6
西宁西门子中国授权代理商CPU供应商
1.引言
唐山钢铁公司中型厂是生产型钢的企业,原有4套钻、铣床设备,用于轻轨精整。其电气控制系统采用继电器及接触器构成,控制手段比较落后,控制效果取决于操作工经验和精神状态,各道工序间连贯性差,费时又费力,故障率较高且维修困难,影响了生产效率。因此,有必要进行技术改造。PLC控制具有性高、柔性好、开发等优点,特别适合于机床控制和故障自诊断系统,可以大大减少继电器等元器件的数量,提高电气控制系统的稳定性和性,从而,用PLC控制系统替代体积大、投资大、耗能大的继电器是电气控制系统发展的趋势。鉴于上述原因,我们利用PLC技术对原有电气系统进行了技术改造。
2.系统功能
轻轨精整PLC智能控制系统包含铣床和钻床控制,实现的基本功能如下:
(1) 切换功能:可实现手动与自动控制的切换。在通常情况下使用自动档,当需要检修或调试的时候,切换到手动档。
(2) 自动报警功能:发生异常情况,可随时报警。当夹紧头快下、动力头快进、动力头工进以及动力头快退四个部分中任何一段出现异常情况时,与之相应的声光报警就会动作,让现场工作人员采取措施,避免或减少事故所造成的损失。
(3) 自动记忆功能:配有“停车”及“继续运行”按钮。当工作过程中出现某些问题需要暂停运行时,按下“停车”按钮后,机床停止运行,各部分均停留在原处不动。再按下“继续运行”按钮,则机床继续运行。
(4) 紧急停车复位功能:配备有“紧急停车复位”按钮。当在工作过程中发生异常,或中途突然停电后恢复时,按下此按钮使机床各部件回到加工前的初始状态。
为实现上述功能,需要对运行过程进行智能判断,进行相应的控制。同时考虑到PLC的运算功能的限制,需要加入故障诊断模块,并进行相应的显示。
3. 系统组成
该系统有输入、控制运算和输出三大部分组成。
1)输入部分包括操作按钮和信号检测两部分。
a.操作按钮用来人工设置参数或进行手动操作,处理紧急情况。
b.信号检测是由传感器自动监测生产线上机床的工作情况,一旦出现异常情况,马上报警提示操作者,以进行相应的故障处理,如紧急停机处理等,从而避免事故的发生。
2)控制运算部分
控制运算部分主要由PLC来完成,由控制系统的应用软件来完成信号的输入、处理、控制输出的主要功能。
3)输出部分包括报置、输送和动力装置、固定装置
a.报置由闪烁的红、黄、绿三种颜色灯和报警铃声构成,三种颜色分别对应三种不同报警级别。表示系统正常,黄色表示系统参数范围,但仍能工作,需要进行处理;红色报警并伴随报警声音,紧急停机处理。
b.输送装置由PLC输出的信号控制主电路,给电机发送指令,让其自动完成原料的传送与动力传送。
c.液压装置是固定装置,由PLC控制器给定的信号,经电磁阀控制液压设备,将原料固定在某一位置,为原料加工服务。
4.系统软件设计
4.1 PLC软件设计考虑的问题
利用梯形图编制控制程序,在 PLC软件设计中要考虑以下几个问题:
(1) 强电关断原则:在铣床软件设计中,只要控制信号中有强电关断的信号,则不管其它信号如何都要关断强电。如图2所示,只要关断信号XO2=1,则中间继电器 M100 都要被关断。 (2) 动作互锁原则:有些控制不能同时动作,就要进行互锁。如主轴正、反转控制,
(3) 顺序联锁控制原则:即有些控制要求次序不能颠倒,这就要求个动作常开触点串在下一个控制动作中,同时将后一个动作中的常闭触点串在上一动作的控制回路中,
总之,影响PLC控制系统的因素很多,只要我们在软件设计时充分考虑到各方面因素,就可避免出现故障,控制系统的运行就会加稳定 [2] 。
4.2 PLC基本控制程序设计
4.3 故障诊断模块的程序设计
对于PLC系统,由于内存资源有限,复杂的智能诊断难于实现,为此加入了故障诊断智能模块,该模块以单片机为基础,采用C51编程,可方便实现各种控制算法。
采用故障树推理与经验规则推理相结合的方法,利用智能模块的I/O功能及内部信息进行故障诊断。[3][4]
(1) 故障结构分析
在进行故障诊断设计时,对整个系统可能发生的故障进行分析,得到系统的故障层次结构,利用这种层次结构进行故障诊断部分的设计。
(2)程序设计
系统故障结构的层次性为故障诊断提供了一个合理的层次模型。在进行系统的程序设计时,应充分考虑到故障结构的层次,合理安排逻辑流程。在引入故障输入点时应注意两点:
a. 将系统所有可能引起故障的检测点引入PLC,这主要是从系统的运行考虑,以便系统能及时进行故障处理;
b. 应在系统允许的条件下尽可能多的将底层的故障输入信息引入PLC的程序中,以便得到多的故障检测信息为系统的故障自诊断提供服务。
5.结束语
经过在线调试和工业试验运行阶段后,该控制系统已于2004年正式投入运行,运行以来,效果良好,实现了预定的控制功能要求,克服了继电器、接触器控制带来的局限,避免了原控制系统辅助元件多、故障率高、工作噪声大、控制方式单一、维护困难等问题。手动与自动切换方便,抗干扰能力强,适合钢厂生产线的恶劣的工作环境,且易于计算机通讯,实现网络监控。
本文作者点:将PLC和单片机结合,设计了用于轻轨精整钻、铣床设备的控制系统,并使之具有故障诊断和报警功能,系统结构简单,操作方便。
在数控机床中,通常用可编程控制器(PLC)对机床开关量信号进行控制。PLC性高,使用方便。但在大多数数控机床,特别是经济型数控机床中,要求的输入输出点数并不多,通常在60点以下,因此,为了降低数控机床成本,在基于工业PC机的数控系统中,可以采用开关量I/O板加外接继电器,配合主机的软件对机床开关进行控制。但如果PC机采用单任务操作系统(如DOS),数控系统的所有任务运行都置于一个总体的消息循环中,软件的模块化和可维护性较差,系统故障的风险相对集中,而且不能充分利用PC机系统资源。而采用非实时多任务操作系统(如bbbbbbs)时,Win32API的设计没有考虑到实时环境的开发用途,其系统调用的效率不高,不能满足数控系统PLC控制的实时性要求。
为此,本文提出一种基于RT-Linux操作系统的嵌入式PLC,利用RT-Linux的开放性、模块化和可扩展性的系统结构特性和多线程/多任务的系统环境,在保证实时性的同时,使故障风险相对分散。
数控系统嵌入式PLC的硬件结构
数控系统硬件建立在通用工业PC的开放体系之上,数控系统嵌入式PLC硬件包括:工控机及其外围设备,基于ISA总线的开关量输入输出接口卡,光电隔离模块,继电器输出模块。
工控机采用RedHatLinux810+RTLinux311操作系统,数控系统的人机界面、数控代码处理、轨迹规划、参数管理以及PLC控制都通过工控机由软件来实现,不需要立的PLC控制器,减少了数控系统对硬件的依赖,有利于提高系统的开放性。
I/O输入输出信息通过PC机I/O接口卡实现主机与伺服接口模块和I/O接口模块之间的信息交换,PC机I/O接口卡基于ISA或者PCI总线。
RT-Linux的体系结构
RT-Linux是基于Linux系统并可运行于多种硬件平台的32位硬实时操作系统(hardreal-timeoperatingsystem)。
它继承了MERT系统的设计思想,即以通用操作系统为基础,在同一操作系统中既提供严格意义上的实时服务,又提供所有的标准POSIX服务。RT-Linux源代码公开,易于修改,使系统成本降低,源代码的公开使数控系统的开发摆脱了对国外软件公司的依赖,有利于提高数控软件国产化程度。
RT-Linux是基于Linux并可运行于多种硬件平台的多实时操作系统。通过修改Linux内核的硬件层,采用中断技术,在内核和硬件之间实现了一个小而的实时内核,并在实时内核的基础上形成了小型的实时系统,而Linux内核仅作为实时系统级的任务运行。对于普通X86的硬件结构,RT-Linux拥有出色的实时性和稳定性,其大中断延迟时间不过15μs,大任务切换误差不过35μs。这些实时参数与系统负载无关,而取决于计算机的硬件,如在PII350,64M内存的普通PC机上,系统大延迟时间不过1μs。
实时域在设计上遵循实时操作系统的设计原则,即系统具有透明性、模块化和可扩展性。RT-Linux的实时内核由一个部分和多个可选部分组成,部分只负责高速中断处理,支持SMP操作且不会被底层同步或中断例程延迟或重入。其它功能则由可动态加载的模块扩充。RT-Linux把不影响系统实时性的操作(即非实时域的操作)都留给了非实时的Linux系统完成。基于多任务环境的Linux为软件开发提供了丰富的系统资源,如多种进程间通讯机制,灵活的内存管理机制。
嵌入式PLC的设计及实现
嵌入式PLC的模块组成
数控系统的PLC控制模块实时性要求较高,因而在系统的实时域内运行。根据通用数控系统的PLC控制以及数控系统软件模块化设计的要求,将数控系统的PLC控制模块作为RT-Linux系统的实时任务之一,其级和调用周期取决于数控系统各任务的实时性要求以及控制要求的响应时间。PLC控制模块主要完成数控系统的逻辑控制,而被控制的输入输出也就是I/O的输入输出由PC机I/O接口卡输入输出模块来完成,即完成数控系统的PLC控制需要两个RT-Linux实时任务,如图3所示,这两个任务分别为RT-Task1(以下称“适配卡输入输出”)、RT-Ta(以下称“PLC控制”)。
基于RT-Linux系统的嵌入式PLC实时任务关系图,其中适配卡输入输出主要是完成数控系统的输入输出,即各轴位置控制命令的输出、I/O的输出、I/O输入以及位置反馈输入,它实际上是数控系统控制卡的设备驱动模块,其级在数控系统的各实时任务中为。根据其硬件特征以及运动控制要求,其响应周期为100μs,响应时钟周期由PC机I/O接口卡上的硬件定时器产生。根据RT-Linux系统对硬件中断的响应机制,输入输出控制任务的实时性是可以保证的,这一点在我们的数控系统已经得到验证。
PLC控制主要是完成数控系统的PLC控制功能,其任务级适配卡输入输出,同时也数控系统的精插补实时任务和位置伺服实时任务。根据通用数控系统的PLC控制要求,确定其响应周期为5ms,响应周期由RT-Linux的软件定时器产生,根据RT-Linux系统的实时多任务调度机制,PLC控制任务的实时性是可以保证的。在实际应用中也得到验证。
嵌入式PLC的实时任务模块数据通讯
完成数控系统PLC控制的两个实时任务之间由于需要输入输出的数据量(一般情况下为64输入,64输出,但输入输出根据需要还可以扩展)不太大,因而采用共享内存的通讯方式,在适配卡输入输出和PLC控制
两个实时任务之间开两块共享内存,一块用于适配卡向PLC控制传输I/O口状态信息,另一块用于PLC控制向适配卡输入输出任务传输经PLC逻辑处理后的控制信息。
在这里,两个实时任务间不采用RT-FIFO进行通讯的原因在于这两个实时任务间通讯的数据量不是很大,而这两个实时任务运行周期差别较大,采用RT-FIFO传输数据,为了避免FIFO的阻塞,相应地要增加两个任务间的协调机制,这样的通讯效果未必比采用共享内存好,而且共享内存的读写速度比FIFO相对较快。
嵌入式PLC的实时任务的实现
适配卡输入输出为动态可加载模块,适配卡输入输出模块(任务)以100μs为周期的硬件定时中断,完成各轴位置控制指令和I/O的输出、各轴位置反馈值和I/O的输入,适配卡输出值来自于位置伺服任务和PLC控制任务,输入值来自于适配卡的输入接口。PLC控制模块(任务)同样也是一个动态可加载模块,它以5ms的软定时,周期性地从它与总控模块通讯的RT-FIFO读取控制信息(如M指令,S指令及T指令),同时从它与适配卡输入输出模块通讯的共享内存中读取I/O信息,然后进行逻辑处理,后将写入共享内存供适配卡输入输出模块读取并输出。
结论
目前该嵌入式PLC模块已成功应用于清华大学精仪系制造工程研究所THHP-III数控系统(基于RedHatLinux8.0+RTLinux3.1)中,该模块可以满足对普通数控系统和加工PLC控制要求。



1、 引言
随着社会经济的发展,工业的兴起,使得一些10KV配电系统大幅度增加,配电系统的简便性、性、性、节能性、性价比显得尤其重要。
目前,传统的10KV配电系统还是采用继电器系统和分布监测计量、分布控制方式,而采用PLC(可编程序控制器)系统集中控制和集中监测计量方式,有利于提高配电系统的运行管理自动化水平,保证配电的稳定,还能减少运行人员的工作强度提,。
2、 继电器系统和PLC系统的比较
PLC(可编程序控制器)是近几十年来发展起来的一种新型工业控制器,由于它编程灵活,功能齐全,应用广泛比继电器系统的控制简单,使用方便,抗干扰力强,,工作寿命高,而其本身具有体积小,重量轻,耗电省等特点。继电器系统有明显的缺点:体积大,性低,工作寿命短,查找故障困难,特别是由于它是靠硬连线逻辑构成系统,所以接线复杂,对于生产工艺的变化的适应性差,不便实现集中控制;而PLC的安装和现场接线简便,可以应用其内部的软继电器简化继电器系统的繁杂中间环节,实现软接线逻辑构成系统,方便集中控制,除此之外,PLC还具有自诊断、故障报警、故障报警种类显示及网络通讯功能,便于操作和维修人员检查。
3、 集中控制、集中监测计量在10KV配电一次系统中的应用举例
在一个10KV配电一次系统中,有两台1000KVA变压器并联运行。
3.1 PLC在集中控制中的地位
在配电一次系统中继电器系统主要集中在总受柜和变压器配出柜内,应用PLC系统来代替继电器系统,可以减少柜与柜之间的硬连线,省去很多继电器,简化工艺,降低系统制作成本,提高配电系统的性,性和节能性。
PLC是整个系统的神经,所有控制,保护,工作状态指示都通过PLC内部的虚拟继电器通过软连线配合外部给定开关量和信号来完成。控制电压在电压以下,可以提高工作的性,远离高压室进行操作,可以避免工作人员的误操作,一站式控制,可以提高工作效率,减少工作人员的劳动强度。用两条现场总线就可以实现整个系统的信号传输,通过PLC的工作状态和报警指示,便于工作和维修人员的故障排除。另外,与继电器相比,PLC的免维护性高,工作寿命长。
3.2 PLC的I/O分配
10KV配电一次系统中,除了上电断电控制外,还有对变压器的过流,欠压和瓦斯保护。我们以欧姆龙CAMP2AH40点的PLC为例进行I/O分配,如表1所示。上断电控制是开关量,选用控制按钮即可,过流,欠压和瓦斯保护涉及自动检测技术,选用智能传感器来实现,可以提高保护的性。
3.3 10KV配电一次系统集中控制、集中监测计量的设计
配电系统是供电网的神经。配电系统的正常工作和我们的生活及工作秩序密不可分,这就要求它有高的性;配电系统的智能化、节能、操作简便、方便维护是经济高速发展的需要;配电系统操作和维护对工作人员的系数要求高、劳动强度低和设备的是用户所希望的。综合以上几点,我们对10KV配电一次系统作了如下改进,应用PLC对系统的总受柜、配出柜实现集中控制,应用数字仪表对系统进行集中监测计量。
改进后,以综合柜为工作平台,在值班室,工作人员可以对高压室运行状态进行控制,既方便又;工作人员可以随时对监测仪表和计量仪表以及工作或报警状态进行记录,巡查,既方便又及时明了,还可以减少劳动强度。
总之,采用微型计算机PLC实现继电保护和控制系统的操作,大大提高系统的自动化水平和性,同时加便于系统的集中控制和监测,方便了系统的信息化管理,大大降,提高了工作的效率,具有一定的推广意义。