台州西门子PLC模块CPU供应商
  • 台州西门子PLC模块CPU供应商
  • 台州西门子PLC模块CPU供应商
  • 台州西门子PLC模块CPU供应商

产品描述

产品规格模块式包装说明全新


台州西门子PLC模块CPU供应商

2.2 原系统存在问题
(1) 整个电站的通信采用一个MB+网,当通信线路一个地方发生故障可能会影响整个电站的运行,对电厂的运行形成隐患;
(2) 对外通信扩展不方便,许多外部设备的信息无法到PLC中去;
(3) 随着外部控制设备的新改造,所需测控点数增加,原有配置已无法满足要求;
(4) 当地显示界面即一体化工控机故障率比较高;
(5) 备品备件订货越来越困难。
为此需对现地控制单元进行新改造。

3 技改方案分析
结合水电厂现场改造的经验,提出如下三个现地控制单元改造方案以供比选。
(1) 全部新
把原有设备全部新,改用Quantum PLC。全部新,原有设备要全部报废,这样改造的成本较高,同时现场配线、安装等工作量都较大,改造周期较长。
(2) 扩展DI/DO新屏
扩展一面屏,增加开关量输入和输出点数,PLC仍采用Modicon984,和上位机通信仍需采用MB+方式。由于仅仅是对原有系统进行扩充,增加了相关的点数,整个系统的功能特点以及性等并没有过提高,这种方案改造的意义不大。
(3) 扩展PLC新屏
原有屏柜保持,新扩展一面屏柜,采用Quantum PLC,Quantum PLC与原有PLC采用MB+网进行通信;与上位机通信方式改用以太网通信,即PLC直接上以太网,在新增屏柜上安装一台通信管理机。
在充分利用原有设备的基础上,增加了一套Quantum PLC,数据处理能力得到很大的提高,Quantum PLC具有的网络连接能力,特别是应用于MODBUS PLUS网络的站间通讯(Peer Cop)技术,其快速、准确、的性能充分满足功能要求,在新盘柜和旧盘柜之间即采用MB+网进行通迅,高速MB+网络的通讯功能也得到了充分的利用,上位机的通迅改用了以太网方式,提高了速度和性,同时改造过程中工作量也增加的不是很多,具有可行性。

4 系统设计
系统配置方案如图2所示。在该方案中,原有Modicon984 PLC配置以及盘柜布置和外部接线不作任何改;增加了一套盘柜,盘柜内安装了一套Quantum PLC,PLC配置有140CPU 11303S,增加了开入模件、开出模件、模入模件、以太网通信模件。这就配置点数不足的问题,同时解决了与上位机通信的问题。4.1 数据采集和处理功能
原配置Modicon984 PLC和新增Quantum PLC都具数据采集功能,都配有相应的数据采集模件,两套PLC共同完成现地控制单元的数据采集功能;Modicon984 PLC采集到的所有数据通过MB+网络,采用Peer Cop方式送到Quantum PLC中去,Quantum PLC对所有的数据进行处理,即数据处理功能全部由Quantum PLC完成,这就充分利用了Quantum PLC高速的数据处理功能。
4.2 控制和调节功能
Modicon984 PLC和新增Quantum PLC都配有开关量输出模件,即都具有控制和调节功能;Modicon984 PLC中的开出点,既可以由Modicon984 CPU控制也可以由Quantum PLC控制,两者是‘或’的关系;Quantum PLC通过MB+网络,采用Peer Cop方式把开出点信息送到Modicon984 PLC中去,同时Modicon984 PLC也编有程序,可以实现对开出点的控制,这主要是用来实现对辅机或自启动流程的控制。

4.3 人机界面
在新增盘柜,装有触摸屏,触摸屏与Quantum PLC通迅,这样可以实现所有数据的实时动态显示,同时可以下发相关的控制令给Quantum PLC,Quantum PLC接受到控制命令后进行解释执行。
4.4 对外通信
在新增盘柜,安装有以太网通信模件和通信管理机,以太网通信模件用来和上位机系统通信。通信管理机主要是把现场辅助设备的运行信息进行,同时把到的数据信息送到Quantum CPU里,其自身具有八个RS-232串口,这样整个现地控制单元的外部通信功能大大增强。
4.5 系统结构主要特点
(1) 原有Modicon984 PLC相当于一个智能I/O,自身可以运行PLC程序,这样一些流程就保持不变,而这些控制功能又不受所扩展盘的影响;而对Quantum PLC来说,可以把Modicon984 PLC当一个扩展I/O来处理,它可以处理Modicon984 PLC所有的开关量、模拟量等;
(2) Modicon984 PLC和新增Quantum PLC采用Peer Cop方式,通过高速MB+网络进行通信,实践证明,通信、准确、。

5 软件的功能和实现
5.1 Modicon984 PLC程序功能设计
(1) 编写简单的程序,以实现Quantum PLC和Modicon984 PLC可以同时控制Modicon984 PLC的开出点.
(2) 把开关量、模拟量进行处理,送到的寄存器,以便通过Peer Cop方式一齐传输到Quantum PLC;
(3) 简单的辅机流程和自启动流程
由于原配置Modicon984CPU不支持Concept编程,所以仍需用MODSOFT组态软件来编写。
5.2 Quantum PLC程序功能设计
(1) 发电机组的开停机流程、功率自动调节流程等;
(2) 对所有采集到数据进行处理分析;
(3) 接受上位机和触摸屏所发的控制命令并解释执行。
编程软件采用了组态软件Concept2.6,该软件支持梯形图(LD)、功能块图(FBD)、结构化文本(ST)等多PLC编程语言,能保系统的各类控制功能的需求。

6 结束语
本现地控制单元改造方案,在结构、技术路线、实现方法上都有所,该系统的结构设计合理,技术路线和实现方法可行;改造实施简单,大大减少了安装、配线的工作量,改造工程实施完成几个月来,运行非常稳定,达到了预期的目标,该方案的成功应用为国内老电厂LCU的技术改造提供了典型范例,对提高发电厂的自动化的水平有重要的现实意义。

202202221739073176584.jpg202202221739072455394.jpg20220222173907301904.jpg

其剪切动作由一台SIEMENS S5-135UPLC控制,上位机与PLC S5—135U之间采用SINEC H1工业以太网连接,主要完成功能:切头,切尾和碎断。
PLC硬件配置:CPU 928B板、高速计数板IP242A,以及一定数量的数字量输入/输出模板,模拟量输入/输出板和SINEC HI通讯卡CPl43。
其中高速计数板在剪刃位置的控制中起到了关键作用。该计数板为一智能模板,可不依赖CPU928B而立运行,它共有7个计数通道。在系统启动时,通过CPU软件,可根据需要分别设置成不同的计数方式。另外,在其内部还提供了1MHz的计数脉冲,可用于测量每个程序周期的循环时间,进行轧件的跟踪计算。
在剪刃轴上,装有一编码器,用于检测剪刃的实际位置。
机旁操作箱上装有一些测试按钮和信号指示灯,如剪切测试按钮、定位按钮、EMG按钮及信号灯。
通过上位机PT75(准备终端)对剪切参数进行设定,包括切头使能、切头长度、切尾使能、切尾长度、轧件速度修正使能及预设定修正系数。这些数据通过SINEC H1网送到PLC中。另外,有关的剪切状态数据送回显示,如剪切后剪刃的实际停止位和剪切速度。在操作终端OT75相关的显示画面上,可通过颜色的变化来反映飞剪的工作状态是否正常,包括编码器的脉冲计数状态等。还可以点击相应的图标,发出试剪切命令。

3 飞剪控制原理
根据轧件的速度、设定的剪切长度以及飞剪的动作特性数据,控制飞剪的起停。本飞剪为双剪刃,每次剪切,剪刃转过180度。飞剪驱动电机的速度基准由速度控制系统给出,并随轧线一起级联变化。
3.1 轧件的跟踪
经过飞剪的轧件速度是由轧线速度控制系统根据CV50飞剪上游机架电机光电码盘到的转速信号,结合该机架的减速箱传动比及轧辊的工作辊径计算得出,经转换通过16位开关量输出、一路频率与速度相关的脉冲信号以及一路0-10V的模拟量信号送往CV50剪切控制PLC系统。在那里可根据需要决定选择使用那个速度基准。这样给系统的组织带来了一定的灵活性,且在某一路信号故障时,可由PLC内部程序判断并自动切换使用另一路信号。通过高速计数器,对其内部提供的1MHz频率的脉冲进行计数,并实时读取计数值,可获得控制程序在每个周期的循环时间,结合修正后的轧件速度,就能得到每个程序循环周期内轧件在飞剪区域的行程。根据飞剪前的热金属检测器HMD的检测信号,就可以对轧件的头尾进行实时跟踪。
3.2 轧件的剪切控制
通过对轧件进行跟踪,根据轧线上安装的HMD信号及剪切长度设定值,启动飞剪剪切(见图2)


1)当飞剪前的热金属检测器测量到轧件头部信号时,记下此刻的轧件跟踪计数器计数值,以后将该值与轧件计数器值相比较,就能得到轧件头部到HMD的距离S,当S=L-A+H时,开始启动切头动作,制动器离合器线圈得电。其中:L为HMD到剪刃交叉点的距离。A为切头时,剪刃从启动点到交叉点时,轧件所走过的距离(即剪切提前量)。H为设定的切头长度。
2)当HMD检测到轧件尾部信号时,对轧件尾部离开HMD的距离进行跟踪计数(方法同切头)。当计数值S=L-A-T 时,开始启动切尾动作。其中:T为设定的切尾长度。A为切尾提前量。
剪切命令发出后,通过一输出驱动装置,将动作命令分成两部分,使制动器电磁阀的线圈得电,断开制动器,经驱动装置上设定的延时后,离合器电磁阀线圈得电,电机驱动剪刃运动,在剪刃交叉位剪切轧件。当剪刃到达制动起始位时,剪切控制输出关闭,经驱动装置,离合器先失电,经延时,制动器失电,制动投入,后剪刃停在零位,等待下次剪切。
为提高剪切精度,需对每次剪切的提前量A进行实测,即计算在剪切命令发出后,从剪刃零位到剪刃交叉期间,轧件走过的距离。为防止偶然的计数误差带来的影响,可将近若干次的测量值取平均;同时还要考虑程序运行周期对剪刃交叉点检测造成的误差,并进行补偿。
在切头、切尾时,还需考虑剪刃在停止位的零位偏差。由于每次剪刃的停止后并不一定正好在零位上。这样,在进行头尾剪切计算时,要对相应的剪切提前量A进行修正,以便获得准确的剪切长度。
由于不同轧制速度下,机械装置的惯性不同,停止过程所需的制动距离也就不一样,速度越快,所需的制动角度也就越大。为使剪切后,剪刃能准确停在零位,在切头、切尾时需对制动角度进行测量,即根据剪刃轴上编码器的脉冲计数值,得到从离合器制动器电磁阀线圈断电到剪刃停止时剪刃转过的角度,取近若干次切头、切尾制动中测量的平均值,作为下一次切头、切尾时的制动角。

4 控制功能说明
寻找零位:初始程序启动,零位找寻工作,由于编码器安装时,其零位脉冲的不确定性,在系统启动后,须确定该编码器的计数零点时剪刃位置与机械零点间的相对偏差,否则无法根据编码器的计数值来获得剪刃的物理位置,也就无法对飞剪进行控制。具体过程为:系统启动后,在机旁操作箱上按下点动开关,使飞剪以点动速度缓慢地旋转两圈以上,然后按下箱内的一个按钮,并至少保持5秒以上(目的是防止意外误操作),然后松开按钮即可。转动两圈主要是计数板及编码器工作是否正常。
由于从轧线速度控制系统送来的轧件速度信号,仅是系统根据CV50机架电机速度反馈值,结合机械的减速比和轧辊的辊径计算得出,而随着生产的进行,轧辊在
不断磨损,工作辊径的尺寸也在发生变化,计算速度难免与实际轧件速度间存在偏差。为提高剪切精度,有必要对轧件的实际速度进行实测,以便对用于跟踪的轧件速度进行修正。测量方法如下:测量轧件头部从飞剪前HMD到飞剪后HMD(若切头功能投入,则为从剪刃交叉点到飞剪后HMD)的理论计数距离,将它与实际距离相比较,即可得到一速度修正系数。且该测量在每根轧件的头部进行,并对这一系数进行自适应修正:
(N*K+Ki)/(N+1)--->K
其中N为测量次数(设有大限值),Ki为本次测量值。该功能可在上位机上根据需要选择投用。
值得一提的是它的状态和故障诊断功能,通过CPU的编程接口,配合外部安装在编程器或PC机上的诊断软件,可以观察到程序内部与剪切有关的重要状态信号的变化时序,可根据需要编制监测状态的清单(可以是输入输出信号,标志位或计时器的状态),发送到CPU,程序在每个循环的后,检测这些信号的状态有无发生变化,如有变化,则把其变化后的状态及本周期的时间计数器值依次存入缓冲状态数据块,由CPU送往PC机,在屏幕上显示出来,并存入预先设置的文件中。这一功能对故障的排查很有帮助,特别是那些偶发性的故障。它可以连续监测,在故障发生后,通过打开存储状态变化的文本文件,根据故障发生的时间,检查该时间区段内各检测信号的状态有无异常,以确定故障原因。

5 程序结构
启动块:创建数据块,并将数据拷贝至工作DB-RAM中;计数卡进行初始设置、启动计数器:SINECH1网络的初始化;重计算有关的剪切参数,并拷贝到工作DB-RAM中。
主循环程序:检测电源及相关信号是否正常;对HMD信号及编码器脉冲计数器进行采集处理,测量剪刃位置。实测轧件速度,并对轧线速度控制系统送来的轧件速度信号进行修正。产生剪切命令和事故碎断命令,控制导槽底板和出口挡板的动作。管理信号及数据的输入输出。与上位机、其他PLC之间的通讯处理;剪切循环的状态诊断。

6 使用中出现的问题
在实际运行中,切尾曾出现异常现象,即尾部的剪切长度失控,甚至剪不到轧件尾部。经分析发现是由于热金属检测器HMD到飞剪的距离太小,该距离与飞剪的剪切提前量基本接近,这样即使设定的切尾长度很长,也可能剪不到尾或剪的很短。开始,我们通过提高飞剪电机速度基准来解决,但这样一来,虽然能剪到尾部,却引出另一问题:由于剪切速度与轧件速度不同步,使切头时剪切速度前,产生额外的剪切负荷,而在切尾时,常把尾部弯,对设备造成潜在的危害。后经过修改程序,将启动轧件尾部跟踪的热检由飞剪前HMD0改为机架前的HMDl,且将轧件从HMD0到该机架段的行程折算到以CV50前轧件速度行进时轧件走过的距离(即用CV50前两个机架出口速度的比值乘以HMD0到该机架的距离),并把它加到距离L中。修改后,切尾控制正常。
离合器制动器式飞剪一般适合于剪切断面较大、剪切速度不高的场合,其剪切定位精度由于受控制气源、电磁阀、离合器制动器摩擦片的影响较大。当轧件速度发生较大变化时,会对剪切长度产生一定影响,一般要通过几次试剪来解决。

7 结束语
用PLC组成的飞剪控制系统,使用器件少,工作稳定,故障率低,维护方便,在实际生产中有较广泛的应用。

1 概述

由莱钢集团自主设计、开发的50吨氧吹转炉系统于2002年10月正式投产。该系统由转炉本体、汽包汽化和煤气回收3部分组成,过程控制采用电 器控制、仪表控制和计算机自动控制三电一体化实现,提高了控制的性和性。其中计算机自动控制系统由1台工程师站,2台操作员站,3台西门子S7- 400可编程控制器组成,通过Profibus现场总线实现数据传递。

2 工艺过程


转炉系统主要完成将铁水和废钢冶炼成钢水,同时将冶炼过程中产生的煤气和水蒸气进行回收再利用。转炉主体设备主要包括炉体、炉门、烟罩、倾动机构、氧升降机构、氧横移机构、称重装置、上料装置、冷却装置等组成,其中氧有两套,靠衡移小推车转换,实现互为备用。
装 料时炉门打开,烟罩提升,装料完成后,炉门关闭,烟罩下移。冶炼过程中,氧下降,从炉体部向炉内吹氧,或加合金料以改善钢水成分。出钢时,氧上升, 倾动炉体,钢水由钢包车运至精炼炉精炼。炼钢过程中,氧和烟罩通过循环冷却水降温,产生的汽包蒸汽经加压后送用户使用;风机将烟罩内气体吸出,经煤气回 收后放散到大气。



3 自动控制系统构成




转炉自动控制系统采 用3台SIMATIC S7-400-414-2 PLC 主站分别完成实现转炉本体控制、汽包汽化和煤气回收及风机控制,其配置主要有主机架、扩展机架、电源、CPU、接口模块、通信模块,以及数字量和模拟量输 入/输出模块等。3台主站之间通过以太网完成数据通讯。汽包汽化和煤气回收PLC主站共下设2个ET200-M远程从站,通过工业现场总线 Profibus-DP完成主从通讯。1台工程师站用于完成系统的开发设计,2台操作员站完成整个生产过程监控。自动控制系统构成如图1所示。

整个转炉系统的自动控制由PLC控制程序完成,通过开放的Profibus-DP现场总线连接各个部件,构成分布式控制系统,实现顺序逻辑控制、联动联锁控制、以及信号传输、报警和数据采集等,同时设有人工紧急停车处理按钮。
4.1 工程师站
基于SIMATIC STEP7编程软件的工程师站,完成3台PLC主站系统的硬件组态、地址和站址的分配以及用户程序的设计开发和调试工作。程序设计采用模块化、结构化编程,应用OB、FC、FB块和相关数据块DB组成整个控制系统,并且在软件设计中采用了抗干扰措施。
4.2 操作员站
操 作员站作为整个系统的人机界面,采用通用工业PC,配置SIMATIC WinCC画面组态软件,通过以太网实现对现场设备的过程监控。WinCC能实现过程数据动态显示、参数设定、操作控制等功能,并具有过程信息归档、 报警信息顺序显示、报表打印等功能,具有很强的实时行。
4.3 转炉本体PLC主站
转炉本体PLC主站主要完成炉前的炉门动作和炉体的倾 动操作,炉后倾炉和出钢钢包车、出渣渣车操作,烟罩的升降操作和冷却水流量、压力联所控制,氧的升降操作和氧定位及冷却水流量压力联所控制,氧横移 换操作,上料称重和进料操作,并完成转炉水冷烟罩、水冷炉壁、水冷氧等水冷系统48个测温点温度变化的实施数据采集以及冷却水系统压力、流量等实时数 据采集监视和限及事故报警。通过以太网实现PLC和操作站之间的实时数据传送,由人机界面完成生产过程监控。
4.4 汽包汽化PLC主站
汽 包汽化PLC主站设置有1台Profibus-DP远程控制从站ET200M。主站主要完成对冶炼过程中产生蒸汽的压力、流量、温度检测,控制加温水槽水 位,控制送出热水的流量、压力、温度等,并由操作站对过程信息进行实时监控。从站主要完成液压泵站主、辅液压泵的切换和运行控制,对高压液罐和气罐的液位 和压力控制,对空气压缩机的控制,对主液箱和回液箱的液位自动控制以及液压介质自动温度控制。
4.5 煤气回收PLC主站
煤气回收PLC 主站也设置有1台Profibus-DP远程控制从站ET200M。主站主要完成一纹水、二纹水的冷却控制,转炉煤气进出一纹水、二纹水前后的温度、 压力和流量,根据对和二氧化碳的检测含量,控制是否进行煤气回收。从站主要完成两台风机的主、辅切换和运行控制,检测风机轴温、轴振动和进出口压 力、流量、温度,通过联锁控制风机的正常运行。



5 抗干扰功能的设计与实现
由于电器设备的存在,尤其是高压变频器每次启动所产生的高频冲击,大电流运行时所产生的强电磁场,以及电网谐波等诸多干扰因素的存在,严重威胁控制系统的正常运行和通信网络的、稳定畅通,为此设计中根据各种干扰源的存在增机一下抗干扰功能:
(1) 接地
计算机、PLC和通信网络采用单的接地处理。
(2) 模拟量输入信号滤波
对于电器设备的电压、电流及风机转速等重要模拟量输入信号在进PLC模拟量通道之前,先经过信号隔离器通道中的串模干扰,在保证有用信号不被衰减的情况下大限度的衰减高频干扰,提高通道的信噪比。


(3) 模拟量通道屏蔽
模拟量信号的输入导线采用有屏蔽线的双绞线电缆,以降低辐射干扰和电磁耦合性干扰。
(4) 模拟量通道隔离
模拟量模块采用通道光电隔离模块,降低通道间共模干扰。
(5) 数字量通道隔离
数字量模块采用通道光电隔离模块,在信号进出PLC通道之前加设中间继电器对通道进行双重隔离,防止串入强干扰电压烧坏通道。
(6) 通讯电缆设置
工业以太网通讯缆和Profibus-DP电缆敷设时单穿金属管,电缆走向避免与动力缆平行,尽可能远离转炉本体和大电流线路。
(7) 电源隔离
工作电源通过带屏蔽的隔离变压器给PLC主站和从站供电,使PLC和大功率的电器设备的电位隔离,避免供电线路干扰。
(8) 程序设计抗干扰处理
对于模拟量输入信号采用延时滤波技术,瞬时干扰。对于数字量输入信号采用锁存和指令对比技术,降低误信号。

6 结束语
系 统投运至今运行稳定,抗干扰技术的合理化应用保证了PLC设备和通讯网络在恶劣环境中的畅行。Simens PLC程序故障诊断、在线监控和修改技术,方便了程序维护,开放的、标准的Profibus-DP现场总线增强了系统的扩展能力。整套系统自动化水平高、 操作间接方便、报警明了清晰、故障率低、维护量小,达到国内水平。

一.引言
随着人们对牛奶质量要求的提高,国内自动化奶场数量也不断增加,为了保证奶源的质量,大部分牛奶加工厂对挤奶环节提出了高的要求,这就迫切需要采用配置清毒功能的自动挤奶机替代人工挤奶,因此,国内的挤奶机市场需求与日俱增。但是,目前国内使用的挤奶机大部分是进口瑞士、以色列、日本、美国等国家的产品,这就为国内挤奶机设备生产厂家提供了广阔的市场空间。
自动挤奶机中,对脉冲发生器的控制是影响牛奶质量和数量的关键因素,V80系列小型 PLC因其特有的功能和的性价比在该设备发挥了出色的作用。

二.系统构成
挤奶机主要由三部分构成:真空泵、脉动发生器以及挤乳机组,其的控制部分是脉动发生器,通过脉动发生器的脉冲控制真空泵,在乳杯中交替地形成真空和负气压。进入吸乳阶段,牛乳被真空泵从乳头中吸出,通过输奶管输送到储奶灌;然后进入按 摩阶段,压力作用下使牛乳从乳 房的腺泡流入乳池。于是,又一次吸乳开始重复上一次动作。从奶牛生理特性的考虑,脉动频率为每分钟为50-60次,并且脉宽比例不能大于50%。

三.工艺流程
由于挤奶机要求产生50~60Hz的脉冲,真空泵需要直流电压供电,所以选用了V80系列的M40DT-AC型号的小型PLC,它具有24点DC输入,16点晶体管输出。每一路晶体管大可带24V,0.7的负载,电源具有宽电压使用范围(85-265V)。V80系列PLC、性能稳定,并已通过了欧洲标准的CE认证,比较适合于在偏远的农牧场工作。
脉动发生器主要由一个V80M40DT-AC外接一个文本屏构成。文本屏实现脉动发生器的参数设置,主要是脉动频率以及脉宽比例的设置。16点晶体管输出,分为8组,每2个输出点为一组,每一个输出点可接2-3个真空泵。这样一个M40DT的PLC可供16-24头奶牛同时挤奶。同时,提供16点晶体管输出的扩展模块,每台V80M40DT-AC可以带大7个扩展模块,从而使PLC控制的点数大大的增加,可满足多种规模挤奶场的需求。
V80 PLC具有2个通讯接口,一个RS232接口,一个RS485接口。2个通讯接口都支持标准的MODBUS协议,可以方便的与各类文本屏,触摸屏等人机交互设备连接。
同时V80 PLC具有大量的特殊功能继电器,可实现许多特定的功能。具体应用如下:
09925——次运行标志继电器,仅在PLC次运行周期时为ON,可用于对系统参数进行设置,例如,一些开关状态,初始设定一个脉冲频率和脉冲比例等。
09923——输入输出保持继电器,设置该继电器,PLC掉电时将会保留当前的输入输出状态,下次上电会重新加载输入输出的状态,复位该继电器,PLC次运行时以前的输入输出状态。
09924——寄存器保持继电器,设置该继电器,PLC掉电时将会保留当前的寄存器的数值,下次上电将重新加载所有的寄存器,复位该继电器,PLC次运行时以前的寄存器的数值。



http://zhangqueena.b2b168.com

产品推荐