西门子触摸屏6AV6648-0CC11-3AX0参数详细
  • 西门子触摸屏6AV6648-0CC11-3AX0参数详细
  • 西门子触摸屏6AV6648-0CC11-3AX0参数详细
  • 西门子触摸屏6AV6648-0CC11-3AX0参数详细

产品描述

产品规格模块式包装说明全新

西门子触摸屏6AV6648-0CC11-3AX0参数详细

1. 定期检查 
为了使PLC连续工作在状态, 周期性检查是很必要的. 因为PLC的主要部件是半导体器件, 而且是长期运行, 所以工作环境将对其产生影响, 有时会造成损坏. 检查内容如下: 
(1)供电电源: 
  ·供电电压是否为额定电压 
  ·供电频率是否为额定频率 
(2)运行环境: 
  温度, 湿度, 振动, 粉尘等是否符合要求. 
(3)安装: 
  ·接地电阻是否符合要求, 应定期(一般为一年一至两次)摇测 
  ·安装是否牢固, 应定期(一般为一年一至两次)紧固 
  ·各接线是否接触良好, 接线螺丝上紧, 外观不能有异常 
2. 锂电池和继电器换 
PLC中的锂电池和继电器输出型的触点为损耗性器件, 使用较长时间后, 需视情况换. 
(1)锂电池 
   锂电池的作用是保护存放在RAM(随机存储器)中的程序和计数器中的内容. 在25℃时, 锂电池的寿命是5年. 温度越高其寿命越短. 当电池失效时, CPU的ALARM指示灯闪烁, 此后一周内, 换锂电池.
   换步骤: PLC资料网 
   <1>断开PLC的供电电源, 若开始PLC的电源是断开的, 则需先接通至少10s后, 再断开. 
   <2>打开CPU盖板(视不同厂家的产品, 其打开方式不同, 应参照其说明书, 以免损坏设备). 
   <3>在5分钟内(当然越快越好), 从支架上取下旧电池, 并装上新电池. 
   <4>重新装好CPU盖板. 
   <5>用编程器ALARM. 
(2)继电器 
   <1>断开PLC的供电电源 
   <2>打开盖板 
   <3>用厂家提供的工具, 取出损坏的继电器并装上新的. 

在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,可编程控制器(PLC)已成为解决的有效的工具之一。PLC控制系统设计时应注意以下几点。
一、 可编程序控制器(PLC)及编程器的选购:
目前市场上的PLC产品众多,除国产以外,国外的有:日本OMRON、MITSUBISHI、FUJI、IDEC、HITACHI、松下,德国的西门子,韩国的LG等,如何选购PLC产品呢?
1. 系统应确定系统用PLC单机控制还是用PLC形成网络,由此计算输入、输出(I/O)点数,并且在选购PLC时要在实际需要点数的基础上预留10%的余量。
2. 确定负载类型根据PLC输出端所带负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出还是晶体管输出,或是晶闸管输出。不同的负载选用不同的输出方式对系统的稳定运行是很重要的。
3. 存储容量与指令的执行速度是PLC选型的重要指标,一般存储量越大、速度越快的PLC价格就越高,尽管国外各厂家产品大体相同,但也有一定区别。
4. "COM"点的选择,
不同的PLC产品,其"COM"点的数量是不一样的,有的一个"COM"点带8个输出点,有的带4个输出点,也有带1个或2个输出点。当负载的种类多且电流大时,采用一个"COM"点带1-2个输出点的产品,当负载种类少数量多时,采用一个"COM"点带4-8个输出点产品。 PLC 
5. 因为各生产厂家的开发软件不同,系统地兼容性也是选购时的,目前还没有发现兼容的产品,应根据系统合理选用PLC产品。
6. 编程器的选购:
PLC编程可采取三种方式:一是用一般的手持式编程器,它只能用厂家规定的语句表中的语句编程。正中方式易于现场调试并且体积低,但它的效率低适应机种类型少,比较适用于系统容量小、用量少的系统中。二是图形编程器编程,这种方式采用图形方式编程,方便直观,一般电气人员短期就可以应用自如,但编程器价格较高。三是用IBM及其兼容个人计算机+PLC软件包编程,这种方式是效率的一种方式,也是常用的一种方式,但大部分软件包价格昂贵。
7.尽量选用大公司的产品,因为其产品质量,且技术支持好,一般售后服务也较好,有利于以后产品的扩展与软、硬件升级。
二、输入、输出回路的设计
1.电源回路
PLC供电一般为AC85-240V(也有DC24V),适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等)
2.PLC上DC24V电源的使用
各公司PLC产品上一般都有DC24V电源,但该电源容量小,为几十毫安至几百毫安,用其带负载时应注意容量,同时做好防短路措施(因为该电源的过载或短路将影响PLC的运行)。 PLC资料网 
3.外部DC24V电源
若输入回路有DC24V供电的接近开关、光电开关等,而PLC上的DC24V电源容量不够时,要从外部提供DC24V电源;但该电源的"一"端不要与PLC的DC24V电源的"一"以及"COM"端相连,否则会影响PLC的运行。
4.输入的灵敏度
各生产厂家对PLC的输入电压和电流都有规定,当输入元件的输入电流大于PLC的大输入电流或有漏电流时,就会有误动作,降低灵敏度。所以应适用弱电流输入并对漏电流采取防护措施,并且选用输入为供漏型输入的PLC。
两线式传感器(光电开关、无触点开关)有LED的限位开关时,输入漏电流会产生错误输入或灯亮,对策为连接泄放电阻降低输入阻抗,阻值由图1中公式推导:
  
晶体管或双向可控硅输出时,若接到一个较大冲击电流的设备上,就考虑保护晶体管和可控硅。晶体管和可控硅可以经受额定电流10倍的冲击电流,如果出,可按图2、图3之一来减少它:
 
5. 对感性负载处理
在输入、输出端接感性负载时,要在负载两端并联一个冲击抑制器或二管,二管的阴与电压㈩侧连接。

6. 外部互锁与接地  
利用PLC控制电机正反转等正、反动作时,为避免PC的异常动作引起事故及机械损坏,应在外部组成一个连锁回路。
  
接地:端子是大地接地端子。用防止感应电的接地线(截面积2mm2以上的电线)采用三种接地方式(接地电阻100Ω以下)。
LG是噪音滤波器中性端子,若因噪音大而产生误动作,或为了防止电击,把LG与短接,采用三种接地方式。接地线的长度在20m以内为宜。
接地线与其它设备共用或与建筑物的金属结构连接会适得其反,受到恶劣影响。
 
7. PLC外部驱动电路
对于PLC输出不能直接带动负载的情况下,在外部采用驱动电路,可以用固态继电器或晶闸管电路驱动,同时应采用保护电路和浪涌吸收电路。
另外PLC的输入输出布线也有一定要求,请参照各公司的使用说明书。
三、 扩展模块的选用
对于小的系统,如80点以内的系统,一般不需要扩展;当系统较大时,就要扩展。不同公司的产品,对系统总点数及扩展模块数量都有限制,当扩展仍不能满足需要时,可采用网络结构。同时,有些厂家产品的个别指令不支持扩展模块,因此,在进行软件编程时要注意。当采用温度等模拟模块时,各厂家也有一些规定,请参阅相关技术手册。 PLC 
四、 PLC的网络设计
当用PLC进行网络设计时,其难度比PLC单机控制大得多,应选用自己比较熟悉的机型,对其基本指令和功能指令有较深入的了解,并且指令的执行速度和用户程序存储容量也应仔细了解。否则不能适应实时要求,造成系统崩溃。另外对通信接口,通信协议、数据传送速度等也要考虑。
后还要向PLC的厂家寻求网络设计和软件支持及详细技术资料,至于选用几层工作站,依照系统大小而定。
五、 软件编制
在编制软件前,应熟悉所选用的PLC产品说明书,待熟悉后再编程。若采用图形编程器或软件包编程,则可直接编程,若用手持编程器编程,应先画出梯形图,然后编程,这样可以减少出错,速度也快,编成完成后先空运转,待各个动作正常后,再在设备上调试。

202202221739073176584.jpg202202221739072455394.jpg20220222173907301904.jpg

1 . 概述 
随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的性直接影响到工业企业的生产和经济运行,系统的抗干扰能力是关系到整个系统运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统性,设计人员只有预先了解各种干扰才能有效保证系统运行。
2.  电磁干扰源及对系统的干扰是什么?
影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 
3.  PLC 控制系统中电磁干扰的主要来源有哪些呢?
(1) 来自空间的辐射干扰
空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。
(2) 来自系统外引线的干扰
主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。
(3)来自电源的干扰
实践证明,因电源引入的干扰造成PLC 控制系统故障的情况很多,笔者在某工程调试中遇到过,后换隔离性能高的PLC 电源,问题才得到解决。
PLC 系统的正常供电电源均由电网供电。由于电网覆盖范围广,
将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,入开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC 电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。
(4 ) 来自信号线引入的干扰
与PLC 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC 控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。
(5)来自接地系统混乱时的干扰
接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC 系统将无法正常工作。PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对 PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC 内逻辑电路和模拟电路的正常工作。PLC 工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC 的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
(6)来自PLC 系统内部的干扰
主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路
互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC 制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。
4.怎样才能好、简单解决PLC系统干扰?
1)选用隔离性能较好的设备、选用优良的电源,动力线和信号线走线要加合理等等,也能解决干扰,但是比较烦琐、不易操作而且成本较高。
2)利用信号隔离器这种产品解决干扰问题。只要在有干扰的地方,输入端和输出端中间加上这种产品,就可有效解决干扰问题。
5.为什么解决PLC系统干扰都选信号隔离器呢?
1)使用简单方便、,廉。
2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在普通的设计人员手里,也会变的非常。
6.信号隔离器工作原理是什么? 
将PLC接收的信号,通过半导体器件调制变换,然后通过
光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间立。 
7.信号隔离器功能是什么? 
一:保护下级的控制回路。 
二:消弱环境噪声对测试电路的影响。 
三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。标准系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。 
8. 现在市场有那么多的隔离器,价格参差不齐,该怎么选择呢? 
隔离器位于二个系统通道之间,所以选择隔离器要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与性有关,这些需要使用者慎选。总之,适用、、产品性价比是选择隔离器的主要原则。

  长期以来,PLC始终活跃于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常的控制应用。其主要原因在于,它能够为自动化控制应用提供和比较完善的解决方案,适合于当前工业企业对自动化应用的需求。 
    随着PC及因特网时代的到来,工业PC或PC-based控制器由于可以融入到网络时代的信息系统中,具有网络系统的基本特性,即具有、格、系统开放、丰富的人才基础等优势,因此PC-based控制器一经出现就具有很强的生命力,发展为迅猛。有观点说,PC-based控制器将取代传统PLC,当然解决性及编程问题。近几年来,这些问题已基本得到解决,PC-based控制器从外观到性也都开始可以与PLC相近。在编程方面,由于IEC61131-3编程语言标准的推出和广泛采用,为PC-based控制器的高速发展铺平了道路。这样,PC-based控制器不仅具有PC的优势,也具有传统PLC的优势。它可无缝地融合到网络时代的信息系统中。 
    在自动控制领域,PLC技术和PC-based技术是当前比较具有代表性的控制技术,两者的技术起源和发展有较大的差异。 
    PLC(ProgrammableLogicController)产生于上世纪70年代初。早的PLC是以替换继器统的角色出现,其主要实现的功能仅仅是逻辑简单的顺序控制功能。PLC一经出现,就以其高性、小体积和直观的编程模式而显示出强大的生命力,成为自动控制领域的“”。 
    PC-based是一种基于PC技术的控制系统。早的PC-based控制系统是以工控机为,通过扩展带PCI接口的板卡组成。PC-based借助于IT技术的发展,在运算、存储、组网和软件开放性方面具有优势。 
    PLC和PC-based两者在技术特点上存在明显区别。PLC具有体积小、功耗低、抗干扰能力强;具有很高的性,其平均无故障率时间间隔(MTBF)可达50万、甚至100万个小时;具有简单直观的编程模式(如梯形图);具有内部实时时钟。而PC-based具有大运算能力;具有开放标准的系统平台和PCI接口;精美且的显示技术;丰富的组网能力。但系统的性略差,如性能较好的IPC的平均无故障时间间隔约5万小时。此外,PC-based虽然具有很强的CPU,但其多任务操作系统是非实时的,所以程序的循环周期反而没有的PLC快。 
    PLC适合于设备控制,而PC-based多地用于设备运行状态的监视。相对于PC-based而言,PLC具有配置灵活、体积小、适应恶劣环境、抗干扰性强、性高等优点,但在软件功能及系统开放性等方面比PC-based稍差。当然,随着计算机技术和控制技术的不断发展,PLC和PC-based都在吸收对方的优点,以适应多的应用现场。例如,PLC在包装设备中的应用远远多于PC-based在包装设备中的应用。 
    随着PC-BASED的工业计算机(简称工业PC,与普通的计算机相比,它具有防尘、防振、抗电磁、耐高低温等优点)的发展,以工业PC、I/O及监装置、控制网络组成的PC-BASED的自动化系统逐渐成为工业自动化的另一种实现方式。PC-BASED自动化系统源于PC,可融入到网络时代的信息系统中,具有、格、系统开放、丰富的人才和应用基础等优势。

由于工业生产现场的工作环境恶劣,干扰源众多,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰,电焊机、电火花加工机床、电机的电刷等通过电磁耦合产生的工频干扰等,都会影响PLC的正常工作。

 

以下介绍PLC的故障多发点:

1、类故障点(也是故障多的地点)在继电器、接触器

如生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,然后发热变形直至不能使用。所以减少此类故障应尽量选用继电器,改善元器件使用环境,减少换的频率,以减少其对系统运行的影响。     

2、二类故障多发点在阀门或闸板这一类的设备上。

因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,因此在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。     

3、三类故障点可能发生在开关、限位置、保护和现场操作上的一些元件或设备上。

其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。     

4、四类故障点可能发生在PLC系统中的子设备。

这类设备如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。所以在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。     

5、五类故障点是传感器和仪表。

这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。     

6、六类故障主要是电源、地线和信号线的噪声(干扰)。

问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。

尽管PLC是专门在现场使用的控制装置,在设计制造时已采取了很多措施,使它对工业环境比较适应,但是为了确保整个系统稳定,还是应当尽量使PLC有良好的工作环境条件, 并采取必要的抗干扰措施。



http://zhangqueena.b2b168.com

产品推荐