产品描述
苏州西门子中国代理商交换机供应商
摘要:随着测试和测量领域中计算机技术的不断渗透,仪器系统中将多地采用目前流行的总线类型,如通用接口总线(GPIB)和串行接口总线,以及新近出现的以太网、USB和IEEE 1394等通信总线,本文介绍这个领域的发展趋势。
采用结构化的仪器系统可以很方便地将目前甚至将来的I/O总线集成在一起,因此可以很好地保护已有的软硬件。提供这种通用结构的关键在于软件。利用一些工业标准软件如虚拟仪器软件结构(VISA)和可互换虚拟仪器(IVI)可以将不同的I/O总线集成到一个系统中,并提供抽象层以升级到新的总线,而这一切对用户来说是透明的。采用这种结构不仅可以使先期投资继续发挥效能,还能在了解低层细节的基础上充分利用。
利用现有常用总线来拓展连接性能
GPIB和RS-232串行总线一直是多年来被广泛采用的通用I/O接口总线。仪器厂商在他们数千万的仪器仪表中应用GPIB接口(主要用于仪表控制设备)的历史已经有几十年。调制解调器和打印机中广泛应用的串行通信规范RS-232也同样被广泛用于各种仪表控制设备。这两种接口的不同点在于:采用GPIB总线的每个控制器多能够控制14个仪器,而通过RS-232接口只能连接和控制一个设备。
新型总线的优越性能
近越来越多的立式仪器开始采用以太网、USB或IEEE1394作为可选的通信接口。基于以太网的仪器控制设备利用了这种总线的的优越性,比如可以实现对仪器的遥控,甚至不同用户可以在不同地点实现对仪器的共享访问。通过以太网实现对仪器的控制已有的协议(VXI-11)可供使用。
每种总线都有其特点。USB总线是一种即插即用型总线,主机可以对连接到这种总线上的设备进行自动检测和自动配置,因此通过USB接口可以方便地将一些外围设备如键盘和鼠标等连接到PC机上。由于目前USB接口已经成为PC机的标准配置,因此应用人员再去购买的控制器。另外值得一提的是,由于通过USB进行仪器控制还没有现成的协议可以利用,因此需要从仪器制造商处获得专门的处理设备。
IEEE1394是苹果公司开发的一种串行总线,虽然微软的视窗98/2000支持该总线,但Inbbb的PC外围芯片目前仍未配备支持该总线的电路,因此在大多数情况下PC机仍要采用IEEE1394控制器。IEEE1394行业协会已经定义了通过1394控制仪器所需的整套协议。
保护投资的桥
由于在采用新型总线方面仪器制造商总要比PC制造商来得慢,因此除了在仪器上直接增加新型总线外,桥的应用成为可行的二种选择方案。桥本身是一种硬件产品,它提供二种总线类型,主要完成总线间信号的转换,因此原有设备利用桥就能方便地提供新型总线功能。桥能保护人们在硬件、软件方面作出的投资,并能节省大量时间,因此成为一种较佳的透明解决方案。举例来说,如果希望用“以太网到GPIB总线桥”替代GPIB插入式控制器,那么原来用于GPIB插入式控制器的那些代码仍可以不作任何修改地加以利用。
创建灵活的软件结构
A. VISA标准基础知识
为了实现工业化软件的兼容性,VXI即插即用系统联盟开发了于I/O软件的标准VISA。当该联盟在1993成立之时,业界就存在许多与VXI、GPIB和串行接口有关的非标准实用商业I/O软件。对于这些总线来说,VISA提供了一个公共的基础平台,用于高层多供应商系统软件组件的开发、传送与互通,比如仪器驱动器(driver)、软面板以及应用软件等。虽然VXI联盟定义了这样的VISA标准,但在实现具体的VISA程序的过程中,不同供应商有不同的实现方法。
由于VISA定义了用于仪器通信的应用编程接口(API),因此当需要升级到新的接口总线或采用混合I/O系统时,可以很好地保护软件方面的已有投资。比如NI-VISA标准就不仅能兼容VXI、GPIB和串行总线,还可兼容PXI和以太网接口。
B. 利用通口模型简化VISA实现
过去的模型存在一个问题,那就是每个供应商设计的VISA标准都是针对厂商自身的控制器开发的,它们不能用于其它厂商的控制器产品。另外,为了适应新接口的需要,不得不安装一套完整的VISA库,有时,来自于不同供应商的VISA库就不能兼容已有接口。
为了解决上述问题,国家仪器公司(NI)采用“通口(passport)”插入式模型重新开发了VISA标准,它对每种不同的总线定义了不同的通信端口或通口。VISA库包含各种流行的高层VISA API,NI通口模型负责从VISA库中分离出用于连接总线的通信装置。采用这一模型后,每种不同的总线都需要通过相应的通口才能连接VISA引擎,因此在不影响现有接口的情况下能方便地提升新型总线的兼容性。
另外, 利用这一模型能够实现多供应商和多接口系统。与其它仍依赖于组件对象模型(COM)技术的解决方案相比,多平台ANSI-C技术仍将是这种通口模型的基础。除了VISA目前所支持的接口类型外,NI公司承诺将在VISA中增加所有将流行于测试和测量设备的其它兼容性总线接口。
C. IVI的多功能性
IVI组织正在积为建立在VISA基础上的仪器驱动器(反映了底层通信细节的软件模型)定义合适的标准,以期提供一个功能强大的易用仪器通信协议。这些根据基本标准创建的仪器驱动器包含高层函数,如配置测量或读取波形的函数,这些函数内部已包含了底层的VISA读写功能。结合VISA的功能特点,IVI提供了一种功能强大的体系结构,在此基础上能够较好地实现多供应商多平台的混合I/O测试系统。
D. 软件架构提高互连的性能
随着多供应商多接口系统的普遍应用,人们急需一种能够轻松处理这些系统以及能大化软件复用的软件架构,而基于VISA的软件架构恰好能满足这方面的要求,并具有以下优点:
1. 可兼容多种连接总线,能方便地设计出包含新旧总线在一起的系统。另外,插入式模型还能提供升级到未来总线的途径,其中也可能包括蓝牙技术。
2. 能够有效地保护硬件投资,并且利用桥产品顺利地将现有硬件合并到原系统中去。采用多接口结构后,换所有仪器或等待它们提供新型总线功能就能轻松地使用新型总线技术。
3. 保护系统中技术含量的软件投资。在应用桥产品升级到新的控制总线后,可以在不修改代码的情况下控制原有设备。对于仅工作于新型总线的仪器来说,采用VISA的系统仍能照常工作。
4. 再学习过程。虽然采用新型总线对仪器进行编程可能需要设计人员学习全新的API技术,但类似的API仍能与VISA通口模型一起工作。
5. 能兼容目前的仪器操作平台。VISA API目前能很好地工作于bbbbbbs、Linux、Macintosh、Solaris等多种平台。
本文总结
未来的测试系统将由测试硬件加上混合I/O接口组成。在系统的有效寿命期间,保护软硬件投资的途径就是采用一个稳定的能够与多供应商、多接口和多平台系统协同工作的软件架构。
1 引言
我厂#705机组DCS系统系2004年大修中DCS系统及DEH一体化改造完毕,DCS及DEH系统采用和利时公司SmartPrO3.1.3软件系统,硬件为和利时公司MACS TM系统硬件,系统改造后,运行稳定。但是系统在2006年5月下旬#705机组DCS系统频繁出现死机!
2 故障简况
系统在2006年5月25晚上锅炉制粉盘死机,运行人员看到显示画面数据变化迟滞,切换画面后正常。
系统在2006年5月30下午下班后,接到运行打来电话,锅炉主盘死机,甲引全开。在现场发现甲引开接点一直发出,运行人员切换画面及重新登录无效,热工人员对其接点进行切换后,重新操作恢复正常。
下面是#705机组DCS系统频繁出现死机(时间30s不等又自行恢复)现象(表1所示):有时一个站数据显示滞缓、操作不灵活、送引风调节中某个出现指令一直发出、严重时整个操作员站短时数据中断,严重影响了我厂的机组运行,下面是处理的整个过程。
表1 系统死机记录
3 故障分析
硬件角度:通过以上现象主要是人机接口故障,对于单台操作员站有问题,主机有可能有问题,主板、硬盘、通讯网卡等,通过检查发现有三台机主板出现问题。
通信网络角度:一般容易发生在接点总线、就地总线处、或地址标识错误所造成。
系统角度:参数设定、系统操作不合理、服务器出现故障等原因。
着重围绕上面几个方面进行查找故障点:从死机范围及影响设备来看,分析是主机问题,但是对于6月9日整个系统出现死机,怀疑是服务器问题,笔者将这一情况反映厂家。厂家开始怀疑是服务器设置或存在病毒,根据现场情况,DCS有很严格的规定,不准任何人在DCS上拷贝,与MIS系统连接是单向传输,中间也加了隔离装置,病毒不太可能;设置参数经厂家确认后也没有问题;后还是把问题集中了服务器上,对趋势存在断点问题进行了共同分析,主服务器成了后故障点。
4 故障处理
5月25日锅炉制粉盘出现死机后,热工人员发现主机故障,换了一台主机,对系统进行检查后,将系统重新启动,系统运行正常,并将这一情况反映至DELL厂家进行修复,DELL厂家6月2日将主机修好。
5月29日锅炉运行发现锅炉主盘系统风烟数据全部显示#COM后,大约30s后,系统数据显示自行恢复,但是乙侧引风机液偶调节关指令一直保持,液偶全关至0,运行人员及时调节甲侧设备保住机组稳定,之后,热工人员对主盘进行检查,将这一情况反映厂家,厂家分析系统参数设置有问题,将参数检查无误,反馈给厂家。得到厂家答复:在SmartPrO3.1.3中有这样问题,系统死机时,如果操作的话,在恢复后,系统会一直记忆这个指令,造成全或全关现象,解决这个问题只有对系统进行升级。由于系统运行,故对发电分场监盘人员交代:在系统出现数据滞缓时,不要进行操作,待系统运行画面正常时再进行DCS系统进行操作。
6月4日又出现一次5月29日同样现象,但设备为甲引风机液偶全开,运行对设备进行关联调整,热工处理检查后系统正常,判断还是系统通讯方面的问题。由于出现死机现象与主要集中在#12IO站和锅炉控制主盘,是不是#12IO站主控有问题呢,但查找的相关资料没有反映出这一问题。
6月7日早上7点多又出现一次5月29日同样现象,这次设备为甲引风机液偶全开,开度100%,热工检查发现主盘主机有问题,将主机进行了换,我们也对主机加强了检查力度。
6月8日又出现两次死机,连续出现三次同样故障,严重威胁机组运行,和北京和利时厂家联系,根据厂家的提示,笔者对服务器及#12IO站进行检查,发现主服务器右下方的三色球有好几个,厂家怀疑在运行中主从服务器有切换现象,征询能否主控制进行切换,并且对锅炉主盘主机与打印站的互换,下午四时热工对#12站系统进行切换。
6月9日运行反映甲送风机在系统死机后,关指令一直发出,一次风压下降800Pa,系统的不稳定严重威胁到机组的正常运行,热工人员对系统检查后,对主服务器进行重新启动,发现趋势有断点,列表在后,怀疑的集中为主服务器。一直待到19:00也未发现其他情况,晚上20:00又接到运行电话,DCS系统出现两次死机,这次不是锅炉主盘一台,而是操作员站全部死机,赶往现场,系统已经自行恢复正常,这次暴露出来主服务器肯定存在问题,大家对运行监视组合进行调整,锅炉主盘比较重要,制粉盘近期运行较好,将锅炉主盘与制粉盘交换位置;与锅炉主盘商量让其到制粉盘监盘,将锅炉主盘退出进行重新新建工程,系统检查无误后,在运行登录,将与系统关联的GPS系统退出。并同时联系厂家尽快到现场解决问题。
厂家6月10到厂后,对锅炉主盘进行检查未发现异常,同时对换到打印站的主机进行,发现计算机设置有不一致的地方,并对其进行了处理。询问6月6日~6月9日有11次的10~35s的问题(表2所示),厂家分析服务器有问题,我厂有服务器备件,提议换主服务器,厂家认为没有必要,软件问题进行重装就可以解决,系统升级后,这方面的问题就不存在了,所以没有换主服务器。对系统升级,解决系统死机期间操作的指令一直发出问题。
表2 趋势断点记录表
机组6月13日停机调峰,利用这个机会配合厂家对服务器进行重新安装,并对系统进行了升级为SmartPrO3.0.3+SP2,在中试对DCS系统测试后,于6月16日将系统重新恢复运行,机组目前运行状态良好。
5 结束语
综合以上经过,笔者发现系统出现死机的主要问题是主服务器的问题,在今年大修前我们采纳了厂家建议购置了一台服务器备件;在运行中对设备的日常维护很重要,不单是保证设备在正常的环境中运行,设备巡回检查一定要落到实处,发挥巡回检查的真正意义。
系统出现某台操作员站问题,由于设备已经有3年的使用期,今年的大修中笔者换了几台有问题的主机,对这次主机部分出现问题,笔者联系了DELL厂家对有问题的主机进行了换。
对DCS系统缺陷处理,主机换中一定要检查。
对于其连接的其他系统如MIS等,由于其服务器是直接挂在DCS系统的服务器上的,所以对其的操作一定要规范,其IP地址不能与DCS系统有重复的。
多与厂家沟通,因为厂家对其使用系统问题见识要比用户多,有些东西不需要等事到临头才来解决,所以才可以防患于未然。
变频器由主回路和控制回路两大部分组成,由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,所以对电源侧和输出侧的设备会产生影响。与主回路相比,变频器的控制回路却是小能量、弱信号回路,易遭受其它装置产生的干扰,造成变频器无法工作。因此,变频器在安装使用时,对控制回路采取抗干扰措施。
1.变频器的基本控制回路
同外部进行信号交流的基本回路有模拟与数字两种:
(1)4 ~ 20mA电流信号回路(模拟);1 ~ 5V / 0 ~ 5V电压信号回路(模拟)。
(2)开关信号回路,变频器的开停指令、正反转指令等(数字)。
外部控制指令信号通过上述基本回路导入变频器,同时干扰源也在其回路上产生干扰电势,以控制电缆为媒体入侵变频器。
2.干扰的基本类型及抗干扰措施。
(1)静电耦合干扰:指控制电缆与周围电气回路的静电容耦合,在电缆中产生的电势。
措施:
1 加大与干扰源电缆的距离,达到导体直径40倍以上是,干扰程度就不大明显。
1 在两电缆间设置屏蔽导体,再将屏蔽导体接地。
(2)静电感应干扰:指周围电气回路产生的磁通变化在电缆中感应出的电势。干扰的大小取决干扰源电缆产生的磁通大小,控制电缆形成的闭环面积和干扰源电缆与控制电缆间的相对角度。
措施:
1 一般将控制电缆与主回路电缆或其它动力电缆分离铺设,分离距离通常在30cm以上(为10cm),分离困难时,将控制电缆穿过铁管铺设。
1 将控制导体绞合,绞合间距越小,铺设的路线越短,抗干扰效果越好。
(3)电波干扰:指控制电缆成为天线,由外来电波在电缆中产生电势。
措施:同(1)和(2)所述。必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用的铁箱要接地。
(4)接触不良干扰:指变频器控制电缆的电接点及继电器触电接触不良,电阻发生变化在电缆中产生的干扰。
措施:
1 对继电器触点接触不良,采用并联触点或镀金触点继电器或选用密封式继电器。
1 对电缆连接点应定期做拧紧加固处理。
(5)电源线传导干扰:指各种电气设备从同一电源系统获得供电时,由其它设备在电源系统直接产生电势。
措施:变频器的控制电源由另外系统供电;在控制电源的输入侧装设线路滤波器;装设绝缘变压器,且屏蔽接地。
(6)接地干扰:指机体接地和信号接地。对于弱电压电流回路及任何不合理的接地均可诱发的各种意想不到的干扰,比如设置两个以上接地点,接地处会产生电位差,产生干扰。
措施:
1 速度给定的控制电缆取1点接地,接地线不作为信号的通路使用。
1 电缆的接地在变频器侧进行,使用专设的接地端子,不与其它接地端子共用。并尽量减少接地端子引接点的电阻,一般不大于100d。
3.其它注意事项
(1)装有变频器的控制柜,应尽量远离大容量变压器和电动机。其控制电缆线路也应避开这些漏磁通大的设备。
(2)弱电压电流控制电缆不要接近易产生电弧的断路器和接触器。
(3)控制电缆建议采用1.25mm2或2mm2屏蔽绞合绝缘电缆。
(4)屏蔽电缆的屏蔽要连续到电缆导体同样长。电缆在端子箱中连接时,屏蔽端子要互相连接。
1 引言
长久以来,西门子全集成自动化为广大的用户提供了优良的产品和解决方案。但是随着自动化技术的进一步发展,用户对自动化系统的期望越来越高。他们不仅仅满足于使用自动化产品来构造一个自动化系统和实施一个自动化任务,他们期望着自动化的产品和技术可以在整个项目的生命周期里发挥多的作用,产生大的。
2 工程—期待的解决方案
从图1上来看,如果我们用工程学的方法来评估一个自动化系统的生命周期,我们可以把其分为设备安装阶段、系统调试阶段、设备投产运行阶段以及老化维修阶段。一般意义上讲,终用户和业主只能在设备投入生产运行以后才能从自动化系统中获得收益,而用户的投资则在安装的初期为大,随着设备采购数量的减小而减小。在进入系统调试阶段以后,主要的费用为调试工程技术人员和生产时间的占用。其中调试周期越长,则生产投运就越晚,带来的损失和投入就越大。而进入设备老化和维护阶段费用又有所上升,这主要是由于产品的老化和配件的支出。我们期待着使用全集成自动化技术特别是SIMATIC的基于PROFIBUS的系统诊断技术,为用户和业主在安装阶段、调试阶段以及设备老化阶段创造多的利润和效益。从设备安装阶段来看,如果能够有效的缩短安装周期,提高安装质量,多可以减少8%左右的安装费用。(单击鼠标)进入调试阶段如果能够有效的加快调试进度通常可以缩短整个工期的10%,也就意味着生产可以提前进行。当然,在设备投入生产运行阶段减少停机时间是用户特别是维修维护人员关心的问题。进入老化维修阶段以后,我们的目标是硬件故障可以在5分钟之内排除,这样就可以大大的减小现场维护的工作量,提高自动化系统的生产效率。
图1 利用工程学评估自动化系统的生命周期
3 SIMATIC是基于PROFIBUS的诊断技术
SIMATIC是基于PROFIBUS的诊断技术,能够优化自动化系统的工程,如图2所示。它可以为整个项目的生命周期提供支持。从设备的安装,系统的调试以及系统运行和维护阶段,系统诊断技术可以为安装工程师、调试工程师提供丰富详细的系统诊断信息;可以对设备操作员、电器维护人员以及生产设备的管控人员详细的设备诊断信息。并且,由于全集成自动化的特点,这些诊断信息可以非常轻松的以图形化的方式有效的、的显示在人机界面上。
图2 SIMATIC的诊断技术示意图
4 设备安装阶段
我们来看,在设备安装阶段如何有效的排除安装错误,如图3所示。
图3 PROFIBUS系统诊断技术
4.1 通讯电缆的快速连接技术
我们知道PROFIBUS是一套低电压、高频的实时差分信号系统。因此,通讯电缆的连接质量和信号品质就显得尤为重要。据我们的经验,95%的系统安装错误和通讯问题都是由通讯电缆连接不当造成的。因此,西门子公司提供了一整套快速有效的连接方案,如图4所示。其中包括特殊设计的快速连接电缆,快速连接接头,以及快速剥线工具。在图4上我们可以看到,根据选定的快速连接接头的型号,我们可以非常容易的在剥线工具上测量出需要剥线的长度,然后由于剥线工具当中内置的多层片可以非常的将保护层、屏敝层和支持层的电缆一次剥去,通过这种方式,可以杜绝由于屏敝层的长度不足或者通讯线过长引起的电磁兼容性问题。
图4 快速有效的连接方案
5 调试阶段
在调试阶段主要的工作就是如何有效的优化现场设备之间的通讯关系,排除错误源。
5.1 手持式总线物理测试仪BT200
手持式总线物理测试仪BT200是专门针对PROFIBUS现场连接质量的评估而设计的,如图5所示。BT200的设计对象是现场的电器施工人员。因此,通过简单的LED显示和清晰明了的按钮设计一般的电器人员不需要非常的PROFIBUS通讯和网络知识背景就可以能够立的对现场网络的连接质量进行评估和检查,通过离线模式将检测的结果传输到计算机上。BT200手持式总线物理测试仪能够非常简单的完成对于总线电缆的断线故障、短路故障、电压波动进行检查,同时通过定位电缆反射的技术可以判定电缆的长度,这样,就能够解决大多数现场连接的错误。对于连接到PROFIBUS总线上的单个设备,测试仪也能够对它们的PROFIBUS接口电路进行测试。在测试仪内部,已经集成了RS485驱动器,内置了5伏电压和RTS信号。手持式总线物理测试仪可以自动侦测所有现场可访问站点,并生成活动站列表。目前,测试仪支持多种语言版本
(2) STEP7还可以对PROFIBUS主站的诊断缓存区进行访问
STEP7还可以对PROFIBUS主站的诊断缓存区进行访问。由于每一个连接在现场的设备都会发送相应的诊断报文到PROFIBUS主站,因此,在缓存区内工程师可以发现所有想了解的诊断事件的详细内容。这些诊断事件被分成两大类,一大类是由于现场的信号触发的外部事件,另一大类是由系统内触发的内部事件。所有的事件都附带有时间标签(包括月、日、年、小时、分钟、秒和毫秒)每一个诊断事件都包含了一定长度的详细信息描述,因此,工程师可以准确的通过时间来分析诊断事件发生的原因、位置并出相应的对策。用户还可以自己定义一些用户事件,在某些条件满足的时候,发送诊断报文到PROFIBUS主站。
(3) STEP7还可以不通过缓存区直接访问到实时的诊断信息
STEP7还可以不通过缓存区直接访问到实时的诊断信息。通过在线连接的方式,STEP7可以通过PROFIBUS的路由功能对单个远程活动站进行访问。可访问的信息包括某站点的槽位信息、通道信息和对应的错误类型,相应的错误代码可以在STEP7的帮助文件中获得。
(4) STEP7工程软件非常容易的完成项目的调试
通过STEP7这样的工程软件,工程师可以非常容易的完成项目的调试,那么在设备的运行阶段对于终用户和的操作维护人员,系统诊断功能主要要满足定位故障,减小停机时间。
6 诊断中继器
图11为新开发的带有诊断功能的中继器,它可以对整个生产自动化系统进行连续不间断的级诊断。标准中继器的功能主要是为了解决信号在远距离传输过程中引起的衰减和延迟问题,标准中继器可以有效的对信号进行放大和再生处理,从而扩展网络的规模、保证良好的通讯质量。带有诊断功能的中继器集成了标准中继器的所有功能,同时具备了强大的诊断功能。在系统配置当中诊断中继器作为一个单的从站出现。在STEP7和其他标准PROFIBUS网络的配置工具当中都可以轻松的组态这个设备
可编程逻辑控制器(Programming Logic Controller, PLC)作为一台工业计算机,集数据的采集、处理、显示于一身,那么作为数据终端,数据的显示是必要的。虽然PLC本身有许多指示灯,可以观测到PLC的CPU单元、输入/单元及网络通信单元的运行工作状态,但无法显示PLC内部数据。计算机通过与PLC通信以及触摸屏都可以实现PLC显示,但价格昂贵,对一些小型不需要经常改动的系统来说是浪费。本文采用拨码开关和数码管来显示PLC内部数据,操作简单、廉,对实验教学和工程人员有参考。
(1)应用行业:机加工、过程控制等。
(2)使用产品:CJ1M(CPU22), CS1W-ID211,CS1W-OD261
(3)应用的主要工艺点及要解决的主要问题:内部数据的动态显示
(4)应用方案简介:用高频率晶体管输出单元,结合高速定时器指令TIMH实现内部数据的动态显示。
2 动态数据显示
2.1 硬件系统设计
LED数码管有7段显示灯,可以用来显示0~9间的10个数字。CJ1M系列PLC内部通道数据一般都是四位,如果用借用每个输出点来控制一个显示灯,那么一个数码管就需要7个输出点,这显然要占用大量的输出点,是不经济的。这里选用含有内置译码电路的数码管如CD4511,可以把8421码自动译成7段码。8421码或BCD码用4个接口加选通信号,就可以显示一个数据位。将四个8421输入线组合与某个输出通道的四位相连,每个选通信号的输入信号与通道中剩下的四位相对应连接,这样一个输出通道就能显示PLC四位(一个字)内部数据。具体接线图如图1所示。
注意,这里的PLC输出模块应选用晶体管或者晶闸管输出单元,而不宜采用继电器输出单元。因为继电器输出单元为有触点开关,响应慢、速度低,不适用于高频率的通断,也不适用于动态数据显示[1]。故图1中采用OMRON公司CJ1W-OD261(64点)晶体管作为输出单元,其在本PLC机架上的IO地址分配为6.00~9.15,这里用0006通道作为内部数据的显示通道。6.00~6.03为CD4511的数据输入端A、B、C、D,其中A为位,D为位, 为高电平时锁存数据,四位数据的 端由PLC的6.04~6.07分别控制,4个数码管共占用8个输出点。
2.2 选通信号的生成
由于4个数码管 的线皆由一个I/O口控制,因此,在每一瞬间,4位LED会显示相同的字符。要想每位显示不同的字符,就采用扫描方式轮流点亮各位LED,即在每一瞬间只使某一位显示字符。使每位分时显示该位应显示字符,根据人眼视觉特性,当LED所加信号频率大于50Hz时,人眼不能感觉其变化,所以每位显示的间隔不能过20ms,也就是说要在20ms之内分时的点亮所有LED,LED越多所分的时间越短,亮度就会不足;如果增加点亮时间,又会使扫描频率下降,有闪烁感容易造成人眼的彼劳,故常采用动态扫描方式[2]。这种扫描方式仅适用于LED不过10个时的场合,本例中只有4只LED数码管,故可以选用此方法。
CJ1M系列PLC有丰富的定时指令,其定时器类型有1ms、10ms和100ms,这里选用TIMH指令[3],定时器的设定值为#1,这样选通信号的周期为10ms。
2.3 同步化处理
PLC采用循环周期扫描工作方式,指令的执行由上至下,有左至右,的结果将影响后面;个周期的结果影响下一周期。PLC逻辑设计同步化就是设法实现:用脉冲信号控制输出及内部状态的转换,有脉冲作用的周期,执行指令才有效果;而且在脉冲信号起作用的这周期中,指令的执行结果,不改变后面指令的执行条件[4]。同步化处理的方法很多,在图2中是通过合理安排指令的先后顺序来实现同步的。
图2中,系统上电,高速定时器开始定时,10ms后,其常闭触点断开,即T0输出一个脉冲,宽度为一个扫描周期。个脉冲到了, 6.04置位,成为行的指令执行条件,但这时它的指令已经执行完毕,故在此脉冲作用期间,也不会有什么变化。依此类推,四个脉冲之后,6.07置位,6.06复位,成为工作寄存器W0.00输出的条件,五个脉冲到来,6.07复位,梯形图又回到初始状态,如此反复,分时实现四位数据的 端6.04~6.07轮流接通10ms。
产品推荐