南昌西门子授权代理商CPU供应商
  • 南昌西门子授权代理商CPU供应商
  • 南昌西门子授权代理商CPU供应商
  • 南昌西门子授权代理商CPU供应商

产品描述

产品规格模块式包装说明全新

南昌西门子授权代理商CPU供应商


一、引言
拉丝机是电线电缆行业主要加工设备之一,主要是将铜线加工成各种规格细线,一般由放线、水冷、收线及排线等部分组成,其中电气传动部份主要由放线电机和收线电机及排线电机实现。随着变频技术的不断推广,变频器正日益被用于拉丝机设备。
二、变频控制原理及实现
1、拉丝机的主要电气构成
车一般拉丝机主要由放线电机、与收线电机及排线电机构成驱动部分。随着收线卷径不扩大,收线电机的转速应相应降低,以保线速度恒定,在控制中常采用张力反馈装置来调节收线电机的速度。随着变频器功能不断增强、性能不断稳定,变频器也被应用于拉丝机。利用变频器控制收线电机与放线电机,而排线电机由于功率较小直接由电网电压来控制。图1为拉丝机的变频控制示意图:
 

 

2、基本控制原理:
放线电机与收线电机分别由两台变频器控制(见图1),放线变频器通过外部电位器设定转速,放线变频器的模拟输出信号AM、和张力平衡反馈信号经PID调节器后控制收线变频器(见图2)。随着收线筒卷径的变化,张力平衡杆的反馈信号也随之变化。张力杆反馈信号(由精密变阻器构成)经信号转换电路板转换为0-10V,这个信号与放线变频器模拟输出信号AM、AM-构成PID两路输入信号,其调节输出控制收线变频器,使丝线保持一定的线速度和张力。
    变频器启动后由放线变频器的OC输出信号起动排线电机,由于排线电机的功率较小,可直接通过两个接触器控制其正反行,使铜线均匀地绕在收线筒上。

3、变频器参数设定
深圳康沃电气技术有限公司是一家集变频器研发、生产和销售为一体的公司,主要系列产品包括:通用型G1/P1与G2/P2系列、单相变频器S1系列以及注塑机变频器ZS/ZC系列。根据拉丝机负载特性,宜选用康沃通用型G2系列,以实现恒转矩输出。以37kW放线电机和11kW收线电机为例(均为4),应分别选用以CVF-G2-4T0370 及CVF-G2-4T0110。下表分别给出了两台变频器的相关参数设定。

(1)放线变频器参数设定:
参数
代表的意义
参 数
代表的意义
b-0=2
选择参数
b-3=1
外部端子起动
b-1=2
外部电位器调速
b-7=60
加速时间:60秒
b-8=60
减速时间:60秒
L-63=8
外部断线报警
b-15=0
OC1输出控制排线马达
 
 

(2)收线变频器参数设定:
参数
代表的意义
参数
代表的意义
b-0=2
选择参数
b-3=1
外部端子起动
b-1=2
外部电位器调速
b-7=5
加速时间:5秒
b-8=5
减速时间:5秒
L-63=8
外部断线报警
b-15=1
OC1输出控制收线电机电磁刹车
L-58=2.0
收线电机电磁刹车频率设定:2Hz

三、调试注意事项
在调试过程中主要注意起动阶段与停车阶段,应保持放线电机与收线电机同步起动。
1、起动阶段
变频器运行前将张力杆置于中间稍偏上位置,启动变频器缓慢升速。如启动时出现断线现象,说明收线电机起动过快,可相应地调整收线电机的起动频率L-7、起动频率持续时间L-8及放线、收线变频器的加减速时间b-7和b-8几个相关参数。

2、停车阶段
停机时,放线、收线电机由当前运行频率按减速时间减速。减速到设定频率时,收线变频器的OC输出信号启动电磁刹车装置,使得放线、收线电机准确停车,这样便不会因为放线电机过快停车造成铜线拉断。如果在停机过程中出现断线,可相应地调整放线、收线变频器减速时间b-8,若接近停机时出现断线则可调整收线变频器的OC输出信号作用时间(b-15、L-58)。

四、结论
拉丝机采用变频器控制,可以根据产品的不同规格调节放线电机的速度,从而有效提高产品的质量和系统的稳定性。另一方面,采用变频器控制实现了电机的软启动,有助于延长电机的使用寿命,同时减少了电气维护工作量。


   随着信息技术技术的飞速发展, ARM技术方案架构作为一种具备低功耗、、以及小体积等特性的32位嵌入式微处理器,得到了众多的知识产权授权用户,其中包括的半导体和系统公司。目前已被广泛的用于各类电子产品,汽车、消费、影像、工业控制、存储、网络、安保和无线等领域。被业界人士认为,基于ARM的技术方案是市场前景和市场优势的解决方案。

      现场总线CAN是为解决现代汽车中众多的电控模块之间的数据交换而开发的一种串行通信协议。由于其具有多主站依据权进行总线访问,采用非破坏性总线仲裁,可完成对通信数据的错误检验和级判别,数据长度多为8个字节,传输时间短,受干扰的概率低,抗干扰能力较强,通信速率可达1Mbit/s等特点,它被广泛应用在汽车,工业,消费类电子等领域,而被公认为是有前途的现场总线之一。

      基于ARM在嵌入式系统方面优势和CAN总线的广泛应用,目前越来越多的ARM处理器内部都自带了CAN控制器,大的方便了开发人员对CAN总线的开发。但目前仍有些产品中的ARM处理器没有内置CAN控制器,为了能够适应节点间对所提出的实时性,性的要求,同时又不改变原来的硬件结构,通过外扩CAN接口模块来实现CAN通信成了一个较为合适的选择。

      本文基于ARM7TDMI-S处理器LPC2131,对内部没有集成CAN控制器的处理器,设计了较为通用的CAN接口模块的硬件电路,并对CAN总线进行了性设计,而且对基于嵌入式实时操作系统μ-II实现CAN通信,进行了嵌入式软件的设计,终在实践中对CAN总线通讯的性和可行性进行了验证。 
LPC2131

Philips LPC2131是基于ARM7TDMI-S的32位RISC微控制器,它一方面具有ARM处理器的所有优点:低功耗、;同时又具有较为丰富的片上资源,非常适合嵌入式产品的开发。其特点如下:

·集成了Thumb扩展指令集。
·32KB可在系统中编程(ISP)的片内Flash和可在应用中编程(IAP)的8KB RAM,具有向量中断控制器。
·2个UART,2个I2C串行接口,2个SPI串行接口,2个定时器(7个捕获/比较通道),PWM单元可提供多达6个PWM输出,8通道10位ADC,实时时钟RTC,定时器WDT,48个通用I/O引脚。
·CPU时钟高达60MHz,具有片内晶体振荡器和片内PLL。

LPC2131内部没有集成CAN控制器,而无法利用CAN总线来进行通讯。为了使得LPC2131能够利用CAN总线进行通讯,可以通过外部扩展来拓展其功能。

硬件电路设计

由于LPC2131是由3.3V供电的ARM7TDMI-S微处理器,其各个IO引脚是3.3V的TTL电平,而且可以承受5V的电压。而立CAN控制器SJA1000是5V供电,其各个IO口的电平是5V的TTL电平,所以二者兼容,其IO可以直接相连。

LPC2131与CAN控制器接口

LPC2131与CAN控制器接口如图1所示,LPC2131的P0.8~P0.15与SJA1000的AD0~AD7直接相连实现数据交互,P0.22,P0.25,P0.31,P0.23分别与SJA1000的ALE/AS,RD/E,WR,CS相连实现读写和片选,P0.30,P0.27分别与SJA1000的INT,RST相连实现中断和复位。LPC2131访问SJA1000时,可通过软件模拟SJA1000中所规定的读写时序来进行,SJA1000的模式引脚MODE通过VCC而置为高电平,使得SJA1000工作在Inbbb的模式。


CAN收发器与CAN总线接口

CAN收发器与CAN总线的接口如图2所示,其中SJA1000的TX0,RX0分别与CAN收发器的TXD,RXD相连,为提高CAN收发器82C250与CAN总线的接口部分的抗干扰能力,特在82C250 的CANH 和CANL 引脚串接一个共模扼流圈,以一定的共模干扰,而使得总线差分信号能够。并且CANH和CANL分别通过一个磁珠与总线相连,以起到一定的高频干扰。同时CANH 和CANL与地之间并联了两个30pf 的小电容,可以起到滤除总线上的高频干扰和一定的防电磁辐射的能力。另外在两根CAN总线接入端与地之间分别接了一个TVS,当CAN 总线有较高的电压时通过TVS的击穿而接地,可起到一定的过压保护作用。82C250 的Rs引脚上接有一个斜率电阻以降低CAN总线的向外辐射。

对于其他无内置CAN控制器的能够承受5V的TTL电平的处理器来说,只需改变与SJA1000的数据端口ALE/AS,RD/E,WR,CS,INT,RST相连接的引脚即可完成外扩CAN接口的硬件设计工作,否则在两者之间加一个逻辑电平转换的器件即可。

软件设计

对SJA1000的读写访问

由于LPC2131的48个引脚全是IO,所以需要通过软件模拟读写SJA1000的时序,来对SJA1000进行操作,进而完成CAN通讯功能。

依据SJA1000在Inbbb模式下的读写时序[4],可编写LPC2131通过CAN控制器SJA1000发送数据的写函数void WriteCan(uint8 Addr,uint8 Data)和接受CAN控制器所接受的数据的读函数uint8 ReadCan(uint8 Addr),其中Addr为SJA1000相应的寄存器的地址,Data为LPC2131所发送的数据,读函数ReadCan可返回所接受的数据。

CAN通讯的实现

要实现一个CAN通讯需要实现3个功能模块:对SJA1000的初始化模块;数据发送模块;数据接受模块。

·对SJA1000的初始化模块
在开始通讯之前,要在SJA1000的各个功能寄存器进行设置,包括模式寄存器,波特率,时钟分频器,中断使能寄存器,,滤波寄存器,输出控制寄存器。

uint8 IniSJA1000(uint8 BTR0,uint8 BTR1)
{
IO0CLR=CS;   //片选SJA1000
WriteCan(0,0x09); //进入复位模式
WriteCan(31,0xe8); //设置时钟分频器
WriteCan(4,0xfd); //设置中断使能寄存器 
WriteCan(16,AcceptCode1);//设置验收代码1
WriteCan(17,AcceptCode2);//设置验收代码2
WriteCan(18,AcceptCode3);//设置验收代码3
WriteCan(19,AcceptCode4);//设置验收代码4
WriteCan(20,MaskCode1); //设置验收屏蔽1
WriteCan(21,MaskCode2); //设置验收屏蔽2
WriteCan(22,MaskCode3); //设置验收屏蔽3
WriteCan(23,MaskCode4); //设置验收屏蔽4
WriteCan(6,BTR0); //设置总线时序寄存器1
WriteCan(7,BTR1); //设置总线时序寄存器2
WriteCan(8,0xfa); //设置输出控制积存器
WriteCan(0,0x08); //进入操作模式
OSCANMbox=OSMboxCreate(0);/建立CAN通
讯邮箱
if (OSCANMbox==NULL)
{
return FALSE;
}
return TRUE;
}

·数据发送模块
设要发送的数据的ID存储在数组ID[4]中,数据存储在数组SendData[8]中,其发送模块程序如下所示,其中参数DLC为发送的字节数,FF为帧类型,即0为数据帧,1为远程帧。
void Tx(uint8 DLC,uint8 FF)
{
uint8 i;
OS_ENTER_CRITICAL();
If (FF==0x01)
{
WriteCan(16,DLC+0x80);   //数据帧
}
else 
{
?WriteCan(16,DLC+0xd0);  //远程帧
}
WriteCan(17,ID[0]);
WriteCan(18,ID[1]);
WriteCan(19,ID[2]);
WriteCan(20,ID[3]);  //TX标识码
for (i=0;i WriteCan(21+i,sentdata[i]); //TX数据
WriteCan(1,0x01);//设置发送寄存器发送
OS_EXIT_CRITICAL();
}

·数据接受模块

根据电路图1,采用中断接受的方式来接受数据,LPC2131的P0.30设置为外部中断3,整个数据接受模块由数据接受函数void ReceiveData(uint8 *Rt)、中断处理函数Can_Exception(void)构成。当SJA1000接受到CAN总线数据,通过接收中断使得LPC2131产生外部中断3而使其进入中断处理函数,进而对接受到的数据进行处理。其中数据接受函数和中断处理函数如下:

void ReceiveData (void)
{
uint8 i, err,*Rt;
OS_ENTER_CRITICAL();
Rt=(uint8 *)OSMboxPend(OSCANMbox,0,&err);
//通过邮箱接受数据
for (i=0;i<13;i++)
ReceiveData[i]=*Rt++;  //将接受到的数据存在
全局变量中供后续处理
OS_EXIT_CRITICAL();
}
void Can_Exception(void)
{
uint8 temp[13],i;
OS_ENTER_CRITICAL();
for (i=0;i<13;i++)
temp[i]=ReadCan(16+i);//读取CAN数据
OSMboxPost(OSCANMbox,(void *)temp); //将
CAN数据以邮箱发送到接受函数
EXTINT=0x08; //清楚ENT3
VICVectAddr=0;  //中断返回
OS_EXIT_CRITICAL();
}

结语

以ARM芯片作为主控制器,CAN总线作为方式来进行通讯的嵌入式系统得到了越来越广泛的应用。同时CAN通讯的性也成为影响系统性能的关键部分之一。本文以LPC2131为例,给出了一类微处理器与CAN控制器SJA1000之间的较为通用的硬件连接方法,对CAN总线进行了性设计,并基于嵌入式实时操作系统μ-II进行了CAN通讯软件开发,该设计现已在工厂车间中的分布式监控系统中得到了应用,运行、稳定。


1 PLC系统中干扰的主要来源及途径

1.1来自空间的辐射干扰

空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。

    1.2来自系统外引线的干扰

主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。

1.2.1来自电源的干扰 

PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,入开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。

    1.2.2来自信号线引入的干扰 

与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:

通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;

信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

1.2.3来自接地系统混乱时的干扰

接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。

PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将大。

此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

1.3 来自PLC系统内部的干扰

    主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。

2主要抗干扰措施

2.1 采用性能优良的电源,抑制电网引入的干扰

在PLC控制系统中,电源占有重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU 电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于PLC系统供电的电源,一般都采用隔离性能较好电源,而对于变送器供电的电源和PLC系统有直接电气连接的仪表的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但普遍还不够,主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。

此外,为保证电网馈点不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的性。并且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。

2.2 电缆选择的敖设

为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆。笔者在某工程中,采用了铜带铠装屏蔽电力电缆,从而降低了动力线生产的电磁干扰,该工程投产后了满意的效果。

不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敖设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敖设,以减少电磁干扰。

2.3 硬件滤波及软件抗如果措施

由于电磁干扰的复杂性,要根本迎接干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的性。常用的一些措施:数字滤波和工频整形采样,可有效周期性干扰;定时校正参考点电位,并采用动态零点,可有效防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件陷阱等提高软件结构性。

对干较低信噪比的模拟量信号.常因现场瞬时干扰而产生较大波动,若仅用瞬时采样植进行控制计算会产生较大误差,为此可采用数字滤波方法。现场模拟量信号经A/D转换后变成离散的数字信号,然后将形成的数据按时间序列存入PLC内存。再利用数字滤波程序对其进行处理,滤去噪声部分获得单纯信号, 可对输入信号用m次采样值的平均值来代替当前值,但井不是通常的每采样。次求一次平均值,而是每采样一次就与近的m-l次历史采样值相加,此方法反应速度快,具有很好的实时性,输入信号经过处理后用干信号显示或回路调节,有效地抑制了噪声干扰。

由干工业环境恶劣,干扰信号较多, I/ O信号传送距离较长,常常会使传送的信号有误。为提高系统运行的性,使PLC在信号出错情况下能及时发现错误,并能排除错误的影响继续工作,在程序编制中可采用软件容错技术。

2.4正确选择接地点,完善接地系统

接地的目的通常有两个,其一为了,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

系统接地方式有:浮地方式、直接接地方式和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体接地点以单的接地线引向接地。如果装置间距较大,应采用串联一点接地方式。用一根大截面铜母线(或绝缘电缆)连接各装置的柜体接地点,然后将接地母线直接连接接地。接地线采用截面大于22 mm2的铜导线,总母线使用截面大于60mm2的铜排。接地的接地电阻小于2Ω,接地埋在距建筑物10~15m远处(或与控制器间不大于50m),而且PLC系统接地点与强电设备接地点相距10m以上。

信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接点。

3 结  语

以上的措施,经若干PLC控制系统现场实际运行表明,能够基本现场干扰信号的影响,保证系统的运行。PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,对有些干扰情况还需做具体分析,采取对症的方法,才能够使PLC控制系统正常工作。
一、项目背景 
   油田是一个以油气生产为主,集勘探、开发、施工作业、后勤辅助生产、多种经营、社会化服务为一体的,门类齐全的国有特大型企业。油田的勘探、钻井、测井、录井等是野外作业,流动性强,点多、分散、距离长,施工现场与公司之间的信息交流长期以来没有好的解决方案。油田管理层十分重视油田信息化建设,明确提出了未来一个时期油田信息化建设的具体目标。 
   借助“油井数据监控系统”,管理人员足不出户就可以通过该系统随时观测到油井的生产状况。油井工作的相关数据每隔两小时传输一次,机井一旦出现故障,示意图就会标示感叹号,维护人员就能够在短的时间内赶到现场,及时排除故障。以前,采油测试工要到每个现场进行测试,费时费力不说,对每口井的工作状态也很难把握,有时一口井发生故障,往往许多天后才发现。 
二、GPRS方案的优势 
油田工作环境恶劣,雷击、地震及人为破坏等时有发生,怎样把油井运行的相关数据传送到控制室一直是个难题。以前,油田曾采用微波、数传电台的方式采集数据,但实际使用过程中,效果不理想,高成本的投入和频繁的维护让采油单位不堪重负。引入了GPRS钻井数据上报系统之后,通过固定在机架上的传感器,管理人员可以及时了解各个机井的工作压力、采油时电压、蒸汽温度等数据,从而确保了油井的运转。 
油田还可依托GPRS/GSM网络,实现了抄表自动化、化。用电控制对油厂用电的运行状态可以通过电子显示屏进行监控,每个控制点将用电状态以短信息的形式及时传送到控制,这样就可以自动、、及时地掌握油田用电情况,自动生成配电计划,实行科学的电力营销和管理。这套装置克服了以前人工抄表准确率低、费时费力、缺少集中有效的管理的弊端,解决了生产的后顾之忧。 
三、解决方案介绍 
(一)系统结构 
1、油田信息点:采用飞旗科技的WIXUM GPRS透明无线终端,通过RS232/RS485/TTL与油田设备采集点连接,接入移动公司为油田站提供的的GPRS网络,网络对油田信息点的接入、时间、数量没有限制可以随时增减。可以满足山区、偏远地区和跨地区接入的需求。 
2、油田站:本系统中网络代理服务器可采用ADSL、LAN等INbbbNET公网连接,采用公网固定IP, GPRS终端上电后,它会根据预先设定在其内部的IP地址来主动访问网络代理服务器,通过代理服务器和监控建立TCP/IP链路。监控主站本身维护接入的每个终端的IP地址和ID号,当主站要向某个监控终端提出数据请求时,它会根据IP地址和ID号来找到对应的终端,将命令下发到该终端,终端响应后通过GRPS终端把数据发到网络代理服务器端口,通过端口影射转发到监控主站,即完成了一个应答式的通讯流程,当油田信息点数量增加,不用扩容即可满足需求。 

(二)产品特性 
油田信息传输系统采用WIXUM GPRS DTU。产品基于中国移动的GPRS网络,提供RS232、RS485、TTL接口,利用GPRS数据业务实现无线联网,产品支持各种行业应用,如实现实时认证、的远程控制维护、远程业务点接入等。在油田信息传输系统方案中,WIXUM GPRS DTU可通过外置或嵌入方式与油田信息点设备连接。 
1、支持900/1800/1900MHz三频GSM/GPRS。 
2、接口: RS232、RS485、TTL。 
3、系统理论传输速率171Kbps,实际传输速率40Kbps。 
4、支持bbbbbbs95/98/2000/XP/LINUX操作系统。 
5、透明:WIXUMEP-DTU内嵌TCP/IP协议,为用户的数据设备提供透明传输通道; 
6、自动拨号连接:WIXUMEP-DTU可配置上电自动拨号上网、连接网络,同时支持用户端发起命令连接或远程唤醒连接; 
7、短信息备用数据通道:在GPRS网络无法连接时可启用短信作为备用通道; 
8、短信息远程维护功能; 
9、实时监测网络连接情况,掉线自动重拨功能; 
10、提供主副IP及动态域名解析; 
11、心跳报告时间间隔用户可设定; 
12、数据通信帧长度用户可设定; 
13、支持功能。 
14、安装灵活、使用方便、。 
(三)系统功能 
1、数据检测功能:自动监测、记录采油设备上的电压、电流、电度、温度、压力、流量、液位、界面、含水、示功图、红外报警等数据。采集数据的格式为模拟、数字和串行通信口。还能完成流量和电度的积算。 
2、数据共享功能:所测数据以及采油设备的工作状态可以传输到局域网上,实现多方远程数据共享。 
3、显示功能:总流程显示、分组流程显示、全部数据列表、分组数据列表、单个仪表历史数据列表,对于日、月、年显示、故障列表显示。 
4、辅助分析功能:及时发现停电、缺相、油管堵塞、盗油、液面过低、配重不平衡等异常情况。 
5、报警功能:如果检测值过设定范围,即声光告警,并能在屏幕上显示出现问题的仪表名称以及参数出的范围,若有多个数据报警,将按顺序显示值列表。 
6、权限设置功能:权限设置分一般操作员、管理员、级系统管理三种。利用输入用户名和密码加以限制 
(四)措施 
本系统需要高的系统和稳定性。主要是防止来自系统内外的有意和无意的破环,网络防护措施包括信道加密、信源加密、登录防护、访问防护、接入防护、防火墙等。稳定是指系统能够7×24小时不间断运行,即使出现硬件和软件故障,系统也不能中断运行。 
数据可通过公网使用接入到移动GPRS网,采用方式成本比较低,企业不用租用专线,还可以利旧使用原有的设备,移动终端需要安装具有二次的功能的软件。通过方式,客户端在连接应用服务器前,要经过Radius服务器的认整个数据传送过程得到了加密保护,性比较高,可充分速度和网络服务质量。另外,数据也可以采用APN接入方式,租用专线接入到移动公司的GGSN设备上,这种成本高,性高、稳定。对于性要求非常高的系统,可考虑在APN接入的基础上再加上接入方式的混合接入方式,进一步提高系统的性。 
1、虚拟专网模式:企业内部网络中配置服务器,移动终端加载具有二次的功能的客户端软件。采用技术,用户通过接入企业内部虚拟专网的方式与Internet进行隔离,可对整个数据传送过程进行加密保护,有效避免非法入侵。 
2、利用SIM卡的性,对用户SIM卡号码进行鉴别授权,在网络侧对SIM卡号和APN进行绑定,划定用户可接入某系统的范围,只有属于行业的SIM卡号才能访问APN,移动终端与数据采用中国移动分配的专门的APN进行无线网络接入,普通的SIM卡号无法呼叫专门的APN。 
3、对于特定用户,可通过数据分配特定的用户ID和密码, 其他没有数据分配的用户ID和密码的用户将无法登录进入系统,系统的性进一步增强。 
4、数据加密:通过对整个数据传送过程进行加密保护。 
5、网络接入鉴定机制:采用防火墙软件,设置网络鉴权和防范功能,系统。 
四、结论 
该监控系统中,使用组态软件和GPRS无线数传终端,系统无线遥测遥控主机(RTU)将检测到的单口采油井的现场状态,通过无线方式传送给监控,从而实现各单井状态的集中监控,减少人员投入,有力的缩短油井故障发现和排除时间,大的提高了生产效率,同时系统的性价比特高。另外,本系统还非常适合输油管漏油,盗油监测,在多家采油场中使用,了较好的经济效益和社会效益。 



http://zhangqueena.b2b168.com

产品推荐