福州西门子PLC代理商交换机供应商
  • 福州西门子PLC代理商交换机供应商
  • 福州西门子PLC代理商交换机供应商
  • 福州西门子PLC代理商交换机供应商

产品描述

产品规格模块式包装说明全新

福州西门子PLC代理商交换机供应商

现在人们消费支出大的应该就是购房吧?当房子买下来后,面临的问题就是装修了。在装修过程中,许多业主和装修公司比较重视房屋的外在装饰质量和效果,人们容易忽视住宅的室内电气设计,导致装修完工后才发现有许多不合理之处,或住户对室内布线一无所知,其实,对将来的使用影响大的,既不是看地上的砖铺得平不平,也不是看墙壁上的涂料刷得牢不牢固,而是室内电线、电话线、有线电视光缆的铺设是否合理,使用后出现了故障能不能检修,所以进行住宅室内电器线路设计很重要。
随着住户各类家用电器的日益增多,尤其是空调、电热水器等大功率电器的使用,住宅电器设计由原来的纯照明向多功能的方向发展。为避免住户使用过程中的电气线路过载等状况的发生,进行电气线路的设计是非常有必要的。

下面让我们来对一套125m2的三室二厅的新房室内电气线路进行设计.

案例分析:“室内住宅电气系统设计”

(一)目的与要求:
1.分析室内照明的功能需求,书房、卧室、客厅、厨房、卫生间和凉台的照明要求是如何的?
2.系统组成部分之间的相互联系和作用:针对不同的照明需求来选择怎样的灯具?
3.如何计算家居总用电量?
4.室内照明的电线敷设的标准?
5.系统设计方案及其优化:

(二)设计要求:

1.用电负荷:

例如:照明用电负荷500w,用电负荷1500w,厨房用电负荷1500w,空调用电负荷3000w
大功率P=500w+1500w+1500w+3000w=6500w

2.照明和各种家用电器使用、方便,相互之间影响小,便于维修。

(三)设计分析;

1.设计的目的方便住户使用,满足住户的舒适和审美要求,便于维修,安装规范,确保室内电气线路的。
2.室内配电系统由电源配电箱和若干个回路组成,它们构成了室内电器线路系统的子系统。
3.当某一回路发生故障时,不影响其他回路的正常工作。

(四)设计方案:

1.电源配电箱

电源通过住宅的配电箱再进入室内房间,配电箱中应有短路、过载和漏电保护,具有过负载、过电压和漏电保护功能。每户应设置强弱电箱,配电箱内应设动作电流30mA的漏电保护器,分路经过控开后,分别控制照明,空调,插座等。控开的工作电流应与终端电器的大工作电流相匹配,一般情况下,照明10A,插座16A,柜式空调20A,进户40-60A。

2.电路的设计

如上例:家用电负荷大值约为6.5kw,通过电流为:K•(6.5kw/220v)=35.4~38.4A,
这里的K为保险系数,取值为1.2~1.3。电流过大各线路采用单的电路回路。室内配电系统采用多回路形式,本例设计有照明回路、插座回路、空调回路,对于厨房、浴室设立单回路。

3.导线与电器设备选择

(1)导线:为了防火、维修及,选用有长城标志的“”塑料或橡胶绝缘保护层的单股铜芯电线,线材槽载面积一般是:照明用线选用1.5平方毫米,插座用线选用2.5平方毫米,空调用线不得小于4平方毫米,接线选用绿黄双色线,接开关线(火线)用红、白、黑、紫等任一种。但在同一家装工程中用线的颜色用途应一致。

值得注意的事项:
家庭电路设计,2000年前,电路设计一般是:进户线4—6 mm2,照明1.5 mm2,插座2.5 mm2,空调4 mm2专线。2000年后,电路设计一般是:进户线6—10 mm2,照明2.5 mm2,插座4 mm2,空调6 mm2专线。(北京很多住宅是:进户线6—10 mm2,照明2.5 mm2,插座2.5 mm2,空调4 mm2专线)
本例里的电线通过的电流为35.4~38.4A,参照铜电线截面允许通过的电流范围,因此选用4mm2的铜线为基准较为合适。从而配线方案为:进户线6—10 mm2,照明2.5 mm2,插座4 mm2,空调6 mm2专线。

(2)电器设备:电源配电箱、电表、控制开关漏电保护开关、电源插座、开关面板、插座的选材面板的尺寸应与预埋的接线盒的尺寸一致;表面光洁、标志明显,有防伪标志和国家电工认 的长城标志;开关开启时手感灵活,插座稳固,铜片要有一定的厚度;面板的材料应有阻燃性和坚固性。

(五)线路布置

1.智能系统:在住宅电气线路设计中应预埋电话线、有线电视信号线、视频线、网络线,在客厅和三间睡房预埋电话线、有线电视信号线、视频线、选择其中一间睡房作为书房,预埋网络线。
2.照明回路:在睡房、客厅、饭厅、厨房、浴室、凉台室安装一个主光源吊灯,在睡房和客厅的墙壁上安装辅助光源壁灯。
3.功能电路:厨房放置冰箱、电饭堡、电热水器,排气扇电源插座,浴室安装淋浴器、洗衣机的电源插座,睡房和客厅安装空调的电源插座,书房安装电视机、音响、电脑等的电源插座都是立的电源回路。
4.线路布置图:在形成了住宅的电气线路设计方案后,绘制出线路走向位置尺寸图和线路布线图,编写《电气线路设计说明书》草拟布线图。
(1)划线。确定线路终端插座,开关,面板的位置,在墙面标画出准确的位置和尺寸。
(2)开槽。
(3)电源线配线
(4)埋设暗盒及敷设PVC电线管。
(5)穿线。
(6)安装开关,面板,各种插座,强弱电箱和灯具。
(7)检查。
(8)完成电路布线图,并向住户反馈设计方案,根据住户的意见进行修正。

提交设计单位备案。

通过以上的介绍您应该可以对您的新居电器进行布局设计了吧。


1 变压器零序保护配置
厦门电网目前全部选用分级绝缘变压器,在多台变压器并列运行的变电站,主变中性点一般采用部分接地的运行方式。对于中性点不接地的变压器,其外部故障的后备保护,过去采用零序互跳保护或中性点间隙保护两种方法。
1.1 零序互跳保护
变压器中性点零序过电流动作时先跳开中性点不接地变压器的保护方式, 称为零序互跳。如图1, 2台主变并列运行, 1号主变中性点接地, 当K2点发生接地故障时, 1号主变中性点零序过流保护动作, 时限跳2号主变高低压侧开关, K2故障点被隔离, 1号主变恢复正常运行。如果故障点在K1处, 当时限跳开2号主变后,零序过流保护二时限跳本变压器, 切除故障。零序互跳保护显而易见的缺点是: ①有选择性切除故障的概率只有50%;②母线故障时没有选择性, 会扩大停电范围; ③零序过流保护时间整定和主变相间保护配合, 对保护整定配合不利; ④在2台变压器同时停运时才能进行互跳试验, 条件苛刻, 二次接线容易错误。



1.2 变压器中性点间隙保护
为了克服上述缺点,福建省中调闽电调继[1998]165号文要求将220 kV主变110 kV侧零序互跳保护改为间隙保护。间隙保护采用的方法是在变压器中性点加装放电间隙及间隙电流互感器,并与母线TV开口三角零序过电压保护共同组成。如图1,仍为2台主变并列运行,1号主变中性点接地。当K2点接地故障时,1号主变中性点零序过流保护时限跳100母分开关,Ⅰ段母线与故障点隔离,1号主变恢复正常运行。100母分开关跳闸后,K2故障点仍存在,由2号主变中性点间隙电流保护或零序过电压保护动作跳本变压器,实现故障隔离。同样,当K1点接地故障时,1号主变中性点零序过流保护时限跳开100母分开关,2号主变与故障点隔离,可以继续运行。但K1故障点仍存在,1号主变零序过流保护二时限继续跳开本变压器,故障。因此,采用间隙保护明显的优点是:①作为变压器本体的设备保护,和其他保护配合,整定简单;②动作过程具有选择性,只隔离故障部分,不会扩大停电范围。
该文件中仅要求将220 kV主变110 kV侧零序互跳保护改为间隙保护,但没有明确110 kV变压器接地方式及零序保护的配置,对于不同接线类型的110 kV变电站,变压器中性点接地方式应如何控制-零序保护应如何配置-特别是变压器中性点间隙保护,在110 kV系统中应如何正确运用-现以厦门电网110 kV系统为例,对上述问题进行初步的探讨。

2 厦门电网110 kV系统接线与保护配置特点
厦门地区110 kV系统接线特点是以放射状为主,以220 kV变电站为电源点,通过110 kV线路向各终端变电站辐射。110 kV终端变电站则采用内桥接线或线路-变压器组接线方式,低压侧无电源。
如图2所示内桥接线变电站,在正常运行方式下,100母分开关不作为103和104线路的联络元件。因此,内桥接线通常只有两种运行方式:1条线路带2台主变运行或2条线路各带1台变压器运行。在1线带2变运行方式下,2台主变只要有1台中性点接地即可,但由靠110 kV供电线路侧的变压器中性点接地运行,这一点很重要。内桥接线变电站目前的变压器零序保护配置为:中性点零序电流保护时限跳100和900母分;二时限跳本变压器;同时,变压器中性点装设棒间隙,但没有配置间隙TA以及开三角电压保护。




为了节省投资、占地,节约110 kV线路空中走廊等原因,新建设的110 kV变电站较多采用线路-变压器组接线,而且1条线路可“T”接2台甚至3台变压器,变压器零序保护仅有中性点零序过电流保护,没有配置中性点间隙电流保护以及110 kV TV开三角零序电压保护(主变110 kV侧只有单相线路TV)。由于零序保护配置不够完整,在多台“T”接的线路-变压器组接线中,各变压器中性点仍全部接地运行。但是,变压器中性点全部接地运行对系统具有一定的负面影响。
(1) 在部分线路或变压器检修、停运以及系统运行方式变化时,零序网络及零序阻抗值发生较大的变化,各支路零序电流大小及分布也会产生较大的变化。从保护整定配合出发,则要求保持变电站零序阻抗基本不变。
(2) 在变压器投入运行或线路重合闸过程中,有时会使在同路上运行的中性点接地变压器产生由励磁涌流引起的,幅值较大而且衰减较慢,并带有较大直流分量的零序电流。较容易造成送电不成功或重合闸不成功。
(3) 变压器中性点全部接地,使系统零序阻抗大幅度降低,由此造成不对称接地故障短路电流明显增大。在厦门地区,因为雷击、不对称接地故障干扰二次设备,造成保护装置误动以及损坏通信设备的事故仍时有发生。因此,有效接地系统中应尽量采用部分变压器中性点接地方式,以限制单相接地短路电流,降低对通信系统的干扰。

3 110 kV变压器中性点过电压水平计算
对于各种不同接线类型的网络,从接地故障复合序网可知,单相接地故障时,故障点稳态零序电压为




从(1),(2)式可以看出,不对称接地故障时产生的零序电压取决于系统零序阻抗Z0与正序阻抗Z1之比。当Z0/Z1增大时,接地故障时产生的零序电压亦相应增大。在电力系统中,有效接地系统的划分标准为:在各种条件下,应使零序阻抗与正序阻抗之比为正值且<3;当Z0/Z1≥3甚至Z0=∞时,则成为非有效接地系统。对于某一具体电网而言,在不对称接地故障时,如果零序电流无法形成通路,亦即在该网络中所有变压器同时失去接地中性点时,这个网络就成为局部不接地系统,Z0=∞。从(1)式可知,不接地系统发生单相接地故障时,故障点零序电压等于系统故障前相电压Uφ。
通过对不对称故障正序、零序网络进行简单的分析可知,在110 kV系统中,只要保证电源端变压器中性点有效接地,那么在各种条件下,零序阻抗与正序阻抗之比一定小于3。具体到厦门地区,只要保证220 kV变压器110 kV侧中性点有效接地,那么以该变压器配出的110 kV网络就一定是有效接地系统,Z0/Z1<3。若以Z0/Z1=3、系统相电压U=73.0 kV代入(1)式可以算出在单相接地故障时,故障点零序U0为43.8 kV。因此,在110 kV有效接地系统中,不接地变压器中性点大对地偏移电压<43.8 kV,小于分级绝缘变压器中性点的设计耐压值。
由此可以得出结论:对于目前厦门地区110 kV系统,在保证220 kV变压器110 kV侧中性点有效接地的情况下,各110 kV终端变压器中性点是否接地与系统及变压器本体的运行没。

4 110 kV变压器零序保护存在的问题
在有效接地系统中,变压器中性点对地偏移电压被限制在一定的水平,中性点间隙保护不会产生作用。配置间隙保护的目的,是为了防止非有效接地系统中零序电压升高对变压器绝缘造成的危害。只有当系统发生单相接地故障,有关的中性点直接接地变压器全部跳闸,而带电源的中性点不接地变压器仍保留在故障电网中时,放电间隙才放电,以降低对地电压,避免对变压器绝缘造成危害。间隙击穿会产生截波,对变压器匝间绝缘不利,因此,在单相接地故障引起零序电压升高时,我们希望由零序过电压保护完成切除变压器的任务。相反,间隙电流保护则存在一定程度的偶然性,可能因种种原因使间隙电流保护失去作用,从这个意义讲,对于保护变压器中性点绝缘而言,零序过电压保护比间隙电流保护重要,零序过电压保护通常和间隙电流保护一起共同构成变压器中性点绝缘保护。所以仅设置间隙电流保护而没有零序过电压保护是不够完善的,特别是当间歇性击穿时,放电电流无法持续,间隙电流保护将不起作用。
目前已经投运的110 kV变电站,大多数只装设中性点棒间隙而没有相应的保护,这种配置有弊无利,当电网零序电压升高到接近额定相电压时,所有中性点不接地的变压器均同时感受到零序过电压。如果没有采用间隙过流保护的终端变压器中性点间隙抢先放电,当无法持续放电时,则带电源的中性点不接地变压器将无法脱离故障电网。因此,对于低压侧无电源的终端变压器,如果没有配置完整的间隙电流保护及零序过电压保护,应解除中性点棒间隙或人为增大间隙距离,避免间隙抢先放电。
对于内桥接线的变电站,中性点接地变压器零序电流时限跳900和100母分不是的方案。由于在低压侧并列运行时,跳900开关后多损失一段母线,同时中性点不接地变压器低压侧开关仍运行,在目前没有零序过电压保护的情况下,若因10 kV转电等原因存在临时低压电源,则不接地变压器就存在过电压的危险。因此,在110 kV侧已装设三相电压互感器的前提下,增加零序过电压保护是简便易行的措施。
5 变压器中性点接地方式控制以及零序保护改进措施
是要确保110 kV系统为有效接地系统。防止误操作是根本的办法,保电源端变压器110 kV侧中性点有效接地。如果保护整定许可,可以将电源侧2台并列运行的变压器中性点同时接地。
带电源变压器失去接地中性点后可能成为非有效接地系统,因此,对于电源端变压器或者将来可能带电源的变压器,在设计阶段就应考虑配置完整的中性点间隙保护,包括中性点零序过电流保护,中性点间隙电流保护以及母线开三角零序电压保护。
在110 kV馈出线路上,不论并接几台变压器,在电源侧中性点接地的情况下,各终端变压器中性点可以不接地运行。在实际运行中,为防止可能出现的不因素,可安排其中一台中性点接地,在选择接地中性点时,可按以下顺序考虑:选择低压侧临时带电源的变压器,其次考虑高压侧没有断路器的变压器,后选择离电源端距离短的变压器中性点接地即可。
已经投入运行的大部分110 kV终端变电站,由于目前尚未配置母线TV开三角零序电压保护以及中性点间隙电流保护,为避免中性点间隙抢先放电,应将原先装设的中性点棒间隙拆除或人为增大间隙距离。
今后设计的110 kV变电站,高压侧宜考虑采用三相电压互感器,设置零序过电压保护和变压器中性点间隙电流保护。这种配置可以提供灵活的运行方式,适应将来电网结构的变化。
对于内桥接线变电站,主变中性点零序电流保护时限应切除另一台不接地变压器,避免扩大停电范围或者可能出现的工频过电压。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg

电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。

二.开关电源的组成
开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。
1. 主电路
冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。
输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。
整流与滤波:将电网交流电源直接整流为较平滑的直流电。
逆变:将整流后的直流电变为高频交流电,这是高频开关电源的部分。
输出整流与滤波:根据负载需要,提供稳定的直流电源。
2. 控制电路
一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。
3. 检测电路
提供保护电路中正在运行中各种参数和各种仪表数据。
4. 辅助电源
实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

三.开关电源的工作原理
开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。
VO=TON/T*Vi
VO 为负载两端的电压平均值
TON 为开关每次接通的时间
T 为开关通断的工作周期



由式可知,改变开关接通时间和工作周期的比例,VO间电压平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便使输出电压VO维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRationControl,缩写为TRC)。
按TRC控制原理,有三种方式:
1. 脉冲宽度调制(Pul*ithModulation,缩写为PWM)
开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
2. 脉冲频率调制(PulseFrequencyModulation,缩写为PFM)
导冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
3. 混合调制
导冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

四.开关电源的维修技巧和常见故障

1.维修技巧
开关电源的维修可分为两步进行:
断电情况下,“看、闻、问、量”

看:打开电源的外壳,保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应检查此处元件及相关电路元件。资产管理
闻:闻一下电源内部是否有糊味,是否有烧焦的元器件。
问:问一下电源损坏的经过,是否对电源进行违规操作。
量:没通电前,用万用表量一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心。用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源内部可能存在短路。电容器应能充放电。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,后指示的应为该路的泄放电阻的阻值。

加电检测

通电后观察电源是否有烧保险及个别元件冒烟等现象,若有要及时切断供电进行检修。
测量高压滤波电容两端有无300伏输出,若无应查整流二管、滤波电容等。
测量高频变压器次级线圈有无输出,若无应查开关管是否损坏,是否起振,保护电路是否动作等,若有则应检查各输出侧的整流二管、滤波电容、三通稳压管等。
如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压出规定值,则说明电源处于保护状态下,应检查产生保护的原因。

2.常见故障

保险丝熔断
一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。应检查电源输入端的整流二管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。需要特别注意的是:切不可在查出某元件损坏时,换后直接开机,这样很有可能由于其它高压元件仍有故障又将换的元件损坏,一定要对上述电路的所有高压元件进行检查测量后,才能排除保险丝熔断的故障。

无直流电压输出或电压输出不稳定
如果保险丝是完好的,在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二管被击穿,滤波电容漏电等。在用万用表测量次级元件,排除了高频整流二管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。高频滤波电路主要由整流二管及低压滤波电容组成直流电压输出,其中整流二管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。用万用表静态测量对应元件即可检查出其损坏的元件。例:某一24伏直流电机供电电源通电后无直流24伏输出 ,拆开电源外壳,观察保险丝未烧断且电路板无明显的烧焦处或破裂元件,在未通电情况下量AC输入端阻值和DC输出端阻值正常,量开关管、整流桥、整流管等重要元件正常,故判断不存在内部严重短路的可能,估计保护电路动作。经检查此开关电源采用U3842 PWM控制芯片,经查找相关的资料得知,当U3842芯片的3端电压1伏时,内部电流敏感比较器输出高电平,将PWM锁存器复位使输出关闭。通电测量U3842的3端1伏,6端无输出,经检查相关电路,发现稳压管D2击穿,如图3,故PC1导通,致使U3842的3端为高电平,故6端无输出,开关管不工作,直流侧无直流输出。换同型号稳压管D2,故障解除。

电源负载能力差
电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。应检查稳压二管是否发热漏电,整流二管损坏、高压滤波电容损坏等。例:我厂近红处激光光谱仪(VECTOR 22),开机后无法完成自检并报警且主板指示灯不断闪烁。经检查,供光谱仪主板的直流5V电源仅剩2.3伏左右,脱开5V直流电源的负载,通电再次测量5V直流电源,这时则有5V,初步判断此5V直流电源带载能力差,拆开电源外壳进行检修,由于没有带负载时,通电有直流5V输出,故检查次级线圈侧的输出整流电路,给5伏电源接上负载通电进行测量发现三通稳压7805的1、2脚之间电压为5.2伏,2、3脚之间却剩2.3伏,如图4,故判断三通稳压管7805性能变坏,换三通稳压管7805故障解决。

五.结束语
目前,开关电源以小型、轻量和率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。作为设备维护人员,有必要了解开关电源的基本工作原理,掌握其维修技能,熟悉其常见故障,这样才有利于减少电子设备的维修费用,缩短其故障维修时间,提高自身技能水平。


工业现场使用的智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所。究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信功能。(485通讯、以太网通讯、光仟通讯等等)

RS485网络:RS485/MODBUS是现在流行的一种布网方式,其特点是实施简单方便 ,而且现在支持RS485的仪表又特多,特别是在油品行业RS485/MODBUS简直是一统,现在的仪表商也纷纷转而支持RS485/MODBUS,原因很简单,象原来的 HART仪表想买一个转换口非常困难 而且价格昂贵,RS485的转换接口就的多而且种类繁多。至少在低端市场RS485/MODBUS还将是主要的组网方式,近两三年内不会改变。

初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上多可以挂接32个结点。

在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,

这有二个原因:

(1)共模干扰问题: RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。当网络线路模电压出此范围时就会影响通信的稳定,甚至损坏接口。

(2)EMI问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个的天线向外辐射电磁波

现有的网络拓扑结构一般采用终端匹配120欧姆电阻的手牵手总线型结构,不支持环形或星形网络。在构建网络时,请注意如下几点:

(1)采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响。有些网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。

(2)应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。如下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。

在工业现场数据采集系统项目中,随着自动化程度的提高和系统组网的需求,项目管理部门要求有主从两个监控可以查看,控制整个数据采集终端设备。并且要求在每个监控可以通过主机控制采集终端设备对整个工业现场设备进行监控,还要求可以通过服务器将工业现场采集终端设备的数据保存下来。所以就要求要多个数据采集设备可以并存于一个控制系统中。

工程商在施工过程中发现,如果将所有的采集终端设备简单地并联接在一个485总线上,由于各个主控设备存在电位差及485总线产生信号反射等原因,导致整个数据采集系统瘫痪从而不能使用,工程商采用深圳市天地华杰科技有限公司的485总线分割器,将多个主控的设备的485线连接到485共享器的输入端口,通过其共享到一个485输出端口上,由于485共享器输入端口之间有光电隔离,并且采用立驱动的方式,从而可以有效的解决电位差及信号反射问题。从而使得多个数据采集终端设备主机共存于一个控制系统中。




http://zhangqueena.b2b168.com

产品推荐