产品描述
6AV2124-0UC02-0AX1
1、引言
在国产高压变频器的设计中,为了提高高压变频器内部控制的灵活性以及在现场应用的可扩展性,通常在高压变频器中内置PLC。自从20世纪70年代台PLC诞生以来,PLC的应用越来越广泛、功能越来越完善,除了具有强大的逻辑控制功能外还具其他扩展功能:A/D和D/A转换、PID闭环回路控制、高速记数、通信联网、中断控制及特殊功能函数运算等功能,并可以通过上位机进行显示、报警、记录、人机对话,使其控制水平大大提高。
本文以广州智光电机有限公司为攀钢集团成都钢铁有限公司污水处理厂设计生产的国产高压变频器ZINVERT-H800/B10为例,介绍了三菱PLC在高压变频器控制系统中的运用。
2、广州智光电机高压变频器简介
广州智光电机有限公司推出的新一代ZINVERT系列智能高压变频调速系统为直接高-高型变频调速系统,通过直接调节接入高压电机定子绕组的电源频率和电压来实现电动机转速的调节从而达到节能的目的。它是集大功率电力电子控制技术、微电子技术、高速光纤通信技术、自动化控制技术和高电压技术等多学科为一体的产品。该产品采用主流双DSP控制系统和大规模集成电路设计,通过的数字移相技术和波形控制技术实现了高压电机的灵活调节和能耗控制。
3、PLC在国产高压变频器中的设计使用
3.1 PLC主要逻辑控制
(1)用户要求高压变频器在出现故障停机时能快速自动切换到工频旁路运行,笔者给高压变频器专门配置了可以实现自动旁路功能的旁路柜,如图1所示,K1~K4为手动操作闸,J1~J3为高压真空接触器。在变频器发生故障时,旁路柜可以在几秒内完成从变频到工频的转换;而变频器在工频运行时,通过1个按钮就可以实现变频器从工频到变频的转换。这样的控制要求增加了变频器整机控制逻辑的复杂性。
自动旁路柜控制逻辑简要介绍如下:
变频调速系统退出变频转工频运行有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,当变频器发生停机故障时变频器自动从变频转工频;选择手动方式时则需人工操作。
变频调速系统退出工频转变频运行也有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,只需在控制柜上按一个按钮,变频器就自动完成从工频转变频;选择手动方式时则需人工操作.
(2)PLC控制系统原理图
PLC主机选用输入输出点数48点,型号为FX2N-48MR,PLC作为系统逻辑量控制的控制,在自动旁路柜的逻辑关系控制中起着至关重要的作用。PLC控制系统原理图如图2所示。
旁路柜的逻辑控制要求比较复杂,采用PLC控制,接线简单,提高了性;旁路柜的逻辑改也变得很简单,只需修改PLC梯形图程序就可以了,很方便满足用户现场的控制要求。
(3)PLC功能指令实现高压变频器PID闭环控制
用户现场对变频器闭环控制提出的要求是:变频器能够根据用户系统用水量的变化,自动调整变频泵的转速,实现管网恒压供水;同时还可以在液晶屏上设定压力目标值。
针对用户的要求,PLC另外配置了模拟特殊模块FX2N-4AD和FX2N-2DA。FX2N-4AD为模拟输入模块,有四个输入通道,大分辨力12位,模拟值输入范围为-10V~10V或者4~20mA;FX2N-2DA为模拟输出模块,有2个输出通道,大分辨力12位,模拟值输出值范围为-10V到10V或者4到20 mA。这样通过读取指令(FROM)和写入指令(TO),以及PLC带有的PID闭环控制功能指令(如图3所示),就可以实现对用户现场的管网水压进行PID闭环控制。
其具体编程过程是这样:PLC读取指令(FROM)读取用户水压反馈值,把反馈值用移动指令(MOV)存入PID指令中的D12数据地址里; 把用户的水压设定值用移动指令(MOV)存入PID指令中的D10数据地址里;D200~D222保存PID的运行参数;D14为PID指令的运算值输出,通过PLC的写入指令(TO)把PID闭环运算结果D14写入模拟输出模块,再通过模拟输出模块转换成-10V~10V或者4~20mA的模拟信号送入高压变频器控制器进行频率设定。
在进行PID运行参数设置时,P、I、D的参数设定尤其重要,其设定的好坏直接关系到管网水压控制的好坏。P表示比例增益,设定范围为0~99(%),比例调节设定大,系统出现偏差时,可以加快调节,减少误差,但是过大的比例增益,会造成系统不稳定;I表示积分时间,设定范围为0~32767(*100ms),积分时间越小,积分作用就越强,反之I越大则积分作用弱;D表示微分时间,设定范围为0~32767(*10ms),微分调节有前的控制作用,合适的微分时间能改善系统的动态性能。
攀钢污水处理厂供水管网比较庞大,管网水压对水泵转速的变化响应比较缓慢, 因此PID的计算速度不能过快,即比例调节不能过快,否则如果管网水压突然变化大时,变频器的调节容易形成较长时间的振荡。根据这一情况,如图3所示,可以在PLC控制程序中加入PID间隔计算时间(T0)以及PID运算死区(M0),这样就可以把PID的计算速度调节至与管网水压变化速度相一致,避免管网水压震荡。
(4)PLC功能指令实现PLC与变频器上位机通信
为了使变频器上位机能对PLC进行显示、报警及记录,PLC还配置了通信模块FX2N-232BD,实现与变频器上位机的串口通信,通信编程指令如图4所示。
PLC RS232串口通信可使用无协议(RS指令)或协议与上位机进行通信,本例中使用无协议与上位机进行通信,如图四所示:D8120用于设定PLC通信格式,D50表示发送起始地址,K60表示发送字节数量,D150表示接收起始地址,K20表示接收字节数量。
4、结束语
高压变频器自动旁路柜采用PLC进行旁路逻辑控制,通过在攀钢污水处理厂运行的智光高压变频器模拟故障说明,高压变频器自动旁路柜在从变频转工频,工频转变频的相互切换非常方便,能在10s以内完成,大大提高了水泵运行的性。现场PID闭环控制效果非常理想,水压波动非常小,波动在过0.1kg时,变频器能调节转速,把水压控制在设定范围内,调节转速时不会产生任何振荡。同时通过PLC与高压变频器控制器的串口RS-232通信,在高压变频器液晶屏上能监视系统管网水压及PLC各种状态量。(end)
长期以来,PLC始终活跃于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常的控制应用。其主要原因在于,它能够为自动化控制应用提供和比较完善的解决方案,适合于当前工业企业对自动化应用的需求。 随着PC及因特网时代的到来,工业PC或PC-based控制器由于可以融入到网络时代的信息系统中,具有网络系统的基本特性,即具有、格、系统开放、丰富的人才基础等优势,因此PC-based控制器一经出现就具有很强的生命力,发展为迅猛。有观点说,PC-based控制器将取代传统PLC,当然解决性及编程问题。近几年来,这些问题已基本得到解决,PC-based控制器从外观到性也都开始可以与PLC相近。在编程方面,由于IEC61131-3编程语言标准的推出和广泛采用,为PC-based控制器的高速发展铺平了道路。这样,PC-based控制器不仅具有PC的优势,也具有传统PLC的优势。它可无缝地融合到网络时代的信息系统中。 在自动控制领域,PLC技术和PC-based技术是当前比较具有代表性的控制技术,两者的技术起源和发展有较大的差异。 PLC(ProgrammableLogicController)产生于上世纪70年代初。早的PLC是以替换继电器系统的角色出现,其主要实现的功能仅仅是逻辑简单的顺序控制功能。PLC一经出现,就以其高性、小体积和直观的编程模式而显示出强大的生命力,成为自动控制领域的“”。 PC-based是一种基于PC技术的控制系统。早的PC-based控制系统是以工控机为,通过扩展带PCI接口的板卡组成。PC-based借助于IT技术的发展,在运算、存储、组网和软件开放性方面具有优势。 PLC和PC-based两者在技术特点上存在明显区别。PLC具有体积小、功耗低、抗干扰能力强;具有很高的性,其平均无故障率时间间隔(MTBF)可达50万、甚至100万个小时;具有简单直观的编程模式(如梯形图);具有内部实时时钟。而PC-based具有大运算能力;具有开放标准的系统平台和PCI接口;精美且的显示技术;丰富的组网能力。但系统的性略差,如性能较好的IPC的平均无故障时间间隔约5万小时。此外,PC-based虽然具有很强的CPU,但其多任务操作系统是非实时的,所以程序的循环周期反而没有的PLC快。 PLC适合于设备控制,而PC-based多地用于设备运行状态的监视。相对于PC-based而言,PLC具有配置灵活、体积小、适应恶劣环境、抗干扰性强、性高等优点,但在软件功能及系统开放性等方面比PC-based稍差。当然,随着计算机技术和控制技术的不断发展,PLC和PC-based都在吸收对方的优点,以适应多的应用现场。例如,PLC在包装设备中的应用远远多于PC-based在包装设备中的应用。 随着PC-BASED的工业计算机(简称工业PC,与普通的计算机相比,它具有防尘、防振、抗电磁、耐高低温等优点)的发展,以工业PC、I/O及监控装置、控制网络组成的PC-BASED的自动化系统逐渐成为工业自动化的另一种实现方式。PC-BASED自动化系统源于PC,可融入到网络时代的信息系统中,具有、格、系统开放、丰富的人才和应用基础等优势。 (end) |
组成,它可以包含一个嵌入式控制器也可以没有。由于基于PAC的系统考虑到了用于I/O的相同控制器的使用,所以也就不需要添加额外的嵌入式控制器来实现HMI的图像显示。
*容易的开发环境
虽然传统的梯形逻辑编程非常适合于数字I/O的编程,然而对于处理模拟I/O、运动或视觉这种编程方式则十分麻烦。PAC可以用通用的语言编写控制程序,为您提供了很大的灵活性,这些通用语言包括C,C++,VisuaI Basic,LabVIEW甚至是传统的梯形逻辑。
4、从上看出PAC与PLC功能之差异,其PAC可执行较多的任务:
*实时的振动分析、图像处理.运动控制和CAN;
*执行自动调节的PID控制,或可调增益的PID控制.模糊逻辑;
*使用内置Web服务器、FTP服务器和e-mail功能进行通讯。
5、结束语
PAC是新一代PLC,其优势可概括PAC有五大特点:
*多种功能,在一个平台上至少有两个逻辑,运动,PID控制,驱动和处理功能;
*单一的多规程功能开发平台,采用通用的标记和单个数据库来访问所有的参数和功能;
*软件工具允许通过多台机器或处理单元处理流程来进行设计,可以结合IEC 61131—3,用户手册和数据管理;
*开放的模块化结构,反映了从工厂机器布置到加工车间中单元操作的工业应用;
*采用实际标准的网络接口、语言等,如TOP/IP,OPC,XML和SQL查询。
由于PAC能为您增加所需的PC功能以用于控制,实时分析或连接企业数据库,而且同时保持了PLC的性。如果您不只是需要集成数字I/O和运动控制,或者需要快的计算机处理能力的话,PAC可能是非常好的选择。为此,当今的工程师除了PLC控制外,其PAC不失为是一种选择,它正自动化领域。而PAC概念将在当今和未来的工厂自动化中发挥重要的作用。
引言
工业自动生产线应用非常普遍,一般生产线的长度是有限的,为把物料从一条生产线搬运到另一条生产线上,常常采用输送线升降机,以提高生产效率。本文以FX-ON系列可编程控制器为例,介绍PLC在输送线升降机中的应用,这种FX-ON系列PLC机以其优的性能价格比受到用户的关注,在改造旧设备、生产线以及替代进口产品方面,了很好的经济效益。特别是配上嵌入式全中文MCGS组态软件,可构成下位机监控系统,运行于WinCE嵌入式实时操作系统,内置流程图功能,有庞大的标准工业器件设备图形库,支持各类型PLC等硬件设备,可以完成复杂逻辑控制,并可根据实际工况灵活组态。经生产实践表明,该输送线升降机设计思路正确,运行,能达到实际生产应用的要求。
1、升降机结构图与工作原理
该单元由升降梯与立体仓库二部分组成,升降梯由升降台和链条提升部分组成,由步进电机做驱动电源,由光栅尺对升降梯上升或下降的高度进行准确的定位。
图1所示为传送线升降机结构图,工作原理如下:① 工件由传送线送至一楼升降梯机内;② 工件送达二楼后,升降梯上的传感器检测到工件进入时,升降梯上的传送电机停止工作,工件由动力辊道接出,再送入二楼辊道至二楼传送线,后进入仓库;③ 仓库的传感器检测到工件进入后,传送电机停,同时升降梯开始下降,回到初始位置,等待下一个工件;④整个系统以PLC为主要控制元件,设有手动/自动两种控制方式。
(10) 用外围设备——便携式编程器FX-10P/20P或电脑的PLC软件将其梯形图程序用可写的形式将指令写入,输入后PLC就按设计思路准确地完成各种操作。利用编程器或电脑的三菱PLC软件还可以完成每一条程序的读出,搜索所需要的输入/输出记号或指令,并可以检查写入的程序中有无语法错误,正确无误且用强制输出可以测试运行。
4、监控系统设计
MCGS组态软件可根据司机情况增加、裁减相应的内容,可以组态出动画窗口、曲线、报表等,并可以设置用户权限、级别。其结构有主控窗口、设备窗口、用户窗口、实时数据库和运行策略五个部分构成,如图3所示。
采用嵌入式MCGS组态软件及其平台,作为良好的上位机人机界面,进行系统
引言 为了延长PLC控制系统的寿命,在系统设计和生产使用中要对该系统的设备消耗、元器件设备故障发生点有较明白的估计,也就是说,要知道整个系统哪些部件容易出故障,以便采取措施。现以我厂特种水泥1号线的PLC过程控制系统为例,对PLC过程控制系统故障分布规律进行分析,希望能对PLC过程控制系统的系统设计和U常维护有所帮助。 1 系统故障的概念 系统故障一般指整个生产控制系统失效的总和,它又可分为PLC故障和现场生产控制设备故障两部分。PLC系统包括处理器、主机箱、扩展机箱、I/O模块及相关的网络和外部设备。现场生产控制设备包括I/O端口和现场控制检测设备,如继电器、接触器、阀门、电动机等。 2 系统的故障统计及分析处理 2.1 我厂特种水泥1号线过程控制系统简介 2000年该系统改造时采用日本二菱公司的A2系列PIC为组成的PLC过程控制系统。系统配置如图1。该系统有2个集中控制室:窑尾控制室和窑头控制室,其中窑头控制室为主站;2个现场工作站:窑尾生料自动配料工作站和窑尾成球盘自动加水成球工作站;2个电视监控系统:预热器进口下料监控和窑头电视看火。现场工作站是立的微机自动控制系统,它与主站只进行模拟量的通讯和开关量的联锁。主站与从站间采用帧同步全双工通讯方式: 2.2 系统故障数据的统计 该系统运行近3年来PLC故障统计如表1。现场控制设备故障统计如表2。经统计,系统故障共计126次,其中PLC的故障比例约为4.7%,现场部分故障比例约为95.3%,:对照其他PLC过程控制系统的故障数据,并考虑该系统运行时间不是很长,该比例比较接近一般PLC过程控制系统的故障分布规律,有一定的普遍性。一般来讲PIC部分的故障比例约为5%,现场控制设备的故障比例约为95%。PLC过程控制系统故障分布的估计图[1]如图2。2.3 系统故障分析及处理 2.3.1 PLC主机系统 PLC主机系统容易发生故障的地方一般在电源系统和通讯网络系统,电源在连续工作、散热中,电压和电流的波动冲击是不可避免的。通讯及网络受外部干扰的可能性大,外部环境是造成通讯外部设备故障的大因素之一。系统总线的损坏主要由于现在PLC多为插件结构,长期使用插拔模块会造成局部印刷板或底板、接插件接口等处的总线损坏,在空气温度变化、湿度变化的影响下,总线的塑料老化、印刷线路的老化、接触点的氧化等都是系统总线损耗的原因。所以在系统设计和处理系统故障的时候要考虑到空气、尘埃、紫外线等因素对设备的破坏。目前PLC的主存储器大多采用可擦写ROM,其使用寿命除了主要与制作工艺相关外,还和底板的供电、CPU模块工艺水平有关。而PLC的处理器目前都采用的处理芯片,故障率已经大大下降。对于PLC主机系统的故障的预防及处理主要是提高集中控制室的管理水平,加装降温措施,定期除尘,使PLC的外部环境符合其安装运行要求;同时在系统维修时,严格按照操作规程进行操作,谨防人为的对主机系统造成损害。 2.3.2 PLC的I/O端口 PLC大的薄弱环节在I/O端口。PLC的技术优势在于其I/O端口,在主机系统的技术水平相差无几的情况下,I/O模块是体现PLC性能的关键部件,因此它也是PLC损坏中的环节。要减少I/O模块的故障就要减少外部各种干扰对其影响,要按照其使用的要求进行使用,不可随意减少其外部保护设备,其次分析主要的干扰因素,对主要干扰源要进行隔离或处理。 2.3.3 现场控制设备 在整个过程控制系统中容易发生故障地点在现场,表2列出了现场中容易出故障的几个方面。 1)类故障点(也是故障多的地点)在继电器、接触器。如该生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,然后发热变形直至不能使用。在该生产线上所有现场的控制箱都是选用密闭性较好的盘柜,其内部元器件较其他采用敞开式盘柜内 元器件的使用寿命明显要长。所以减少此类故障应尽量选用继电器,改善元器件使用环境,减少换的频率,以减少其对系统运行的影响。 2)二类故障多发点在阀门或闸板这一类的设备上,因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,因此在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。 3)三类故障点可能发生在开关、限位置、保护和现场操作上的一些元件或设备上,其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。如该生产线窑尾料球储库上的布料行走车来回移动频繁,而且现场粉尘较大,所以接近开关触点出现变形、氧化、粉尘堵塞等从而导致触点接触不好或机构动作不灵敏。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。 4)四类故障点可能发生在PLC系统中的子设备,如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。所以在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。 5)五类故障点是传感器和仪表,这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆,而且要在PIC内部进行软件滤波。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。 6)六类故障主要是电源、地线和信号线的噪声(干扰),问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。 要减小故障率,很重要的一点是要重视工厂工艺和操作规程,在日常的工作中要遵守工艺和操作规程,严格执行—些相关的规定,如保持集中控制室的环境等等,同时在生产中也要加强这些方面的霄理。 3 结束语 过程控制系统本身是一个完整的系统,所以在分析故障或处理故障时也要注意系统性,单的对某一部分的优化有时并不能提高系统的整体性能。如过分追求元器件的精度而不考虑实际的需要以及和相关设备精度的匹配,将徒然增加系统成本。在日常维护中也有过把系统越改越复杂的现象,如采用复杂的控制方式和设备来实现本可以用简单装置来实现的控制,违背了经济、简单、实用的原则,并可能会增加故障率,这也是要注意的地方。(end) |
产品推荐