产品描述
三亚西门子授权一级代理商电源供应商
随着机器人技术的发展,机器人技术在各行各业中得到了广泛的应用。机器人作为执行机构,具用控制方便,执行动作灵活,可以实现复杂的空间轨迹控制。特别适用于多品种,变批量的柔性化生产。我公司以德国HOERBIGER公司直角坐标机器人为产品,开发了多种工业自动化产品,如涂胶机、点胶机、自动上下料机械手、码垛机、探伤检测设备。
直角坐标机器人在铝锭码垛机上的应用
直角坐标机器人在码垛机上的使用越来越多,其特点是负载 范围大,小到几公斤,大到几吨;运行速度快,且速度可调整; 动作灵活,可以完成复杂的码垛任务;性高,维护简单。
要求:按层码垛
运动空间为三维,四自由度运动。
行程:X方向2200mm, Y方向1500mm, Z方向1200mm, 水平旋转:+-900
能够和生产线融为一体,有良好的通讯。
大负载重量为150Kg,额定负载125Kg。层与层间成90度角交叉排放。
每垛共九层,垛高1000mm。
快码垛速度为1000mm/s,平均速度为500mm/s。
码垛精度:1mm
根据以上要求,我们设计了一台四坐标机器人。介绍如下:
机器人组成:
该机器人由安装架、机器人定位系统、伺服驱动系统、供胶系统及涂胶、控制系统及电控配电系统、防护装置等组成。
1、机器人安装架
因为该机器人码垛机的运动速度很快,起停状态对安装架有很大的冲击。安装架有非常好的刚性才能保证机器人运行的稳定。
我们为此设计了焊接钢架结构作为支撑架。又因为铝厂有较大的灰尘水气,我们在机器人的上部分设计了铝架结构,并用玻璃罩将机器人罩住。使用铝型材的好处是重量轻。
2、机器人定位系统
机器人定位系统是整台设备的,为德国HOERBIGER公司产品,运动速度快,而重复精度比较高高, X,Y,Z三坐标均选择为同步齿形带传动,单坐标重复定位精度为0.05mm,快直线运动速度:1000mm/s。其中X坐标轴为两根长度为3000mm,跨度为2200mm的定位系统,由同步传输器保证两根定位系统运动的同步,由一台3000W伺服电机驱动。出于驱动扭矩及惯量的匹配,需要配一台行星减速机。
Y轴选用双定位系统,之所以选者如此大截面的定位单元,主要是因为Y轴为双端支撑,中间悬空结构,如果选择的截面不够,将不能保证机器人运动的平稳性,机器人在高速运动时将发生振颤。两根定位单元并排使用,将Z轴夹在中间,能够很好的平衡负载,这种安装方式具有非常好的稳定性。两根定位系统由一台2500W伺服电机驱动,出于驱动扭矩及惯量的匹配,需要配一台行星减速机。
Z轴定位系统牢固稳定。该产品一般滑块固定而定位体作伸缩式运动,驱动定位体的伺服电机驱动和滑块安装在一起。该伺服电机因需要将物体快速提升,需要克服很大的重力和加速力,需要较大的功率才可以。
实际应用中我们选择了一台4000W带抱闸的伺服电机,匹配了一台一台行星减速机。
旋转轴与Z轴是集成在一起的,通过在Z轴定位体添加一根贯穿的长轴实现的。长轴的上端作为驱动端,与伺服电机安装在一起。
长轴的下端作为负载端,用于安装物体。因物体较重,转动惯量较大,不能直接安装在驱动轴,加一台盘式减速机才能匹配。伺服电机的动力先由长轴传输到减速机再传输到负载,就实现了旋转负载的功能。
3、伺服驱动系统
该码垛机器人的选用具有Profibus 功能的伺服电机。每个运动轴配有一台伺服电机及一台减速机,四个运动轴,共四套伺服电机和四台减速机,其中垂直运动轴为带抱闸伺服电机。
4、机器抓手
该机械手选用德国菲施托气动机械手,压力可调,配备压力缓冲阀,使夹持动作平稳抓手上装有感应机构,能够自动感知物体,并通知控制进行物体抓放。
5、控制系统
控制系统由大型PLC、触摸屏组成。该系统拥有强大的Profibus通讯功能。能够将数据实时传输给以太网,能够将控制指令以总线的方式发送给伺服系统,使整个的运动相当流畅。该系统可预置多种工件的程序,换品种时可在触摸屏上调用相应程序。
6、防护装置
该机具有故障提示及报警功能,并且每次出现故障时都能准确的反映出故障具体位置,便于排除故障,主要包括:机器人碰撞保护功能;工件安装到位检测;光幕保护。
根据工作平台的有效面积是4000*2500mm,这里要选择一个有效行程为4000*2500*200mm的三维机器人。为了测量每个产品的准确位置,我们在机器人的Z轴上装上CCD相机,由机器人按事先定好的位置运动到被测产品的上面,CCD镜头与被测产品的表面的高度是100mm,保证视场是40*40 mm。
由于CCD相机及所配电缆的总重量大约500克,测量用插头及所配电缆的总重量大约1000克,向上拔测量用插头的力量大约1000克,Z轴总负载大约为2500克,所以Z轴负载为5公斤的抓取式导轨。考虑到可能有几种不同高度的产品要检测,Z轴的行程选为200mm。Z轴自重加上所有负载和驱动电机为11.6公斤,Y轴选择有效行程为2500mm, Y轴自重加上所有负载(Z轴)和驱动电机为42.3公斤。根据Y轴,Z轴重量及所有负载和驱动电机的总重量X轴有效行程为4000mm。
四 控制结构和CCD相机
该机器人的控制系统采用德国运动技术公司(Movtec)的三轴运动控制卡DEC4DT和运动控制软件Editasc。DEC4T3运动控制卡是基于PC机,控制3台步进电机和数字伺服电机的运动控制卡。EdiTasc不仅是MOVTEC公司各种控制卡配套的通用数控软件,它也是一个高度开放的开发平台,可以直接控制各种工业自动化设备,或方便的开发用户页面及控制系统。DEC4T3自带36路数字输入输出口,来作为限位开关,控制CCD和起动检测仪器。
CCD相机选用德国Vision Components GmbH公司智能摄像机VC2028。其配置如下:CCD芯片是Sony 1/2” 640*480点,每秒25桢图像,存储器配置是16 MB SDRAM, 2 MB Flash Eprom, 8 bit overlay, CPU是TMS320C62XX,速度是1200MIPS (每秒1200百万指令)。VC2028通过自带RS232口 可以把位置数据传给PC机。VC2028还自带4路数字输入口和4路数字输出口。视场范围是40mm×40mm。
五 工作过程:
整个工作台上有50×50个产品,X轴方向有50行,Y轴方向上有50列,每个产品占80*50mm的工作台面。先对行的个产品进行检测,然后是行的二个产品,如此依次到然后是行的五十个产品。完成对行所有产品的检测后,再对二行上从列上的产品到五十列上的产品依次逐个进行检测。如此依次逐行逐列对所有产品进行检测。
利用EdiTasc通用数控软件的Mtasc语言可以很方便简单地完成上面的定位运动。 程序结构大体如下:
I = -1; /* 行位置变量 */
J = -1; /* 列位置变量 */
For 50 { /* 逐行检测产品 */
I = I + 1;
For 50 { /* 逐列检测产品 */
J = J + 1;
If (bbbbb1 == 1) { /* 输入口1,一个产品检测完信号,可以运动到下个产品上面 */
Xposi = I * 80 + 40; /* 下个产品的行位置 */
Yposi = J * 50 + 25; /* 下个产品的列位置 */
X Xposi Y Yposi MF ; /* Z轴快速运动到该产品上方 */
Wait 0.0; /* 等待0.0秒,目的是保证Z轴已运动到该产品上方*/
}
Out Output1 /*输出口1给CCD像机信号,Z轴已到产品的上面,CCD可以工作*/
}
从机器人把Z轴和上面CCD相机运动到产品上面后,CCD相机检测到开始新的位置检测工作信号后,摄取一副图象。图象处理软件的功能大体如下:1)步是先对图象二值化处理,由于采用近似平行光从侧面照明,产品的两个几乎相互垂直的外边可以很清楚地被出来。2)二步是对两个几乎相互垂直的外边的位置进行推算,为得当准的位置,利用像素间差补。3)把得到的位置数据传给EdiTasc软件。EdiTasc通用数控软件得到新的位置数据后,根据所得位置的差来移动X轴和Y轴到产品上面。实际中0.1mm的位置差用百格拉的机器人很轻松得到保证。
到达产品的正上方后机器手把测量用插头准确插入产品信号端子上,先给产品通电,然后测量仪器按一定时序发出信号,并接收该产品对应各个功能时的输出信号,并以此为依据来判断产品是否合格。
六:结论
采用直角坐标机器人后使上面的产品质量速度大为提高,而且没有忘现象出现。省去打量人力,大量降低成人工成本。该机器人运行一年后就收回所投入的成本。该机器人在正常维护下至少运行十年。实际中下面的领域是几个典型的直角坐标机器人的应用:1)从面包包装,鸡蛋喷码,BOURJOIS公司和LAUDER化妆品公司口红的装配和包装,很多的包装;2)精密工件到电子产品的装配,和包装:如西门子和诺基亚的手机生产中,菲利浦和Suntec的电子元件生产线;3)其它一些大批量产品的生产过程中的检测和装配。4)大众和奔驰公司的汽车的生产线,博世公司厂内自动化生产线,海德堡印刷机生产线上。 随着大批量全自动化生产的迅猛发展及很多产品要在许多生产环节**被检测,这类直角坐标机器人将具有加广范的市场前景和发展潜力!
直角坐标机器人概念:工业应用中,能够实现自动控制的、可重复编程的、多功能的、多自由度的、运动自由度间成空间直角关系、多用途的操作机。他能够搬运物体、操作工具,以完成各种作业。关于机器人的定义随着科技的不断发展,在不断的完善,直角坐标机器人作为机器人的一种,其含义也在不断的完善中。
根据对于这一概念的分析,我们作如下阐述:
一、直角坐标机器人的特点:
1, 多自由度运动,每个运动自由度之间的空间夹角为直角。
2, 自动控制的,可重复编程,所有的运动均按程序运行。
3, 一般由控制系统、驱动系统、机械系统、操作工具等组成。
4, 灵活,多功能,因操作工具的不同功能也不同。
5, 高性、高速度、。
6, 可用于恶劣的环境,可长期工作,便于操作维修。
二、直角坐标机器人的应用:
因末端操作工具的不同,直角坐标机器人可以非常方便的用作各种自动化设备,完成如焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、、(软型)喷涂、目标跟随、排爆等一系列工作。特别适用于多品种,便批量的柔性化作业,对于稳定,提高产品质量,提高劳动生产率,改善劳动条件和产品的快速新换代期着十分重要的作用。
三、直角坐标机器人的分类:
1,按用途分:焊接机器人、码垛机器人、涂胶(点胶)机器人、检测(监测)机器人、分拣(分类)机器人、装配机器人、
排爆机器人、医疗机器人、特种机器人等。
2,按结构形式分:壁挂(悬臂)机器人、龙门机器人、倒器人等
3,按自由度分:两坐标机器人、三坐标机器人、四坐标机器人、五坐标机器人、六坐标机器人。
还有其他一些分法,这里就不一一介绍了。
四、直角坐标机器人元件——直线定位单元
为了降低直角坐标机器人的成本,缩短产品的研发周期,增加产品的性、提高产品性能,在欧美的许多国家都已将直角坐标机器人模块化,而直线定位单元(系统)则是模块化的典型的产品。
一个完整的定位单元(系统)由几部分组成
1,定位体型材:作为轨道的安装支撑部分,该型材不同于一般的框架型材,它要求非常高的直线度,平面度。
2,运动轨道:安装在定位体型材上,直接支撑运动的滑块。一个定位体型材(系统)上,可能安装一根运动轨道,也可能安装多根运动轨道,轨道的特性及数量直接影响定位单元(系统)的力学特性。组成定位系统的轨道种类很,通用的有直线滚珠轨道,直线圆柱钢轨道。
3,运动滑块:由负载安装板、轴承架、滚轮组(滚珠组)、除尘刷、润滑腔、密封盖组成。运动滑块与轨道通过滚轮或滚珠藕合在一起。实现运动的导向。
4,传动元件:通用的传动元件有同步带、齿形带、丝杠/滚珠丝杠、齿条、直线电机等。
7, 轴承及轴承座:用于安装传动元件及驱动元。
五、直角坐标机器人驱动元件——电机驱动系统
直线定位单元(系统)之所以能够实现的运动定位,是由电机驱动系统决定的。
常用的驱动系统有:
交流/支流伺服电机驱动系统、步进电机驱动系统、直线伺服电机/直线步进电机驱动系统。每一个驱动系统都由电机和驱动器两部分组成。驱动器的作用是将弱电信号放大,将其加载在驱动电机的强电上,驱动电机。电机则是将电信号转化成的速度及角位移。
在要求高动态,高速运行状态、大功率驱动等场合多用交流/支流伺服电机系统作为驱动;在要求低动态,低速运行状态、小功率驱动等场合可用步进电机系统作为驱动;而在在要求高动态,高速运行状态、高定位精度等场合才会用到直线伺服系统驱动。
六,直角坐标机器人的灵魂——控制器
为实现机器人的灵活多变的运动功能、的反应处理功能,机器人要有一个大脑——控制器。
控制器的功能是指令源,它可以根据编号的程序时时发出控制指令、时刻接受反馈信号、时刻判断处理信息。
根据功能的不同,控制器可以有很多种:
1, 工控机与运动控制卡的组合:运动控制卡借用计算机的资源,利用自身的运动控制功能实现控制。
2, 脱机运动控制卡:借用计算机编好程序,可将程序自我存储,脱机运行。
3, PLC-借用计算机编好程序,可将程序自我存储,脱机运行。
4, 控制器。
七,直角坐标机器人的终端设备——操作工具
直角坐标机器人的终端设备应用途不同,可以装配各种各样的操作工具:
如焊接机器人的终端操作工具是焊:码垛机器人终端操作工具是抓手;涂胶(点胶)机器人终端操作工具是胶、检测(监测)机器人终端操作工具是相机或激光。
有些工作复杂的工作,单一操作工具不能完成,需要安装两个或以上操作工具才可以。如对于非固定轨迹运动物体的抓取除需要机械抓手外,还需要一个相机,时刻跟踪计算物体的空间位置。
液体称重法在化工生产DCS计算机控制系统中的改进 | ||
|
液体称重配料DCS计算机控制系统性能指标
·系统的DCS计算机采用总线设计、结构合理、扩展、维护方便、系统完整;
·系统具有1∶1板件热备,带电拔插,软件功能功能;
·系统称重计量范围0.1-10t;
·系统控制计量精度≤5‰;
·系统外围模块齐全,信号隔离器、配电器及控制输出栅齐备,适应各种恶劣生产环境。
2、 实行的技术路线及方案
本方案用三只称重传感器替代转子流量计或电磁流量计等常规液体检测仪器来进行液体计量。
三只压力传感器,按120度方向均匀分布在计量槽支撑点上,用一只传感放大器,将三只传感器信号叠加放大到4-20mA电流信号,通过屏蔽线传入DCS系统,并将计量槽的皮重通过调零电路预先去掉。
计量控制原理图 传感器分布示意图
计量系统(含计量槽,传感器,放大器,软接系统)安装完成后,先用25kg砝码若干只,(合计重量应在待测的量程一半以上),通过现场标定,确定标定系数,从而校正计量系统,使之精度控制在2‰以内。
备料前,先在微机上设好备料数,输出一开关量信号,打开备料泵,通过计算机实时监控判断,至控制值减余值为止,关闭备料泵,引入余值是为了防止冲料过量,对余值在不同设定值下标定,能使备料接近设定值。
备料完成后,然后慢慢打开气动执行器,每秒对计量槽进行检测,并将采样值在缓冲区保存,上次保存数据减去本次采样值,通过换算,得出本次实际流量,计算机将该流量信号与设定值进行比较,经PID公式计算输出一个控制信号,控制气动执行器的阀开度,通过不断修正,使液体流量输出保持在设定值左右,直至计量槽中物料减至下限,重新开始备料和流量控制,周而复始循环。减量法针对现场的重复性干扰及信号零漂、温漂等具有较强的误差能力,因而,常规计量器具受工业现场的限制,累积误差较大,而采用该工艺,一般累计误差可控制5‰以内,且稳定、。
在总结现有国内DCS控制系统技术成果基础上,遵循DCS系统软、硬件标准,确定以总线为基础,进行整体工艺设计和项目开发,并保证硬件与流行系统的兼容性和软件的通用性、可移植性。
目前进展及国内外同类产品比较
由浙江省科学技术情报研究所检索结论表明,目前国内、均没有关于“减量法”计量工艺运用于DCS系统液体测量与控制及综合生产管理系统的先例,该项目一项。
意大利VEMATIC公司生产的GEO系列多嘴旋转包装机与其它包装机相比,其硬件上的特点之一是运动部分与静止部分信息交换采用MagicBox-光电耦合接口替代传统的机械馈电滑环,性能加。特点之二是用编码器取代了接近开关检测各嘴的位置,使去皮、装料和掉袋动作控制。软件特点是采用了袋重偏差自动修正算法。以下简要介绍该包装机计量系统的特点以及常见故障处理,以期对同类设备的设计与维修有一定的借鉴作用。
1 计量控制系统的结构与特点
1.1 控制系统结构与功能
图1是该包装机控制系统方框图。包装机上每个卸料口有1套立的称重控制单元(Ventodigit),通过连接的荷重传感器检测灌装重量,完成卸料闸门的启闭、排灰叶轮的开停以及落袋等全部控制过程。每个控制单元都挂接在通信总线上,但互不影响。机上控制单元的通信总线由称为Ventoring的单元进行管理,并实时传递到Magic-Box(光电耦合接口),实现包装机旋转部分与静止部分控制设备间的通信。
各卸料口的位置由安装在包装机立轴上的光电编码器进行检测。该信号在Magic-Box节点转换成通信信号通过Magic-Box发送到旋转部分各卸料口的控制单元,用于协调控制灌装过程中的自动去皮、开闭闸门以及卸袋动作的正确位置。Magic-Box节点还将来自称重控制单元的报警信息发送到主节点,并由主节点送到键盘控制台显示。同时它还将包装机产量设定信号转换成模拟电压信号,控制变频器来调整包装机转速。
连接在通信总线上的键盘控制台主要完成以下功能:
1)用于输入控制单元Ventodigit和外围辅助设备的组态参数。
2)启动停止包装机运转,调整包装机产量。
3)启动停止包装机的喂料。
4)手动测试某卸料口的功能。
5)调整设定光电编码器的基准位置。
PLC节点主要用于控制包装机以及外围上下游辅助设备的工作联锁。如包装机小料仓内的料位控制、卸带及破损包装袋的处理等。
主节点是控制系统的协调,它处理连接到网络上所有设备的各种信息。
1.2 灌装工作过程及显示
称重控制单元的一个特点是不仅实时显示包装重量而且随各卸料口的工作进程显示相应代码。当卸料口一切备妥时显示代码“P”;插入包装袋并被控制单元检测到时显示变为“b”。当卸料口旋转到预置的自动去皮位置时,开始包装袋自身以及称量平台上积灰等额外重量,显示代码“C”,同时重量显示变为“0”。随后卸料闸门打开,排料叶轮起动,这一阶段为快速灌装,显示代码“U”。如果此时灌装速率9kg/3s,控制单元则认为包装袋未能正确与卸料口吻合或包装袋破裂,停止继续工作并自动卸载包装袋。当包装袋重量达到预定的参数值时(75%额定包装袋重量),卸料闸门部分打开,包装袋充填速度减缓,这时显示代码“L”。当灌装重量达到额定值时,卸料闸门关闭,排料叶轮停止运转,显示代码“F”。控制单元寄存本次称量结果,以备后续灌装控制误差修正之用。当卸料口到达输送皮带位置时,灌装好的包装袋被释放,显示代码“n”,完成一个灌装过程。
1.3 袋重偏差的自动修正
由于各种因素的影响,每一袋装袋灌装的物料量并不与设定的额定重量相同。因此为保证袋重精度,及时修正袋重偏差是十分必要的。
袋重偏差的自动修正并非简单地用上一袋实际重量与额定值的偏差来修正下一袋的灌装重量。而采用了误差限制和算术平均的计算方法来正确的修正值。
,当实际袋重与额定重量之间偏差过大,出设定的误差范围时(一般误差限设为±1.5kg),该袋重值不被计入平均值计算过程中,而是给出报警提示代码。因为产生较大的误差往往是由于系统中某些部件损坏或工作异常造成的,如不进行检修是不能解决问题的。
开始灌装后因无以前寄存的袋重数据,1袋实际重量与额定重量的偏差用于计算后续2袋与3袋的额定重量。新的额定重量为1袋的额定重量减去1袋的偏差量。当2袋与3袋灌装完成后计算实际平均重量与当前额定重量的偏差,然后再用当前额定重量减去这一偏差作为4~7袋的额定重量设定值。根据4~7袋实际重量的平均值与当前额定重量的偏差,用上述同样方法计算出8~17袋的额定重量设定值。以后每10袋计算1次实际灌装重量平均值与当时额定重量的偏差,并以此值修正后10袋的额定重量。
2 常见问题原因及处理
2.1 调速电动机变频器工作频率的设定
包装机的产量可以通过键盘控制台设定,由Magic-Box节点转换成0~10V控制电压信号,并送到变频器输出电源频率设定信号输入端,通过改变交流电动机电源的频率来调整电动机的转速,实现包装机产量的调整。为使设定产量与实际产量对应,在安装调试时进行一次变频器输出电源频率的调整是必要的。而平常产量设定根据插袋工的熟练程度决定,一般设为1500~2000袋/h。
通过公式(1)计算出额定产量为B(袋/h)时对应的变频器额定频率:(1)
式中:
i——减速器速比;
p——电动机对数;
m——卸料口数量。
公式(2)作为经验公式可方便地求得与包装机设定产量一致的变频器频率值:(2)
式中:
fD——工厂设定频率缺省值;
Bs——设定产量值;
Ba——实际产量值。
再将该值置入变频器的组态参数菜单中即可。
2.2 卸袋动作位置不正常,包装袋不能准确落到输送皮带上
包装机的卸袋位置是由卸料口位置光电编码器发出的信号决定的。这种故障显然是因编码器发生问题所致。一种原因是换编码器后未能重新寄存编码器的基准位置或卸袋位置参数调整不当。编码器的基准零位是以1号卸料口处于卸袋输送皮带线时的值为参考基准。由于其它各卸料口均匀分布,故其它各卸料口的位置均是在此基础上通过程序推算出的。如果1号卸料口定位不准确则会造成基准偏差,使所有卸料口出现卸袋动作位置不正常。这种情况下,需人工将包装机的1号卸料口转到正对卸袋输送皮带线,重新寄存编码器基准零位。另外还须检查卸袋位置参数是否合适。
另一种情况是个别卸料口随机出现卸袋位置不正常,这往往是因编码器自身故障造成的。它是12比特型角度编码器,内部的码盘一周被分成4096个扇区,每一扇区对应12对光电元件。如此精密的传感器一旦由于振动过大或进入一些灰尘会造成光电元件不能正常检测,从而产生错误的位置代码,导致卸袋位置偏差。出现这种故障时需换编码器并要将其密封好。
2.3 包装袋在线不能正常工作
包装袋在线是靠安装在卸料口袋夹上的压缩空气喷嘴的压力来实现的。正常工作时,如果没有包装袋夹在卸料口上,喷嘴排出的压缩空气得以释放,残留压力很低,用于检测的压力开关接点断开;而当包装袋被袋夹夹紧时,压缩空气不能排出使喷嘴压力增高,压力开关接点闭合。称重控制单元收到该信号后在卸料口旋转到灌装启始位置时卸料阀门打开,排料叶轮运转,往外输送物料。
包装袋在线不能正常工作主要有2种情况:
一种是包装袋未在线,但在灌装位置却起动灌装。这是因为袋夹处的压缩空气喷嘴及其管路被物料堵死,造成压缩空气压力不能释放,产生误信号所致。只要对管路及喷嘴进行清理即可解决问题。另一种情况是包装袋已在线但灌装不能起动,这是因为称重控制单元未接收到包装袋已在线的信号。应检查检测压力开关与控制单元间的接线是否正常,其次检查喷嘴处压缩空气的压力是否足够。如果压力较低应检查气源管路是否被异物堵塞。如果压力足够而无信号响应则应检查压力开关设定值是否合适。
2.4 二次灌装失败,出现“ErrBL”报警信息
这种故障往往是由于卸料口处积料结垢使卸料口通径变小、阻力增大而不能将包装袋充满引起。另一种原因是由于物料湿度大、流动性差造成排料叶轮处出现空洞,物料无法排出。只有对结垢和包装机灌装仓内进行清理才能这种故障。
2.5 自动去皮失败,出现“ErrAU”报警
自动去皮参数的大小应根据单个包装袋的重量和称量平台上可能的积料重量适当选取,不易过大。否则当计量系统发生故障导致皮重变化时不易及时发现。当称量平台上沉积的物料长时间得不到清理,积累过多时会出现出自动去皮范围出现报警。只要将沉积的物料掉即可解决问题。另一种原因是由于荷重传感器损坏或称量平台力传递系统的弹性钢片固定螺丝松动或断裂导致皮重变化过大,出去皮范围,此时应对损坏部件换并紧固好固定螺栓。
产品推荐