贵阳西门子一级代理商交换机供应商
  • 贵阳西门子一级代理商交换机供应商
  • 贵阳西门子一级代理商交换机供应商
  • 贵阳西门子一级代理商交换机供应商

产品描述

产品规格模块式包装说明全新

贵阳西门子一级代理商交换机供应商

1 引言
SIEMENS s7—200系列PLC在各个行业中的运用均很普遍,而消防火灾报警及其处理系统对于发生火灾时人员生命和财产的具有十分重要的意义。但是目前国内利用PLC来实现消防报警及处理系统的控制还不十分广泛。本文结合实际,讨论了使用PLC来实现消防报警及处理系统的设计与应用。 
2 消防报警及处理系统的硬件构成
主要组成部件有:
1上水箱。2下水箱。3上水箱水位传感器。4下水箱水位传感器。5上水箱供水泵A。6上水箱供水泵B。7 下水箱供水阀。8声光报警器。9排烟风机。10烟感和温感传感器。11 喷淋泵。12 喷淋头。  
    本实例选用西门子公司的SIEMENS s7—200系列PLC,此系列的PLC具有结构紧凑、模块化、可扩展性强、指令集丰富等特点。所选用的CPU型号为CPU 224 可扩展7个模块,大达94DI/74DO,16AI/16AO(模拟量输入/模拟量输出)并且提供14个数字量输入和10个数字量输出。输入/输出接口电路均采用了光耦合电路,对外界接口具有很强的适应性。由于使用了电动调节阀,所以还扩展了一个EM 232模拟量输出模块。该模块具有2路模拟量输出,电流输出量程为0~20mA,电流全量程分辨率为11位,25°C时的精度为±0.25% ,稳定时间为2ms。可满足比较复杂的控制系统的要求。
3 系统所要实现的功能描述如下:
当系统上电后,烟感报警器或者温感报警器发出信号后,系统进入运行状态。
(1) plc控制打开喷淋泵,并计时10s。如果10s计时结束后,喷淋管道内没有水生(水流传感器的水流信号)。关闭喷淋泵,并打开喷淋泵的工作故障灯,等待工作人员检修。
(2) plc控制打开排烟风机,当高温传感器发出高温信号时,说明此时火灾建筑物内不可能存在人员幸存,如果保持排风机开启只能增加火力,因此需要关闭排烟风机。
(3)当上水箱处于低水位时说明需要进行,因此开启喷淋泵。喷淋泵的开启规则为:A,B泵交替开启。当上水箱达到高水位时关闭喷淋泵。其间打开A,B任何泵时都进行10s的计时,如果计时时间到,管仍没有水生(水流传感器的水流信号)时,说明水泵故障,此时打开A泵(或B泵)故障指示灯,并切换到B泵(A泵),同时进行计时,如果10s后无水流感应,再次打开本水泵的故障指示灯,切换到另外一个泵,如此循环。
(4)当下水箱水位为低时开启下水箱阀,同时计时10s。如果计时时间到,且下水箱水流指示无信号时开启下水箱阀故障指示。当下水箱水位为高时停止。
以上四步为并行。当上水箱和下水箱的水位均为满时按下复位按钮,系统回到初始状态。

PLC是整个系统自动控制的,它负责对泵站设备运行和工作状态的采集、与中控室监控系统通信、实现相关的控制;低压控制屏用以控制功率较小的泵、阀、格栅等设备,设备的运行状态通过低压控制屏输入PLC的开关量输入模块,相应的PLC输出开关量通过低压控制屏对相关设备进行控制;MCC柜用以控制220KW的大功率排污泵,泵的运行状态通过MCC柜输入PLC的开关量输入模块,六台泵分别配有软启动器或变频器,通过现场总线DeviceNet与PLC相连,PLC通过现场总线模块可读取变频器、软启动器的运行状况及实现变频调速和软启动器参数远程设置;集水池水位、出水流量、出水管道压力、PH值、温度等信号由现场传感器直接接入PLC的模拟量输入模块。
3 PLC硬件设计
SLC500系列PLC具有大型PLC的功能,小型PLC的价格和不断扩充的控制能力和通信能力,可随时满足工业控制中的各种要求。由罗克韦尔自动化公司所属的A-B公司生产,包括模块化处理器、输入输出模块、特殊功能()模块、电源、框架等。产品目录号为1746和1747系列,采用框架式结构,为在不同的工业现场使用提供了稳定的平台。其中SLC 5/05系列PLC是SLC500 系列PLC中支持以太网通信的PLC。
3.1 处理器的选择
根据镇江市污水收集自动控制系统需通过以太网实现城域网的构建,确定处理器为支持以太网通信的SLC 5/05系列,再根据I/O点数等估算存储容量并选型。本设计中选用的是有以太网接口、支持块传输指令的16K存储容量的1747-L551B处理器模块。
3.2 输入/输出模块的选择
根据江滨泵站的控制对象、检测参数及控制要求,统计PLC的I/O点数。根据统计的I/O点数,考虑价格、备用模块通用性及留有10%~15%的裕量,本设计中选用了2个四通道模拟量输入模块1746-NI8,20个16点直流24V开关量输入模块1746-IB16和6个交流240V继电器输出模块1746-OW16。
3.3 框架和电源的选择
1)框架选择 由上述所选择的输入/输出模块选用3个10槽的框架,框架间通过框架扩展电缆1746-C9实现互连。
2)电源选择 根据文献[2][4]中的方法计算并选择电源模块,在编程环境中进行I/O组态(IO Configuration)时,可利用 Power Suplly校验电源是否满足要求。本系统中所用电源为1746-P4。
3.4 现场总线模块选择
江滨泵站的六台潜水泵的功率均为220KW,为了减小启动冲击电流和减少泵的启停次数,其中四台泵配置了软启动器、两台泵配置了变频器,软启动器和变频器都支持DeviceNet现场总线通信,通过与软启动器和变频器的通信可实现相关数据的读取、修改及泵的调速,本设计中选用了DeviceNet模块1747-SDN。
    实际运行表明,江滨泵站PLC系统控制程序与应用Intouch编写的上位监控界结合,实现了PLC本地自动控制、上位远程遥控、远程设置参数等要求,满足设计要求,达到了预期的目标

一、引言

近几年随着我国经济建设的快速发展,在能源供应上很多地区都出现电力资源紧缺的状况,因此许多电厂纷纷进行新建或扩建改造。某集团公司原有400MW 机组,为提高发电能力又续建#3、#4机组(2×300MW)。老电厂原有两列化学水处理系统,续建工程的化学水处理系统扩建一列100~140m3/h化学除盐系统,其余设备与已有化学水处理系统共用。原有化学水处理系统使用传统的模拟屏方式进行监控,自动化水平不高并且效率很低。续建2台机组后,废除原有化学水处理系统的控制系统,将原有化学水处理系统和扩建的一列化学水处理系统统一采用一套冗余PLC控制系统进行集中控制。

二、化学水处理系统工艺流程

1、化学水处理系统流程

原有化学水处理系统流程为:自来水→蓄水池→升压泵→活性炭过滤器→阳离子交换器→除二氧化碳器→中间水箱→中间水泵→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵。通过对现有系统运行状况的现场调查和对水质分析报告分析,自来水中的悬浮物含量较高,严重地污染了活性炭和离子交换树脂。因此,续建工程增加3台纤维过滤器对自来水进行深度过滤处理。

续建化学水处理系统流程为:自来水→蓄水池→升压泵→纤维过滤器→活性炭过滤器→阳离子交换器→除二氧化碳器→中间水箱→中间水泵→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵。

2、续建工程与原有系统的连接及运行方式

原有120t/h出力的一级除盐+混床设备2列,续建工程仅再扩建1列出力为120t/h的同样设备。除盐水泵、再生水泵、压缩空气系统、酸碱再生系统和废液处理系统与原有系统共用。

3台过滤器采用并联运行方式,正常工况2台运行,1台备用。过滤器不仅对续建工程所需的自来水进行预处理,而且对原有系统的自来水也进行预处理。

2台活性炭过滤器和一级除盐设备构成一个系列,采用串联运行方式,正常工况2列运行,一列备用。其中每系列的2台活性炭过滤器,当水质好时1台运行(去除游离余氯),1台备用;当进水水质恶化时2台同时运行(去除物)。

混床采用并联,正常工况2台运行,1台备用。
3套一级除盐单元与3台混床之间设有切换阀门,受已有系统的限制,仅#1一级除盐设备和#1混床与#2一级除盐设备和#2混床可以同时交叉运行,#1一级除盐设备和#1混床与#3一级除盐设备和#3混床可以同时交叉运行。机组启动时,上述3列设备同时投入运行,满足大的补给水量。

三、系统配置

系统由两台上位计算机和一套冗余PLC系统构成。上位计算机系统采用工业级计算机构成功能强大的监测与控制系统,计算机上安装Inbbtiong公司的FIX7.0工业监测与控制系统软件,通过合理的系统设计和系统组态,实现对整个化学水处理工艺流程的动态监视和控制。通过上位计算机系统和强大的工业控制传输网络,实现对整个生产工艺工程的自动化管理和控制。

PLC选用正航公司A5系列PLC控制器,控制系统采用双机热备冗余方式,通过远程I/O的方式连接现场需要监测与控制的点,远程I/O由通讯处理器和A5系列I/O模块组成。冗余的主控制站可以保证系统的停机维护时间为零,大限度的减少人对系统的干预。主控制系统热备系统和远程I/O控制站之间采用的工业以太网总线传输网络,实现信息的、、稳定的传输。
上位计算机系统安装与PLC控制单元之间采用工业以太网传输网络。以太网属标准,工业以太网已达到高传输性和性要求,现已广泛用于程序维护、向MIS和MES系统传递工厂数据、监控、连接人机界面、记录事件和告警。工业以太网具有高传输速率(目前达到100M)、集线器技术的确定性、不需考虑网络的拓扑结构、传输物理介质多样(双绞线、光纤、同轴电缆)、集线器的应用可不考虑网络的扩展等优点。

通过以太网络将上位计算机系统和现场监测与控制点紧密的结合为一个整体,构成一个完整的系统。在这样高速传输网络上,可以很方便的利用PLC系统所特有的功能,实现对整个控制系统的计算机在线远程诊断功能。

四、控制功能

水处理系统所有控制阀采用就地和远程控制方式,即使在程控系统故障的情况下还可以通过就地控制实现手动制水,保证机组锅炉的用水。控制箱上选用3位选择开关,分别为就地开、就地关、远程控制。选择远程控制时,控制阀由操作员在操作站上控制。操作员可以在操作站对控制阀进行状态监视和动作控制,对控制阀的控制可分选择自动和手动方式。在自动方式时控制阀受PLC逻辑程序控制,在手动方式时控制阀由操作员直接在操作界面上点击控制。

一级除盐设备的投运和再生由PLC实现自动控制,也可通过键盘和鼠标在控制室内的操作站上进行远方操作。一级除盐设备的出水导电率过规定值或周期制水量达规定值时,自动解列并报警,然后自动投入再生程序。混合离子交换器的投运和再生由PLC实现自动控制,或者通过键盘和鼠标进行远方操作。当混合离子交换器出水导
电率和二氧化硅过规定值,或周期制水量达规定值时,自动解列并报警,然后自动投入再生程序。过滤器和活性碳过滤器由PLC实现自动控制,也可采用键盘和鼠标在控制室内的操作站上进行远方操作。当其进出口压差过规定值,或周期制水量达规定值时,自动解列并报警,然后自动投入反洗程序。以上操作以前都由操作人员执行,执行新系统后上述操作都可以不需要操作人员干预。

中间水箱水位由PLC实现自动控制(通过调节阳床入口调节阀),使一级除盐系统投运时中间水箱水位稳定在正常位置。中间水泵启停与中间水位联锁,低液位启泵、高液位停泵,保证中间水泵的使用。

阀门、泵等的控制状态显示,自动/手动/就地操作和选择联锁。系统所有流量、压力可在操作界面上实时监视,原水流量、阴床出口流量、混床出口流量显示积算并作历史纪录,可分别查看一级除盐、混床再生制水量。

系统控制每列除盐装置的投运、停止和再生程序、自动加酸加碱程序、自动/半自动启动另一列除盐装置程序等。对于顺控设置必要的分步操作、成组操作或单操作等,并有跳步、中断或旁路等操作功能。系统投运以及活性炭清洗、一级除盐再生和混床再生可由系统自动完成或操作员步延、步进手动干预,在操作站界面上显示各步骤设定时间和剩余时间以及步进、步延指示等。

五、结束语

集团公司电厂化学水处理系统全部改造完成后于2007年7月正式投运,经过改造后自动化控制水平明显提高,制水量由原先的平均每小时120m3提升到平均每小时140—160m3,保证了6台发电机组的用水需要。由于控制水平的提高,制水过程中产生的废水量明显减少,起到了一定环保节能效果。系统高度的性和直观简易的操作性使得控制值班室由原来的2人值班该为1人值班,大大节约了人力成本。


速度不同的带电粒子经过耦合有大功率高频信号的真空加速腔时将受到速度调制,终粒子的速度趋于一致。即如粒子1以V1,粒子2以V2的速度在束线中运动,其中V1小于V2,经过相同的时间,粒子2到达高频信号的负半周期,粒子1到达高频信号的正半周期,二者都受到由电场力产生的加速度a的作用,由式1-1可知经过相同的时间,粒子速度趋于一致,以达到改善束流的品质。

V2-a.t=V

V1+a.t=V 式1-1

系统如图2所示,主要由高频放大、槽路、冷却系统和供电系统四部分组成。高频放大部分是由固态宽频带放大器、电子管构成的二级放大系统;供电系统主要负责电子管的灯丝、栅、帘栅、阳和宽频带放大器的供电;加之整个是一个以分布参数为主的系统,因而槽路是改善参数和性能的重要组成部分。考虑到工作在一个有高压、低压、交流、直流、脉冲和模拟信号混合的电磁环境中,为保证控制系统的稳定性和性,采用了西门子S7-300系列的PLC、触摸屏,并结合Ethernet(工业以太网)技术设计了NB2控制系统,实现了的远程控制。

Ethernet网络是采用商业以太网通信芯片和物理介质,利用以太网交换机实现各设备间的点对点连接的工业以太网技术。能同时能支持10M和100M的以太网的商业产品。它的一个数据包多可达1500字节,可达10Mbps或100Mbps;从而实现数据的高速传输[1>。



图2:框图


2、控制系统组成

该控制系统要实现的连锁保护,即的冷却、电源、电子管、槽路中任一个参数出现异常,系统都能实现报警并采取相关的应急措施,确保系统的。现场控制的HMI(人机界面)是用西门子TP270组态设计的,可以实现本地操作如报警、记录、打印、参数的读取等。还能在控制室实现对冷却系统、电源、电子管的各偏置、以及激励的远程操作;并且能在处于控制室的工业PC的HMI中显示系统的运行状态、加速电压(D电压)等相关参数。

2.1、控制系统的硬件配置

为实现以上要求,该系统采用了如图3所示的结构。现场以西门子S7-300 PLC和触摸屏TP270作为高频的本地控制器和人机接口,然后经Ethernet和交换机接入已有的控制网络,后通过以太网卡连到控制室工控机,完成远程控制。



图3:系统结构和S7-300PLC配置图


系统中所采用的PLC的配置如图3所示的配置。电源模块是PS305,能提供DC24V的电压和DC的电流。CPU 是313-2DP,此CPU模块自带32点DI/DO,而且有两路硬件产生频率为30KHZ的脉冲,以满足系统中脉冲调制和拖动槽路中步进电机所需的脉冲。采用SM338 模块读取通过SSI总线传来的电机位置编码数据。为了便于通信,配置了通讯处理器CP3413-1模块,可以直接用双绞线与交换机SWITCH相连接入已有的控制网络。此外为了产生的模拟量控制信号,采用了16位精度的SM332模块。采样信号都是4-20mA的信号,系统配置了SM331模拟量模块,以完成参数的测量。

2.2、槽路微调电容的控制

当调节激励以改变输出能量即改变D电压时,需同时改变微调电容,使耦合网络匹配,以减小反射系数[2> 。对微调电容的控制采用了如图4所示的闭环控制结构。当PLC收到来自本地TP270触摸屏的动作信号(本地控制模式);或者收到来自Wincc的动作信号(远程控制模式)时,就调用相应的功能块FC,产生脉冲和方向信号,经驱动器放大,拖动步进电机,改变电容板间距离,从而实现对电容容值的改变和耦合网络的匹配。 其中位置传感器采用的是SICK的ATM60 SSI位置编码器,电容板的位置编码数据以SSI协议的格式,传送给S7-300的SM338 模块,通过Ethernet上传给处于控制室的工业PC,在Wincc组态的HMI中显示;同时通过Profibus把位置编码数据传给本地的触摸屏TP270,在Protool组态的本地人机界面中显示。



图4:槽路微调电容拖动控制简图


2.3、调理电路

为保证各个系统参数的监测,采用了如图5所示的以TP521为的光隔离模拟测量调理电路[3>,只要调节图中的可变电阻,并适当的设置SM331模块的系数因子,就能实现参数的准确测量;并在组态的HMI中显示,达到参数远程监控的目的。



图5:参数测量调理电路


3、软件设计

系统的软件设计主要包括PLC软件设计、工业PC的上位的HMI设计以及本控触摸屏TP270的HMI设计。PLC的程序设计,主要实现现场的数据测量、状态监控、控制策略的判断和与上位机的Wincc数据通信。

在Wincc组态软件环境下,分别设计了的操作流程图、状态监控图、参数测量显示图、参数趋势曲线图;并具有报警记录、报表生成、打印等功能。本地控制的触摸屏TP270的HMI设计是在Protool环境下组态完成的,其功能和Wincc组态的HMI大致相同。如图6所示其人机界面(HMI),分成了操作流程区域,参数测量监控区域,状态监控区域和功能选择区域。



图6:操作界面


Step7中程序循环组织块是OB1,通过判断来自上位工控机Wincc或触摸屏TP270的操作变量状态和PLC输入接点的状态,循环调用开关机功能块FC20,脉冲宽度调制生成块SFB49及背景数据块DB20,参数测量功能块FC21,激励信号调节功能块FC22,系统连锁保护块FC23,与DB通信的功能块FC24,整个程序结构如图7所示。当PLC加电初始化完成后,进OB1主循环块,并扫描功能块FC24实现与Wincc和TP270的通信,操作信息并接合PLC 的输入接点和辅助节点如M1.0,调用相应的功能块FC,完成相应的控制操作;同时把相关数据和参数状态通过FC24上传给Wincc,实现远程监控。在任何时刻系统参数出现异常,PLC都会调用连锁保护块FC23,使系统处于保护待机状态,并把故障显示到Wincc和TP270操作界面中告知系统运行者[3>。



图7:软件结构图


5、结束语

该系统采用了西门子S7-300PLC作为本地控制器,具有抗干扰能力强,运行等优点。接合Profibus现场总线,以触摸屏TP270作为本地控制的人机接口设计,取代了以按钮、数码管、模拟表头等作为人机接口的方案;减少了系统的布线,简化了接口电路的设计等工作,并且具有设计简单、运行、显示直观等优点。采用Wincc组态HMI,使上位机操作界面友好,状态显示直观,降低了操作难度,提高了自动化水平,节省了人力资源。


引 言

经济的高速发展,工业技术的不断革新和人民生活水平的不断提高,促进了电力系统的逐步改造,并要求我国电网不断提高其供电率。从1998年至今,城乡电网供电从99.81%提高到99.897%。如今,配电设备市场的发展趋势应是:反应真实快速,高智能化和数字化。

地铁是地下铁道的简称,作为一种立的有轨交通系统,它不受地面道路情况的影响,能够按照设计能力运行,从而快速、、舒适地运送乘客。地铁,,能够实现大运量地要求,具有良好的社会效益,成为现在中大城市改善交通情况的。配电的性要求在地铁行业尤其。一旦停电,地铁无法运行,将导致城市交通的瘫痪。

为了保证运行的性和避免人为的失误,地铁中采用了各种以电子计算机处理技术为的各种自动化设备代替人工的、机械的、电气的行车组织、设备运行和系统。同时为了地铁运行的性,地铁建设中经常采用SA系统作为综合数据采集与监控控制系统,对主变电所、牵引变电所、降压变电所设备系统的遥控、遥信和遥测,实时掌握配电所所有设备的带电情况。

1  地铁低压配电典型系统构成

地铁的低压配电通常采用典型的双进线一联络结构,其中1QF、2QF为进线开关,3QF为联络开关。正常工作的情况下,进线开关1QF和2QF合闸,分别为I段和II段母线供电。但是当其中一组进线电压跌落时(以1TF电压跌落为例),需要断开1QF。在甩开母线上的三级负荷后,闭合联络开关3QF,此时变压器2TF同时为I、II段母线供电。

2  地铁低压配电备自投的特点

为了减少母线段断电时间,保证低压电气设备能够顺利运行,减少经济损失,地铁的低压配电系统要求备自投功能。所谓备自投,就是当进线开关因为电压跌落脱扣时,联络开关自动闭合。

但在地铁行业,备自投需要完成三个基本步骤:一,进线开关要脱扣,而且是因为电压跌落而非因为故障脱扣;二,三级负荷甩开;三,联络开关自动闭合。根据复位方式的不同,备自投又分为两种:自投自复和自投手复。自投自复:当进线掉电时,联络开关自动闭合,当进线电压恢复时,联络开关自动断开,进线开关自动闭合。自投手复:顾名思义,则当进线电压恢复时,手动分断母联闭合进线。

3  PLC备自投的应用与特点

以往的地铁项目,是通过电压继电器,时间继电器和中间继电器等继电器来实现备自投。当电压继电器探测到进线开关的进线侧电压低电压阀值,一般的判断条件为70%额定电压,经过时间继电器的延时,发出命令,令该进线开关脱扣,将信号发送至各三级负荷总开关和联络开关。之所以需要延时,是为了保证电网确实掉电,而不是发生晃电。负荷总开关收到进线的脱扣信号,并确认进线并非因为故障脱扣后,直接跳闸,并将跳闸信号发送至联络开关。联络开关接收到进线和各负荷总开关的脱扣信号后,自动合闸,完成一次备自投的过程。

可见,由继电器搭接而成的备自投回路能够满足基本的备自投要求,但是随着地铁行业对配电的要求越来越高,而且在实际应用中,该备自投的继电器触点容易熔焊,线路复杂等问题,深深影响到地铁低压配电的稳定运行。因此近年来的地铁项目,基本都要求选用性高的工业型PLC控制或智能模块来实现低压配电系统的备自投。如广州地铁项目用了ABB公司的AC31系列PLC来实现两进线一母联的备自投。

其中CPU 07KR51装于母联柜,4台扩展模块ICM14F1分别装于两个进线柜和两个三级负荷总开关回路。CPU 07KR51与扩展模块 ICM14F1之间通过CS31总线连接。进线回路把进线断路器状态、故障信号、低电压信号同时输入扩展模块 ICM14F1;三级负荷总开关回路将开关状态、故障信号输入扩展模块 ICM14F1;母联回路向CPU 07KR51输入母联断路器状态、故障信号和控制方式(自复或者手复)。PLC的输出线圈依次控制进线、母联和三级负荷回路开关的合分。PLC根据每个输入信号的状态,判断是否发生低电压,并判断输出继电器是否需要动作,实现两进线一联络系统的备自投切换。下表为PLC进行备自投的程序进程顺序:

对比上面两种备自投控制的方案,可以得出PLC进行备自投控制的优点:

1) 性

继电器容易烧坏,触点发生熔焊,线路复杂。每多连接一根电缆,发生故障的概率就增加一分。而且由于机械原因,不论在线圈吸合还是脱扣,都是依靠纯粹的机械判断,存在出错的可能,从而影响到整个系统的正常运行;PLC减少了继电器的数目,用内部虚拟继电器代替实际的继电器,同时通过输入信号,直接判断是否起动备自投,减少了中间的步骤,同时能地给出延时时间,降低了出错地可能。经过多次的实践应用,表明PLC比继电器得多。

2) 灵活性

当系统的控制逻辑发生变化时,PLC仅仅需要改内部的程序内容,而继电器的备自投,需要重新设计,重新拆线接线,操作繁冗。改完后,PLC可以事先在内部测试程序的准确性;而继电器的备自投则需要通电试验,如果发现问题,还需要再次拆线接线。

3) 简洁性

继电器的备自投,由于柜间的联锁和使用的继电器数量,需要连接的电缆数远远PLC。无论查线或者理解图纸来说,都比较复杂。PLC的备自投,只需要将所有信号输入PLC,通过程序判断,图纸简单易读。程序里可以按照每个回路的合分逻辑编程,并在后面加以备注,方便理解程序的意思。

4  ABB的AC31系列PLC 在地铁中的应用案例

1)应用案例1——深圳地铁

该项目两进线断路器、联络断路器以及三级负荷总开关相隔较近,且在同一排柜子的相邻位置,采用输入扩展模块XI16E1和输出扩展模块XO08R1配合PLC主机07KR51。进线、三级负荷总开关的所有控制信息和状态信息直接输入装于联络柜的PLC扩展模块。虽然连接电缆增加了一些,但少了4个扩展模块ICM14F1,实现在保证PLC备自投的性的前提下,成功降低一定的备自投成本。

2)应用案例2——广州地铁

该项目在优化应用案例1的基础上,取消了2个电压继电器,取而代之的是通过装于进线回路的多功能表计采集电压信号,并通过通讯的方式传输到PLC。PLC读取电压值,并判断是否发生电压跌落。这样不仅减少了2个电压继电器的成本,同时凭借对电压信号的实时读取和判断,可以准确的判断是否发生电压跌落,并发出信号,令负荷总开关跳闸。因为电压继电器的可调门阀值一般在70%左右,而判断读取的电压值可以到10%左右。从而可以实现分批甩开一些不重要的负荷,以保证重要负荷的运行。

经过上面两个案例,PLC的备自投成本可以降低不少,甚至将继电器架构的备自投。可见,成本问题将不会成为阻碍PLC备自投在工业配电的应用。 来源:输配电设备网

5  结语

如今的工业项目,不再是简单的两进线一联络系统,而是三进线两联络或者四进线三联络。使用继电器备自投,每增加一进线回路或一联络回路,就需要增加一堆继电器和一堆用于控制、连锁的电缆,造成不隐患的概率上升,而使用PLC的备自投,只需要修改一下程序即可,十分便利,相对增加了配电性。

随着智能化和数字化的普及,有的项目拥有一个后台系统(如:SA),PLC不仅能够实现备自投的功能,还能够将SA所需要的数据整合在一个数据区块,并实时新,便于SA读取。

同时,为了方便客户使用,我们还可以将根据PLC实现的备自投的不同,做出若干个标准程序,比如标准自投自复,标准自投手复,标准三进线两母联等。随着因特网的普及,客户只需要在网上下载相应的标准程序,就可以满足自己的需要,降低了PLC的编程操作难度和人力维护成本。

综上,随着社会的发展,随着工业对备自投要求以及PLC自身竞争力的提高,我们可以预见PLC在工业的应用前景将越来越广阔




http://zhangqueena.b2b168.com

产品推荐