线的联网技术,HomePNA3.0提供了对同轴电缆的支持,2005年被ITU标准化为G.9954。目前新的标准HomePNA3.1理论速率达到320Mbps,支持同步、异步两种机制,使用同步可以获得好的QoS保证。总得来说,HomePNA技术能大可能重用家庭内部已有的布线系统来提供设备互联,大大减少了布线改造。HomePNA技术被AT&T采纳用于作为其家庭网络解决方案的主要互联机制。但作为一种有线技术,除了线缆的局限性外,还存在一些缺陷:传输延时大,在同轴线上与VDSL、数字电视的频段存在冲突等。
印刷开槽模切机就是模切机的其中一种,它将多色印刷,开槽压痕,模切成形的功能集于一身,用于纸品包装行业中的商标、纸盒、贺卡等的模切、压痕和冷压凸作业,是包装加工成型的重要设备。
一般模型
印刷开槽模切机一般由以下几个部分组成,
(1)送纸部:电控部分采用PLC、触摸屏和变频器。操作员可在触摸屏设定纸张的长、宽等相关数据,调整前挡板、侧挡板的位置,使得后续的各部定位准确,良好的印刷、模切效果。
(2)印刷部:由多个单色印刷部组成,均采用PLC与触摸屏控制。彩色原稿经过电子分色制版成反面图像,然后通过印刷机进行印刷,将水墨从印刷机网纹辊上转移到印刷版上,再将水墨从印刷版上转移到瓦楞纸板上。通过套色、叠色得到正面的图像,实现原稿样箱的复制。在触摸屏上可以调整印刷位置,印压滚筒的深度等。
(3)开槽部:对印刷好的纸板进行压线开槽的工序。各的位置通过触控画面可调。
(4)模切部:模切的相位可通过触摸屏调整设定,由PLC程序控制,配合高速脉冲计数,的开模效果。
技术难点
由印刷开槽模切机具备的功能来看,它对所采用的PLC提出了以下的挑战。
(1)位置检测比较多,位置信号是通过编码器给PLC的,因此对PLC的高速计数器的数量有要求。如送纸部有6个编码器,印刷部各站有8个编码器,开槽部和模切部各有7个。虽然反馈脉冲的频率不高,但一般计数器是无法胜任的。
(2)各站之间需要作数据通讯,如各站的故障信息,位置参数与当前值,生产参数,互锁信号等等。这些数据的收发,有的是主站与从站之间的,也有的是从站与从站之间的。因此通讯部分的控制程序设计是一个难点。
(3)各个站都需要控制变频器,一般用通讯方式控制。因此对通讯口的数量有要求。
(4)程序量较大。
主要有三种类型的MPPT算法:扰动-观察法、电导增量法和恒定电压法。前两种方法通常称为“爬山”法,因为它们基于如下事实:在MPP的左侧,曲线呈上升趋势(dP/dV>0),而在MPP右侧,曲线下降(dP/dV<0)。
扰动-观察(P&O)法是常用的。该算法按给定方向扰动工作电压并采样dP/dV。如果dP/dV为正,算法就“明白”它刚才是在朝着MPP调整电压。然后,它将一直朝这个方向调整电压,直到dP/dV变负。
P&O算法很容易实现,但在稳态运行中,它们有时会在MPP附近产生振荡。而且它们的响应速度也慢,甚至在变化的气候条件下还有可能把方向搞反。
电导增量(INC)法使用光伏阵列的电导增量dI/dV来计算dP/dV的正负。INC能比P&O准确地跟踪变化的光辐照状况。但与P&O一样,它也可能产生振荡并被变化的大气条件所“蒙骗”。其另一个缺点是,增加的复杂性会延长计算时间并降低采样频率。
三种方法“恒压法”则基于如下事实:一般来说,VMPP/VOC≈0.76。该方法的问题来源于它需要瞬间把光伏阵列的电流调为0以测量阵列的开路电压。然后,再将阵列的工作电压设置为该测定值的76%。但在阵列断开期间,可用能量被浪费掉了。人们还发现,虽然开路电压的76%是个很好的近似值,但也并非总是与MPP一致。
由于没有一个MPPT算法可以成功地满足所有常见的使用环境要求,许多设计工程师会让系统先*估环境条件再选择适合当时环境条件的算法。事实上,有许多MPPT算法可用,太阳能面板制造商提供他们自己算法的情况也屡见不鲜。
对廉价控制器来说,除了MCU本份的正常控制功能外,执行MPPT算法绝非易事,该算法需要这些控制器具有高的计算能力。诸如德州仪器C2000平台系列的32位实时微控制器就适合于各种太阳能应用。
电源逆变器
使用单个逆变器有许多好处,其中的是简单和。采用MPPT算法和其它技术提高了单逆变器系统的效率,但这只是在一定程度上。根据应用的不同,单个逆变器拓扑的缺点会很明显。的是性问题:只要这个逆变器发生故障,那么在该逆变器被修好或换前,所有面板产生的能量都浪费掉了。
即使逆变器工作正常,单逆变器拓扑也可能对系统效率产生负面影响。在大多数情况下,为达到率,每个太阳能电池板都有不同的控制要求。决定各面板效率的因素有:面板内所含光伏电池组件的制造差异、不同的环境温度、阴影和方位造成的不同光照强度(接收到的太阳原始能量)。
与整个系统使用一个逆变器相比,为系统内每个太阳能电池板都配备一个微型逆变器会再次提升整个系统的转换效率。微型逆变器拓扑的主要好处是,即便其中一个逆变器出现故障,能量转换仍能进行。
采用微型逆变器的其它好处包括能够利用高分辨率PWM调整每个太阳能板的转换参数。由于云朵、阴影和背阴会改变每个面板的输出,为每个面板配备有的微型逆变器就允许系统适应不断变化的负载情况。这为各面板及整个系统都提供了转换效率。
微型逆变器架构要求每个面板都有一个MCU来管理能源转换。不过,这些附加的MCU也可被用来改善系统和面板的监测。
例如,大型的太阳能发电场就受益于面板间的通信以帮助保持负载平衡并允许系统管理员事先计划有多少能量可用,以及用这些能量做什么。不过,为充分利用系统监测的好处,MCU集成片上通信外围设备(CAN、SPI、UART等)以便简化与太阳能阵列内其它微型逆变器的接口。
在许多应用中,使用微型逆变器拓扑可以显着提高系统整体效率。在面板级,效率有望提升30%。但由于各应用差异很大,系统级改善的“平均”百分比并没多大意义。
应用分析
当*估微型变频器在具体应用中的时,应从几个方面考虑拓扑结构。
在小型应用中,各面板有可能面临基本相同的光照、温度和阴影等条件。因此,微型逆变器在提升效率方面作用有限。
为使各面板工作在不同电压以获得能效,要求采用DC/DC转换器使各面板的输出电压统一于储能蓄电池的工作电压。为尽可能降低制造成本,可把DC/DC转换器和逆变器设计成一个模块。用于本地电源线路或连接配电网的DC/AC转换器也可被整合进该模块。
太阳能面板要互相通信,这会增加导线和复杂性。这是对在模块中包含进逆变器、DC/DC转换器和太阳能电池板的另一个争论点。
每个逆变器的MCU仍然有足够能力来运行多个MPPT算法以适应不同的操作环境。
采用多个MCU会加大整体系统的材料成本。
每当考虑改变架构时都会关注其成本。为满足系统的价格目标,为每个面板都配备一个控制器意味着该控制器的成本要有竞争力、外形较小,但仍能同时处理所有的控制、通信和计算任务。
片上集成恰当的控制外设以及高模拟集成度是保证系统的两个基本要素。为执行针对优化转换、系统监控和能量存储各环节中的效率所开发出的算法,也是必需的。
使用除可满足微型逆变器本身要求之外,还可处理包括AC/DC转换、DC/DC转换以及面板间通讯等整个系统大部分要求的MCU,可以减少因使用多个MCU所导致的成本增加。
MCU特性
仔细权衡这些高层次要求是确定MCU需要哪些功能的方法。例如,当并联面板时需要负载平衡控制。所选MCU能检测负载电流以及能通过开/关输出MOSFET升高或降低输出电压。这需要一个高速片上ADC来采样电压和电流。
微型逆变器设计没有“一成不变”的模式。这意味着设计者有能力和精神采用新技巧、新技术,特别是在面板间和系统间的通信方面。合适的MCU应支持各种协议,包括一些平常不会想到的如电力线通讯(PLC)和控制器局域网(CAN)等。特别是电力线通讯,因不再需专门的通信线路,所以可降低系统成本。但这需要MCU内置PWM、高速ADC和CPU。
对于针对太阳能逆变器应用所设计的MCU,一个意想不到但的特性是双片上振荡器,它们可用于时钟故障检测以提高性。能够同时运行两个系统时钟的能力也有助于减少太阳能电池板安装时出现的问题。
由于在太阳能微型逆变器设计中凝聚了如此多的,对MCU来说,其重要的特性也许就是软件编程能力了。该特性使得在电源电路设计和控制中拥有的灵活性。
C2000微控制器配备了可处理算法运算的数字运算处理内核以及用于能量转换控制的片上外设集,已广泛应用于传统的太阳能电池板逆变器拓扑中。新推出的Piccolo系列C2000系列微控制器是经济款,该系列的小封装只有38个引脚,但其架构、外设也得到增强,从而可把32位实时控制的好处带给要求低总体系统成本的微型逆变器等应用。
此外,PiccoloMCU系列的各款产品都集成了两个用于时钟比较的片上10MHz振荡器,以及带上电复位和掉电保护的片上VREG、多个高分辨率150ps的PWM、一个12位4.6兆次采样/秒的ADC以及I2C(PMBus)、CAN、SPI和UART等通信协议接口。图3显示了一个与基于微型逆变器的光伏系统一起使用的计算机系统配置。
图3:面向基于微逆变器PV的系统的MCU系统包含CPU、存储器、电源及时钟、外设。
性能是微型逆变器的关键特性。尽管Piccolo系列器件相比其它C2000MCU产品尺寸小、价格低,但其功能却有提升,例如它具有可为CPU分担处理复杂高速控制算法的可编程浮点控制律(CLA),从而使CPU处理I/O和反馈回路,在闭环应用中,可使性能提高5倍。
光伏电池的挑战
基于太阳能发电系统的缺点之一是转换效率。太阳能电池板能从每100mm2的光伏电池约1mW的平均电能。典型效率约为10%。光伏电源的功率系数(即在阳光一直照射的条件下,太阳能电池实际产生的平均电能与理论上可产生的电能之比)约为15%至20%。有多种原因导致这一,包括阳光本身的变化,如夜间消失,以及即使在白天,阴影和天气条件也常常导致光照减少。
光电转换为效率计算引入了多变数,包括太阳能电池板的温度及其理论峰值效率。对设计工程师来说,另一个问题是光伏电池产生的电压约有0.5V不规则变化。当选择能量转换拓扑时,这种变化会带来严重影响。例如,对低效的能量转换技术来说,它有可能消耗掉所采集到的很大一部分光伏电能。
为适应太阳不是全天24小时都照射这一事实,太阳能供电系统要包含电池以及给电池充电所需的复杂电子器件。当电池被集成到系统中时,电池充电需要额外的DC/DC转换电路,同时还需要电池管理和监控。
许多由太阳能供电的系统还与电网对接,从而要求相位同步和功率因数校正。还有许多需要复杂控制的使用环境。例如,内置故障预警机制以防范公共电网的停掉电等事件。这些仅仅是设计工程师要考虑的头等大事。



引言
在现有的工业监控系统中,常用的信息传输方式有:数字微波、数传电台、有线光纤、有线电缆等,数字微波和数传电台将受到传输距离及频率许可的限制,而有线光纤和有线电缆的网络成本较高,不适合监控点非常分散及传输距离较远的情况下使用。
针对监控对象分散、各监控节点间缺乏联系、监控信息量相对较少,实时性要求较低等特点,CDMA 1X提供了一种很好的信息传输方式。
CDMA 1X愿意是指CDMA 2000的阶段(速率IS-95,2MB/s),可支持308kb/s的,网络部分引入分组交换,可支持移动IP业务,是在现有CDMA IS-95系统上发展出来的一种新的承载业务,目的是为CDMA用户提供分组形式的数据业务。
由于CDMA 1X采用了反向相干解调,快速前向功控、发送分集、Turbo编码等新技术,其容量比IS-95大为提高,从理论分析结果来看,如果用于传送语音业务,CDMA 1X系统的总容量是IS-95系统的2倍,如果用于传送数据业务,CDMA 1X系统的总容量是IS-95系统的3.2倍,CDMA 1X理论带宽可达300kb/s,目前的实际应用带宽大约在100kb/s左右(双向对称传输),在此信道上提供TCP/IP连接,可以用于Internet连接、等应用。
2 基于CDMA 1X的无线通信
2.1 组网方案
无线系统一般由数据业务、通信网络和数据终端组成,综合考虑业务数据量、性、性、网络状况与成本等因素,采用下述组网方式:通信服务器以公网固定IP或固定的域名接入Internet,CDMA数据终端单元(DTU)上电后,主动与通信服务器建立连接,如果通信服务器没有固定IP,可以通过安装花生壳软件获得固定的域名,此方案具有、通信质量稳定、性适中、运行等特点。
2.2 无线原理
根据上述组网方案,数据的上行传输原理如下:
(1)下位机通过RS232串口将数据传给DTU;
(2)DTU将数据打成TCP/IP包,发送到无线网络;
(3)TCP/IP数据包经系统分组数据服务节点,传输至Internet上并且去寻找在Internet上的一个的数据服务(通信服务器);
(4)通信服务器将数据传给上位机并存储到历史数据库。
数据的下行传输与上述过程相反,不再赘述,系统通信结构图如图1所示。
3 系统设计
3.1 上位机设计
上位机包括实时监控系统和历史数据库两部分。
实时监控系统选用Wonderware公司的InTouch系统,主要实现以下功能:系统管理功能;数据处理功能:包括数据查询功能、数据存储功能、数据定时上报功能;告警功能:包括实时响应功能、告警联动处理功能、告警设置功能、告警确认功能、告警存储功能,操作控制功能,历史数据库选用Wonderware公司的Industrial SQL Server,主要实现以下功能:数据统计、报表功能、历史数据查询功能、历史数据曲线图、打印功能。
3.2 下位机设计
下位机选用ABB AC31系列PLC,包括CPU模块和I/O模块,CPU接收一个或多个监控对设备的操作控制命令,通过I/O模块对有关设备执行相应的操作控制动作,并向监控返回操作结果,下位机主要实现以下功能:数据采集功能,数据查询功能,定时上报功能,操作控制功能。
3.3 CDMA中断
CDMA中断选用深圳宏电技术开发有限公司的CDMA H7710 DTU该终端具有如下特点:
(1)H7710 DTU直接提供RS232/422/485接口,为用户的数据设备提供透明、全双工、对等的通道。
(2)普通GPRS/CDMA Modem通常需要附着在PC机上上网,利用PC机的资源进行数据收发和协议转换,H7710 DTU内置自动网络连接和协议处理模块,后台计算机支持。
(3)H7710 DTU可以实现点-点、点-多点、-多点的对等,传输时延一般小于1s。
(4)H7710 DTU一开始就能自动附着到GPRS或CDMA网络上,并与您的数据建立通信链路,随时收发用户数据设备的数据。
(5)H7000移动数据通信可以不依赖于运营商交换的数据接口设备,通过Internet网络随时随地的构建覆盖全中国的虚拟移动数据通信网络。
CDMA H7710 DTU在使用前设定出事参数:CDMA 1X网络登陆用户名和密码,通信接口参数、通信服务器的固定IP地址和端口或者通信服务器的域名、DTU的在线工作方式等等。
3.4 通信服务器的设计与实现
通讯服务器是整个系统的枢纽,主要实现不同协议之间的,通信服务器的设计基于OPC标准,OPC可理解为过程控制的对象连接和嵌入(OLC for Process Control)是在微软操作系统下开发的用于应用程序接口的一种技术,基于Client/Server模式,为了实现整个系统的通讯,在通讯服务器上需要装3个软件;Wonderware公司的OPCbbbb,IOServer公司的IOServer,CDMA Server。通讯服务器的工作过程及各软件之间的管理如图2所示。
下面分别讲述通讯服务器上的3个通讯软件的功能及应用。
3.4.1 OPCbbbb
OPCbbbb是工作在bbbbbbs平台下的应用软件,主要作用是通过协议转换来实现OPC服务器和InTouch吴志剑的。OPCbbbb可以与现地或者远程的OPC服务器端软件(如IOServer,RSLinx)进行连接,他将InTouch的命令转换成OPC协议然后发送到OPC服务器端软件,并从OPC服务器端软件读取数据,返回到InTouch。同样,OPCbbbb也可以连接到现地或者远程的InTouch。
3.4.2 IOServer
IOServer的作用是实现不同协议间的,IOServer支持以下14种协议:Modbus协议,AB协议、ASCII协议、Courier协议、DNP协议、GE协议、HR6000协议、IEC103协议、KingFisher协议、LoopBack协议、Melsec协议、Omron协议、TI505协议、UCA2协议。在本系统中,ABB
PLC采用的是Modbus协议、因此,IOServer从CDMA Server上读取ABB PLC的数据,并转换成TCP/IP协议,传送给OPCbbbb。
IOServer的配置主要包含以下3部分:
(1 )Board(接口配置):IOServer支持多种接口,其中常用的是TCP/IP和串口,在配置接口的时候,需要定义所连接设备的协议;
(2 )OPC Explorer:提供内部测试的平台,也可进行数据观察和监视。
(3 )OPC Gateway:允许基于不同协议的各OPC服务器之间的,以及IOServer和某个控制单元之间的。
3.4.3 CDMA Server
在本系统中,使用VisualC++6.0编写CDMA Server软件,CDMA Server作为整个系统的通讯枢纽,包括两部分功能:与IOServer进行通讯,与DTU进行通讯。
CDMA Server与IOServer的通讯基于SOCKET编程,采用TCP/IP协议进行传输,需要设置端口和IP地址,IOServer通过此端口和IP地址与CDMA Server建立通讯。
CDMA Server和DTU之间的通讯使用开发包中动态库wcomm_dll.dll,该文件包括和DTU通讯所需要的全部API函数,包括服务的启动、数据发送、数据接收、关闭服务等。
OPC Server与DTU的通信设计是基于开发工具包的用户程序接口,即动态链接库cdmagprs.dll,该库包括了与DTU通信所需要的全部API函数,例如:
start_gprs_server:该函数用于启动底层服务,服务启动后和DTU通讯,启动该服务后,主窗口中要有响应消息的函数,以便和底层服务通讯。
stop_gprs_server:停止服务;
do_read_proc:读数据。底层服务接收到DTU发送的数据后,会向启动服务函数中的DSC的窗口发送消息,该窗口中的消息响应函数应立即调用读数据函数将DBU发送过来的数据读出;
do_send_user_data:向DTU发送数据;
da_close_one_user:关闭一个DTU终端,令其下线;
do_close_all_user:关闭所有的在线DTU终端,一般停止服务前执行该API。
由于bbbbbbs基于消息驱动的,底层服务接收到远端DTU的数据后,会向启动函数的窗口发送一个消息,因此,我们可以在程序中定义一个消息响应函数来处理与DTU的,消息响应函数中,通过调用动态链接库中的数据接收函数和数据发送函数来传输数据,当结束后,调用关闭服务函数来结束通讯。
其中上位机主要根据控制规律进行计算、处理、逻辑判断和存储,实现转台控制的集中监控、综合管理,主要实现系统实时在线综合管理、性能检测、保护及监控管理以及数据采集与处理功能。在转台系统运行过程中,上位机完成转台系统性能参数的图形显示、数据处理,得出系统工作所必需的指令和参数。由于工业控制计算机抗震性和抗干扰能力强,工作性高,目前被广泛用于现场数据采集处理及伺服系统的上位计算机。本系统采用研华工控机作为上位机,集中控制多套伺服系统。
下位机是转台控制系统的直接控制级,构成转台内、中、外框三个立的伺服控制回路。下位机完成伺服控制系统的数据采集与处理、控制律的实施并实现与上位机实时通信。本系统中下位机由PMAC充当,PMAC控制卡通过标准总线与上位机相联,码盘等测速或测角机构通过PMAC上的DD接口传递位置、速度等信息,经PMAC处理,并按上位机给出的控制要求通过PMAC上的DA接口输出合适的电平信号控制转台上的电机运动,从而构成控制闭环。
另外,PMAC通过总线向上位机交换转台位置、运行等信息,并从上位机获得程序运行所需要的命令,如程序开始、结束和系统复位等。由于PMAC自身的特性,使诸如码盘信号换算、行程限位等功能可以很方便地实现,且PMAC的可编程特性使系统具有很强的扩展能力,整个系统构成要比普通的上下位机系统显得简单实用。而PMAC的使用也使系统具通用性,只需作少量调整即可应用于其他设备。
4 运动控制系统软件设计
本课题中下位机选用PMAC运动控制卡。该运动控制卡是现在使用的比较普遍、性很高的多轴运动控制器,它的硬件是DSP与FPGA,提供运动控制、逻辑控制、数据、信息处理、同主机交互等强大的资源,其大的特点是软硬件的开放性。PMAC可以通过执行软件(PEWIN)实现各种控制的基本操作及系统调试,从而实现执行运动程序、执行PLC程序、伺服环新、资源管理等主要功能。
对于转台的控制系统,系统功能实现实际由工控机和PMAC卡共同分担完成,运动控制软件包括2个部分:工控机主要完成人机界面、系统任务管理、视频显示、方位角度计算与发送等功能;MAC卡主要实现所要求的运动控制、I/O管理、PLC等功能。
4.1上位机控制软件的开发
对于转台控制系统上位机的工控机,基于bbbbbbsXP操作系统,利用VisualC++6.0开发系统开发了转台运动控制系统软件,具有视频显示、转台控制方式选择、转台运动状态显示、GPS信号显示、异常报警等功能,利用下位机封装好的各类运动控制函数和参数设置功能函数,在上位机软件开发时实现“下位机透明”式的开发,使上位机界面开发以及和其他功能集成时无须关注运动控制层的细节,从而着重于其他方面功能的实现。
4.2下位机控制软件的开发
下位机控制系统中PMAC卡上集成了丰富的运动控制指令和算法,为转台的运动控制提供了方便,对于转台控制下位机软件的开发,充分利用PMAC卡的开放性,主要包括位置伺服模块、PLC监控模块等,位置伺服模块可通过设置PMAC卡内部PID参数实现,PLC监控模块用于实时提取转台运行状态信号,包括当前的运行方位、运行速度及是否都达到位置限位等,主要包括PMAC的设置和PMAC运动程序的编写。
4.3 工控机与PMAC卡的通信软件
外部信号通过计算机串口送入工控机,转换成方位角度后送入PMAC卡,转台的运动方位信息实时通过工控机进行显示,同时,各种控制指令也是通过工控机传给PMAC卡,从而实现各种控制目的,本系统利用PMAC卡提供的PCOMM32通信套件,采用动态链接库方式,便于上下位机软件的模块化和封装并使得上位机编程环境的选择加自由。
本课题以PMAC卡为对三轴转台的硬件及软件进行了设计,通过PMAC构建转台控制系统,具有实时能力强、系统稳定、易操作等优点。将PMAC作为转台的控制器在理论和实际上都是可行的,使系统设计和应用程序的设计大大简化,设计者只需要较少的代码就可以达到目的。另外,当整个系统投入使用并进入维护阶段,采用PMAC这样的标准部件也减少了软/硬件维护的困难,作为三轴转台的改造设计是一个非常好的方法。