产品描述
烟台西门子授权代理商通讯电缆供应商
在启动和停止过程中,特别注意一个问题,那就是回零停止和启动过程一样,要按照严格的顺序来执行。例如,停止时,“出瓶”早于“主拖动”,“主拖动”早于“进瓶”,而进瓶时刚好相反。这样才能保证在下次启动时,出瓶工位的瓶子刚好被抓出,而进瓶工位则是空的,刚好可以开始放瓶。如果不按照顺序启动,则会使进瓶工位“有瓶”状态下打开模板,导致瓶子掉落;或者出瓶工位“有瓶”,但不抓瓶,导致瓶子转到机器底下。这些都是不允许的。
(5)急停保护
对于“撞车”的保护,是整个系统设计中非常重要的一部分。如果所有轴都能够严格按照自己凸轮曲线进行运动,并且没有挂进凸轮的轴也能够正常动作的话,“撞车”原则上是不会发生的。但由于伺服故障、气缸故障等诸多因素的产生,会使得“撞车”发生的概率增加。
“撞车”的情况可以分为两大类,一类是“凸轮动作”内部碰撞,另一类是凸轮动作与非凸轮动作之间的碰撞。例如:进瓶抓瓶机构与进瓶皮带之间,由于进瓶抓瓶的原点位于进瓶皮带上方,下移放瓶时需要水平和垂直两根轴同时动作,才能绕过皮带。如果此时进瓶水平轴由于种种原因没有动作,只有垂直轴在动作,气爪将直接砸在皮带上,造成设备严重的损坏。这属于凸轮动作内部撞车。再例如:当拧盖机构进行拧盖时,拧盖爪抓在瓶子上,如果此时拖板提前开始动作,则会将瓶子拉坏,甚至将模板掀翻。这属于凸轮轴与非凸轮轴之间的碰撞。为避免这些问题的产生,编写了一系列程序,部分程序如图13所示。
图13 进、出瓶模板的空间保护程序
图13所示两段程序是对进、出瓶模板的空间保护,当模板被气缸起时,模板不能拖动,否则会被掀翻。这里依旧采取通过对主轴位置的判断,来判断从轴。当主轴位置处于320和360之间时,模板被气缸起,同时由模板开合轴将模板分开。如果此时气缸突然下降,模板将来不及合拢,而被掀翻。此时可通过MC_ImmediateStop指令完成急停操作。
(6)曲柄的线性处理
整套设备采用了多个曲柄机构,比如灌装、拧盖升降等等。根据曲柄机构的特性,当伺服匀速旋转时,曲柄机构的垂直速度并不是匀速的,并且垂直位置也不是线性变化的。而灌装机构需要一个相对稳定的速度(主要是防止液体飞溅),和一个线性的标定(可以通过对伺服位置的设定,直接标定灌装量)。解决速度基本恒定的方式如下:
IF 30>=MC_Fill1.Act.Pos OR (180>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>150) THEN
Fill1_Velocity_Out:=LREAL#1*灌装1速度HMI;
ELSIF (60>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>30) OR (150>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>120) THEN
Fill1_Velocity_Out:=LREAL#0.8*灌装1速度HMI;
ELSIF (80>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>60) OR (120>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>100) THEN
Fill1_Velocity_Out:=LREAL#0.5*灌装1速度HMI;
ELSIF 100>=MC_Fill1.Act.Pos AND MC_Fill1.Act.Pos>80 THEN
Fill1_Velocity_Out:=LREAL#0.3*灌装1速度HMI;
END_IF;
用以上公式,可以在灌装伺服到达各个位置时,给予不同的速度,通过对角速度赋予“多段速”来实现垂直速度的基本恒定。再通过每10ms写入一次速度的方式,来实现速度的变换。解决位置可标定的方法如下:
纠偏角度转弧度:=DegToRad(REAL#15);
Fill1_Feed_rad:=ACOS(临时数字1);
Fill1_Feed:=RadToDeg(Fill1_Feed_rad)-REAL#15;
临时数字:=REAL#3.14*REAL#16*REAL#7.5;
临时数字1:=(纠偏角度转弧度)-HMI气缸1进给量/临时数字;
通过平面解析几何和三角函数运算,求得伺服角位置和曲柄垂直位置之间的线性关系。
终实现,触摸屏上面可以直接设定以“毫升”为单位的灌装量值。
1 引言
进入21世纪以来,我国人口数量快速增长,用水需求量明显加大,是我国城市可持续发展的主要矛盾之一,因此解决城市水资源缺乏和水环境恶化问题刻不容缓。而随着自动化技术在各行业的不断发展,污水处理行业的自动化水平也在快速提高。目前,在污水处理行业中多采用PLC控制器进行自动控制,上位计算机进行工艺参数监视和设置的系统控制模式[1]。本文以海兴县污水处理厂为例进行系统组成、功能等介绍。
海兴县污水处理厂设计规模为日处理污水二万吨,出水标准为一级A。水厂工程采用CASS+深度处理工艺CONTROL ENGINEERING China版权所有,厂区主要由格栅及沉砂系统、提升泵房、CASS池生物反应系统、曝气生物滤池系统、V型滤池系统及污泥浓缩系统构成。
2 污水处理控制系统的硬件设计
2.1 控制系统整体结构
污水处理厂自动化控制系统分为三级管理,包括生产管理级(控制室)、现场控制级(PLC控制站)及就地控制级。现场各种数据通过PLC系统进行采集,并通过主干通讯网络——工业以太网传送到控制室监控计算机集中监控和管理。同样,控制室监控计算机的控制命令也通过上述通道传送到PLC的测控终端,实施各单元的分散控制。
(1)生产管理级(控制室)
中控室管理层是系统的,完成对污水处理过程各部分的管理和控制,并实现厂级的办公自动化。通过高分辨率液晶显示器及投影仪可直观地动态显示全厂各工艺流程段的实时工况、各工艺参数的趋势画面,操作人员可及时掌握全厂运行情况。
(2)现场控制级(PLC站)
控制层是实现系统自动控制的关键。按照自动控制工艺要求,控制层的PLC通过程序控制整个污水处理厂的设备,实现对现场设备运行状态以及参数(如压力、流量、温度、PH值等)的采集,以及执行管理层的命令。
(3)就地控制级(设备层)
将现场控制箱上的“就地/远程”旋钮切换至“就地”位置,通过箱上的“启动/停止”按钮实现设备的就地启停控制。
海兴县污水厂控制系统的拓扑结构与功能配置如图1 所示:
2.2 下位PLC系统配置
海兴县污水厂自动控制系统采用北京和利时公司的LK系列PLC作为主控制器对生产过程进行监视和控制。模块式PLC控制系统的硬件部分主要包括CPU模块、I/O模块、通讯模块、电源模块、接口模块等,根据控制功能的复杂程度和控制对象的点号统计进行相应的配置。据统计,整个污水厂需要PLC控制的I/O点共829,共分四个PLC控制站:1#PLC站仅有一个主站;2#PLC站仅有一个主站;3#PLC站包括主站和一个远程从站;4#PLC站包括主站和两个远程从站。各个控制站的功能和分别如下:
(1)污泥脱水机房工作站——1#PLC控制站
负责采集水厂进水水质数据,以及格栅系统、旋流沉砂系统、污泥浓缩系统设备的状态采集和设备的控制。
(2)鼓风机房工作站——2#PLC控制站
负责采集CASS池水质数据,以及搅拌系统、滗水系统、曝气系统设备状态的采集和设备的控制。
(3)曝气生物滤池工作站——3#PLC控制站
负责采集曝气生物滤池水质数据,以及二次提升系统、曝气系统、反冲洗系统设备状态的采集和设备的控制。
(4)V型滤池工作站——4#PLC控制站
负责采集V型滤池水质数据,以及反冲洗系统、出水系统设备状态的采集和设备的控制。
总而言之,PLC 控制系统实现了主站与从站的数据交换及数据处理,主站对各个从站的监控和人机交互的可视性。
2.3 上位监控系统硬件配置
工程师和操作员站设立在中控室,其主要由两套互为冗余的操作站、一套投影仪、一台故障打印机、一台图表打印机、一套UPS电源组成。
中控室的两台监控操作站,其中一台为系统监控管理计算机,可对在污水处理厂的各类设备状态、工艺过程参数进行实时和监控,给操作人员、管理人员进行运行管理的人机界面,另一台为信息监控管理计算机,负责实时和定时记录以及报表的生产和打印。
3 污水处理控制系统的软件设计
3.1下位PLC控制程序开发
PLC程序设计采用北京和利时公司推出的Powerpro 下位机软件,根据工艺要求,编写格栅、提升泵房、旋流沉砂池、CASS池、二次提升泵、曝气生物滤池、V型滤池等子程序。
图2所示:
(1)格栅系统控制
格栅系统主控对象为格栅机组、螺旋输送机以及声波液位计。其控制可在监控计算机上设置液位控制和定时控制,当采用液位控制时,是靠格栅的前后液位差来控制格栅机的启停,当液位差达到设定的水位上,PLC控制器会发出命令启动格栅设备;当水位差小于设置的下,格栅机组将接受到PLC控制器发出的停止的信号。操作人员可以在上位机上设定设备的启停液位或者运行周期。
(2)提升泵控制
提升泵的控制工艺要求是根据液位的高低来自动控制提升泵的启停,项目现场采用两用一备方式。当其中的泵出现故障时,故障泵会自动切出自控程序,备用泵会自动切入自控程序。这样长期运行能保泵的运行时间大致相同。
(3)旋流沉砂池系统控制
旋流沉砂系统主控对象为搅拌器、罗茨风机和砂水分离器。系统工作原理如下:污水从沉砂池的切向进入,具有一定的流速,从而对沙砾产生离心力,使较重的沙砾沿池壁沉降到池底集砂槽。搅拌器的桨叶旋转形成轴向涡流CONTROL ENGINEERING China版权所有,产生一个轻微的上升流动,从而带动污水排出,流入下一道工艺流程进行处理。罗茨风机为旋流沉砂池提供空气,达到气提的作用,另外气提直接将沉砂输送到砂水分离器,实现沙砾与污水的分离[2]。其控制工艺要求如下:搅拌器、风机和砂水分离器以一定周期运转,通过工程师站可以设定运行时间。
(4) CASS池系统控制
CASS池系统操作周期分为四个步骤:曝气阶段,鼓风机向反应池内充氧,此时污染物被微生物氧化分解;沉淀阶段,微生物利用水中剩余的DO进行进一步氧化分解,活性污泥逐渐沉淀到池底,上层水变清,污泥回流泵将部分活性污泥送回预反应区,剩余污泥泵则将反应池多余污泥抽到污泥脱水间;滗水阶段,沉淀结束后,置于反应池末端的滗水器开始工作,自上而下逐渐排出上清液;闲置阶段,滗水器上升到原始位置阶段,等待下一周期滗水。根据上述工艺要求,对CASS工艺的各个阶段编写控制子程序。
(5)曝气生物滤池系统控制
曝气风机其控制工艺要求:曝气风机为24小时运转,每天中午12点换一台风机,这样可以保证三台风机运行的时间大体相等。
反冲洗系统控制主要是控制反洗风机、反洗泵以及阀门来实现反冲洗的功能,每两天进行一次反冲洗。
(6)V型滤池系统控制
V型滤池系统的自动控制主要是滤池的自动反冲洗功能。子程序控制的主要设备有反洗泵、反洗风机、阀门以及仪表工艺参数,每两天进行一次反冲洗。
3.2上位机监控系统的实现
本控制系统上位监控系统采用北京和利时公司的上位机软件FacView。软件将现场各分系统的运行状态形象、直观、实时地显示在中控室的工控机上,使操作员在中控室能实时获得现场数据和信息并对污水处理厂的运行进行管理。友好的人机界面把分散的、单回路的测控系统进行了统一的管理,另外还有数据报警、历史数据存储、报表显示、趋势显示等多种功能。
计算机监控画面主要包括全厂工艺图、格栅及沉砂系统、CASS工艺、曝气生物滤池、V型滤池、仪表数据图、趋势图、报警图、报表,各个画面之间可以实现自由切换控制工程网版权所有,全厂工艺图如图3所示:
4 结语
该自动控制系统实行集中控制CONTROL ENGINEERING China版权所有,分散管理的方式,把管理层和控制层分开,通过对全过程的监控,实现了污水处理整个过程的全自动化运营,保证了污水生产运行的,大大提高了污水处理的自动化控制水平和管理水平,减轻了劳动强度,从而提高了生产效率,降低了水厂能耗。其中,PLC 控制器发挥了相当重要的作用。自投产运行以来,控制系统运行平稳,处理水质达到排放标准,不仅改善了人们的生活环境,而且为社会的可持续发展发挥了积的作用,了社会和经济双重效益。
目前,常见的工业自动化设备的后期管理维护、技术支持等多是由工作人员进行现场操作实现的,但由于行业技术人才的培养,以及工程师的运用效率远远达不到现在经济发展的实际要求,这就需要我们有一种加,加便捷的工具来解决目前出现的问题。为此我公司开发出一种基于的3G远程控制系统,能够有效便捷的帮助厂商及用户对PLC设备的后期管理维护。本3G远程控制系统操作简便,实用性强,用户能够在互联网的任何地方对PLC设备进行实时远程监控,提高了设备管理及维护的质量和效率,同时大幅度地降低了管理成本。
本3G远程控制系统可应用于PLC设备生产厂家的技术维护以及火电、煤化工、冶金、港口仓储等所有使用到PLC设备的行业的后期管理。为需要在远程端监控操作PLC设备的客户,如工程师,设计人员,以及需要对现场数据进行分析的设备管理人员打开方便之门。
可实现远程端对PLC设备的数据采集,远程监控,远程维护等功能。
本系统利用点对点隧道协议(PPTP)的技术,实行点对点的虚拟通道通讯,保证
系统搭建便捷,通信,方便管理。
采用本PLC远程3G控制系统有如下优势:
1.:可以节省工程师出差的时间,使工程师能有效的节省服务的时间。
2.速度快:随着3G的发展与普及,3G的通信速度也大大的提高,这样就为我们的远程数据的读取提供了很好的平台。
3.使用方便:跟服务器通信上后,就像在现场设备上操作PLC软件一样,再安装其他辅助的工具。
4.经济性:可以节省工程师出差的费用及时间。
5.性:通过服务器上的加密技术可以对用户认证,这样有效的避免了非法用户进入设备读取数据。
1.概述
在塑料挤出中,熔融物料温度控制的效果直接影响了挤出制品的质量,例如制品表面的残余应力、收缩率及制品质量的稳定性。现有一台双螺杆挤出机,由于较早购置,挤出机的温控系统采用温控仪表。其加热方式为加热瓦分区加热。根据工艺要求,各区设定不同加热温度,采用温控仪表加固态继电器的温控方式。由于温控电路结构复杂,故障率较高,此外,温控表为断续控温方式,因此各加热区温度波动较大,塑料制品的加工质量难以稳定。
针对上述情况,我们设计了以PLC为控制的多回路不等温塑料挤出机温度控制系统。经试验,该系统控温精度高,硬件简单,塑料制品加工质量稳定。
设备概况如下:
双螺杆挤出机,D=120mm,L/D=25,大产量450Kg/h,11个加热段,固体输送段3个,熔融段4个,熔体输送段3个,机头1个。采用水冷方式冷却。
2.系统硬件配置
本系统采用南大傲拓江苏科技有限公司的NA200可编程序控制器为控制和温控仪表,来实现温度的采集与自动调节。系统要求实现11路温度控制,每一回路均为设定固定值控制。根据实际要求选用相应的功能模块。
其中CPU模块选用CPU201-4002+AIM201-0404+AIM201-0201+A0M201-0402,集成有24个数字输入端、16个数字输出端、12个模拟输入端、12个模拟输出端,用模量模块控制调控模块实现不间断输出,好的控制温度。现在用plc做的塑料机械用PID调控模块,很大的占用plc内存,不能时时的反应与控制温度,南大傲拓公司采用时时采制温度方法,能好的控制各温区温度。
温度传感器选用K型热电偶,其测温围适中,线性度较好。
上位机用10.4寸工业触摸屏与 PLC 组成连接。PLC与上位机之间可相互通信,实现对温度的实时监控。
系统硬件配置如下:
图1系统硬件结构组成
图2 温度变化示意图
3.系统工作原理
本系统是一个闭环反馈控制系统。在一个采样周期内,温度传感器(热电偶)将检测到的料筒与机头温度信号,经模拟量输入模块AIM201-0404,由CPU读取。CPU将读取的数值PV与设定值SP进行比较,得到偏差e = SP—PV。根据偏差的大小和温度控制策略进行计算,得到控制输出,通过模拟量模块控制调控模块(本模块是不断电停止,在启动时对电网的冲击忽略为0,而且能及时启动没有延时,在时间做出反应)。通过控制调控模块在一个采样周期中的导通时间即可控制加热器的加热时间,或者冷却风机的工作时间,从而达到控制温度的目的。
4.温度控制策略
在进行温度调节调解时,比例调节反映系统偏差的大小,只要有偏差存在,比例调解就会产生控制作用,以减少偏差。微调节根据偏差的变化趋势来产生控制作用,它可以改善系统的动态响应速度。
由于物在料挤出机的不同区段状态不同,所设定的温度也不同,因此不同的区段控制精度也不同。
在固体输送段,物料为固态颗粒,物料与机筒之间的作用力是摩擦力。在摩擦力作用下,电机的机械能转化为热能,物料被挤压成固体塞。物料温度升高,软化,该段的设定温度物料的熔融温度,温度控制精度较低。
在熔融段,与机筒内壁接触处的物料达到熔融温度区域,物料开始熔融。物料逐渐由固态熔融为液态。该阶段物料需要吸收大量的热,同时又要防止物料温度过高分解,因此该段温度控制精度较高。
在熔体输送段,该段又被称为均化段。在这一段一是要保证物料成分均匀混合,同时也要保证物料温度均匀分布。该段的温度控制结果决定了终的温度控制结果,因此这一段的温度控制精度。
5.PLC编程
本系统采用NA200编程软件,选用梯形图编制温度控制程序。由于本温控系统中每一回路采用的控制策略及所完成的功能均相同,因此采用结构化程序设计方法设计温度控制程序。程序运行时,主程序调用相应的子程序进行计算,得出各加热段相应的输出量。
PLC与上位机的通信主要通过读取和改变 PLC的232来实现,包括实际温度数据块、设定温度数据块、加热调控模块信息数据块、冷却调控模块信息数据块、各中间继电器报警信息数据块等。
6.画面组态
6.1主屏功能与实现
主屏主要显示各加热区实际温度,加热器及冷风机的开闭状态等,通过图形编辑器和相应的标签管理来实现。
6.2温度趋势图的设计与实现
温度趋势图主要显示各加热区的历史温度和当前温度,通过触摸屏将时间取样数据和事件记录在数据库。
7.结束语
本论文点:根据挤出理论,分析挤出机各段的温度分布情况,根据各加热段所处的不同位置,采用不同的温度控制精度来设计智能PID温度控制系统,降低了控制难度。用PLC做控制,实现温度控制的要求。经试验,在新的温控系统控制下,挤出机工作平稳,良好的控制效果,温度调量小于3℃,静态误差小于±1℃。
产品推荐